首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. We measured fractional rates of protein synthesis, capacities for protein synthesis (i.e. RNA/protein ratio) and efficiencies of protein synthesis (i.e. protein-synthesis rate relative to RNA content) in fasted (24 or 48 h) or fasted/surgically stressed female adult rats. 2. Of the 15 tissues studied, fasting caused decreases in protein content in the liver, gastrointestinal tract, heart, spleen and tibia. There was no detectable decrease in the protein content of the skeletal muscles studied. 3. Fractional rates of synthesis were not uniformly decreased by fasting. Rates in striated muscles, uterus, liver, spleen and tibia were consistently decreased, but decreases in other tissues (lung, gastrointestinal tract, kidney or brain) were inconsistent or not detectable, suggesting that, in many tissues in the mature rat, protein synthesis was not especially sensitive to fasting. 4. In fasting, the decreases in fractional synthesis rate resulted from changes in efficiency (liver and tibia) or from changes in efficiency and capacity (heart, diaphragm, plantaris and gastrocnemius). In the soleus, the main change was a decrease in capacity. 5. Surgical stress increased fractional rates of protein synthesis in diaphragm (where there were increases in both efficiency and capacity) by about 50%, in liver by about 20%, in spleen by about 40%, and possibly also in the heart. In liver and spleen, capacities were increased. In other tissues (including the skeletal muscles), the fractional rates of protein synthesis were unaffected by surgical stress.  相似文献   

2.
The effects of hormones and dietary factors on rat liver β-hydroxy-β-methylglutaryl coenzyme A reductase activity and serum and liver cholesterol levels were tested. Cholestyramine feeding markedly stimulated reductase activity in the livers of rats depleted of insulin or l-triiodothyronine. Therefore, these hormones are not absolute requirements for the stimulation of reductase activity.In hypophysectomized rats, l-triiodothyronine markedly stimulated reductase activity, even when the animals were cholesterol fed or fasted. However, this stimulation was accompanied by a reduction of serum and liver cholesterol levels. In diabetic rats, insulin failed to either stimulate reductase activity after cholesterol feeding, or to depress the level of liver cholesterol. These results are consistent with a model in which cholesterol functions as a feedback repressor of reductase activity.In contrast, a number of dietary and hormonal states produced little or no change in the level of serum and liver cholesterol while producing widely different reductase activities. These results suggest that the cholesterol level does not regulate reductase activity and cholesterol synthesis and that the factors that affect the formation of cholesterol also have a similar effect on its degradation. However, the possibility of a small subcellular pool of cholesterol regulating reductase activity and thus showing a positive correlation cannot be ruled out.The results reported in this paper suggest that the repressor, in a feedback repression model of regulation, should have similar effects on the rate-limiting enzymes of cholesterol synthesis and degradation. In this way a factor that operates through the repressor affects the rates of synthesis and degradation, but not the level of liver and serum cholesterol.  相似文献   

3.
The present investigation compared plasma cholesterol levels and lipoprotein profiles, and absolute rates of sterol synthesis and low density lipoprotein (LDL) uptake in various organs of immature (4 weeks old) and mature (15 weeks) rats. The plasma cholesterol level and its distribution among the major lipoprotein density fractions were similar in both groups. Using [3H]water as a substrate for measuring sterol synthesis in vivo, the content of newly synthesized cholesterol (3H-labeled digitonin-precipitable sterols; [3H]DPS) was several fold higher in all tissues of the young, compared to the old, rats when normalized per g of tissue. In contrast, whole-body [3H]DPS content was identical at 29.5 and 29.3 mumol/hr in young and old rats, respectively, despite a 4.4-fold difference in body weight (102 vs. 453 g). The importance of different organs to total-body sterol synthesis remained similar with increasing age although the skin (11 vs. 24% of total) rather than the small bowel (15 vs. 8%) became the second most important organ after the liver (49 vs. 45%) in the older animals. When LDL uptake was determined in these same organs, using constant infusion technique, the rates of clearance were higher only in the adrenal glands, adipose tissue, and skin of the young animals; whereas these rates were essentially the same in the liver and gastrointestinal tract, the two organs that are quantitatively most important for LDL catabolism. Even when these clearance rates were normalized to the whole organ or to 100 g of body weight, the differences in LDL uptake in the two age groups were minor compared to the major decrease in rates of cholesterol synthesis that were observed with aging. Finally, calculation of absolute rates of tissue cholesterol acquisition from both sources indicated that, in most organs, the majority of tissue cholesterol was derived from local synthesis rather than from LDL uptake in both age groups and that, with increasing age, total cholesterol acquisition decreased several-fold primarily as a consequence of the diminished rate of sterol synthesis. These studies demonstrate that with growth and aging in the rat there is a dramatic decrease in the rate of tissue cholesterol synthesis while the uptake of LDL-cholesterol remains essentially unchanged.  相似文献   

4.
Synthetic rates of fatty acid, cholesterol and triacylglycerols, and contents and secretion of lipoprotein lipids, were determined in hepatocytes of rats fed ad libitum a fat-containing stock diet or of rats fasted for 48 h and then refed for 24 or 48 h with stock diet or with a glucose-rich fat-free diet. When compared with the values for the ad libitum-fed rats, fatty acid synthesis was lower in fasted rats, slightly increased in rats refed with the stock diet, but several-fold elevated after refeeding the glucose-rich fat-free diet. Cholesterol synthesis was decreased in the fasted cells, and restored to the control level upon refeeding either diet. Triacylglycerol synthesis from exogenous oleate was greatly stimulated in the cells of fasted-refed rats above the rate in cells of the ad libitum-fed rats, the increase being considerably higher after refeeding the glucose-rich fat-free diet than the stock diet. The amount of triacylglycerol secreted by the cells was also elevated by the fasting-refeeding treatment, but the difference between the two diets was much less pronounced than seen for the lipids' synthetic rates. This imbalance may underlie the huge accumulation of this lipid observed in the heptatocytes after refeeding the rats for 48 h with the glucose-rich fat-free diet.  相似文献   

5.
The possible role of HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase (the rate-controlling enzyme of cholesterol biosynthesis) in regulating the rate of dolichyl phosphate biosynthesis in rat liver was investigated. Rats were either fasted 48 h or fed diets supplemented with the drug cholestyramine. The activity of HMG-CoA reductase was 5000-fold greater in liver from cholestyramine-fed rats as compared to fasted rats. The activity of dolichyl phosphate synthetase, the prenyl transferase responsible for the biosynthesis of dolichyl phosphate from farnesyl pyrophosphate and isopentenyl pyrophosphate, was similar in both nutritional conditions and was markedly less active than HMG-CoA reductase even in the fasted state. Acetate incorporation into cholesterol was 2200-fold greater in liver slices from cholestyramine-fed rats as compared to fasted rats. By contrast, acetate incorporation into dolichyl phosphate was only 6-fold higher. Further studies suggested that the levels of farnesyl pyrophosphate and isopentenyl pyrophosphate are several hundred-fold greater in liver from cholestyramine-treated rats. From these results, it is concluded that the rate of dolichyl phosphate biosynthesis in rat liver is not regulated by the activity of HMG-CoA reductase but is probably regulated at the level of dolichyl phosphate synthetase.  相似文献   

6.
This study provides explanation for conflicting evidence in the literature relating to changes in mitochondrial function and metabolic parameters during chemically induced diabetes. Diabetes of 3 days' duration (early ketosis) did not alter heart, kidney, or liver mitochondrial respiratory rates with glutamate or succinate even though serum glucose and triglycerides were elevated. Diabetes of 5 weeks' duration did not alter kidney or liver mitochondrial function in the fed adult rat although weight gain was depressed. The amount of kidney mitochondrial protein isolated per gram of tissue was increased by 30% in the diabetic. This increase was reversed by insulin treatment as were the other biochemical modalities measured. Superimposition of a 24-hr fast resulted in enhanced gluconeogenesis as measured by an animal weight loss of 17% within 24 hr (liver weight loss, 21%) and an elevation of serum urea nitrogen by 180% compared to fasted control. Respiratory rates of diabetic kidney mitochondria with glutamate were unaffected in the fasted animal whereas diabetic liver mitochondrial respiratory rates during succinate oxidation were reduced by 43%. Respiratory control was unchanged in the fasted diabetic rat. All the observed changes were reversed by insulin. Variation in the serum and liver metabolic indices (urea nitrogen, creatinine, glycerol, free fatty acids, free amino acids, triglycerides, and glucose) and liver mitochondrial responses to 7 weeks of chemically induced diabetes was affected by the rat strain, Sprague-Dawley versus Sherman, and rat weight, 72 g versus 222 g. Liver mitochondrial respirations in fed Sherman rats were not depressed by diabetes. Both rat strains had elevated liver free fatty acids and glutamate dehydrogenase activity in the diabetic state. Serum leucine, isoleucine, and valine were more elevated and serum lysine and arginine were more depressed in the diabetic Sprague-Dawley rat than in the Sherman rat. Conjectures on these results are presented in the text.  相似文献   

7.
The diurnal variation in cholesterol synthesis exhibited by rat liver has been examined in fed, fasted, and adrenalectomized animals. Fasting for 3 days caused a lowering of the rate of synthesis but did not abolish the diurnal rhythm. Adrenalectomy abolished the diurnal variation, and caused synthesis to remain at a uniformly high level. We suggest that corticosterone may play an essential role in the daily rhythm of cholesterogenesis.  相似文献   

8.
We have observed that preincubation of 48 hour-fasted or alloxan diabetic rat liver slices, with no exogenous energy supply, for 3 hours resulted in an increased rate of incorporation of [1-14C] acetate into fatty acids and cholesterol during the following 2 hours. This preincubation effect was enhanced by the presence of glucose (25mM) in or prevented by the addition of dibutyryl cyclic adenosine 3′,5′ monophosphate (10?4M) to the preincubation medium. Preincubation of normal rat liver slices did not change their rate of incorporation of [1-14C] acetate into fatty acids or cholesterol. The rate of 14CO2 synthesized by normal, fasted or diabetic liver slices was little affected by preincubation. The preincubation effect, i.e. enhanced fatty acid synthesis was also observed in suspensions of hepatocytes from fasted and diabetic rats, preincubated for 2 hours, followed by a 1 hour incubation with either [1-14C] acetate or [3H] H2O as precursor. We conclude from these data that there is concurrent and coordinated short- and long-term regulation of fatty acid biosynthesis in fasted and diabetic rat livers. Further, we suggest that the release of inhibition by preincubation of these tissues provides a useful tool for studying the coordinated control  相似文献   

9.
Sixty three hamsters were divided into two groups which were exposed to the same rigid lighting schedule (06(00)--18(00)) but fed at different time intervals (18(00)--22(00), and 08(00)--12(00), respectively) for five weeks. The cholesterol synthetic activity was then determined in liver, gastrointestinal tract, and kidney by in vivo incorporation of (1--14C)-acetate into cholesterol at different hours of the day. A remarkable circadian rhythm of the activity was found in the liver and small intestine, but not in other organs. Regardless of the lighting schedule, the nadir occurred, in both groups, always at the end of the fasting period and the peak four to six hours after feeding. The study clearly indicated the major role of diet in regulation of such phenomenon.  相似文献   

10.
The current studies were undertaken to characterize the localization and regulation of cholesterol synthesis and acyl-CoA:cholesterol acyltransferase activity in rat intestinal crypt and villus cells. Both parameters were determined in groups of animals with widely varying sterol fluxes across the intestinal mucosa. In animals on control diet the rates of cholesterol synthesis, measured by the incorporation of [3H]water per mg of protein, were similar along the villus/crypt axis in the jejunum, whereas in the ileum, villus cells were significantly more active than crypt cells. In both areas, however, the majority of total synthetic activity was found in cells from the crypts and lower villi. In contrast, the highest specific and total acyl-CoA:cholesterol acyltransferase activity was recovered in the villus cells of the jejunum and ileum. Dietary cholesterol did not affect sterol synthesis in any of the cell fractions but increased acyl-CoA:cholesterol acyltransferase activity approximately 2-fold in jejunal cell fractions. Inhibition of cholesterol absorption or sequestration of intestinal bile acids stimulated sterol synthetic activity up to 7-fold, and this occurred mainly in the lower villus and crypt cells in both jejunum and ileum. An increased demand for lipoprotein cholesterol, generated by triglyceride feeding, similarly was associated with enhanced synthetic rates. However, unlike cholesterol feeding, these manipulations did not increase acyl-CoA:cholesterol acyltransferase activity in any of the villus cell fractions. These studies suggest, therefore, that the intracellular pools of cholesterol that regulate the rate of cholesterol synthesis and the rate of cholesterol esterification are functionally distinct.  相似文献   

11.
Rat liver slices were pulse labeled for 6 min with [3H]mevalonolactone and then chased for 90 min with unlabeled mevalonolactone in order to study the mechanism of dolichyl phosphate biosynthesis. The cholesterol pathway was also monitored and served to verify the pulse-chase. Under conditions in which radioactivity in the methyl sterol fraction chased to cholesterol, radioactivity in alpha-unsaturated polyprenyl (pyro)-phosphate chased almost exclusively into dolichyl (pyro)phosphate. Lesser amounts of radioactivity appeared in alpha-unsaturated polyprenol and dolichol, and neither exhibited significant decline after 90 min of incubation. The relative rates of cholesterol versus dolichyl phosphate biosynthesis were studied in rat liver under four different nutritional conditions using labeled acetate, while the absolute rates of cholesterol synthesis were determined using 3H2O. From these determinations, the absolute rates of dolichyl phosphate synthesis were calculated. The absolute rates of cholesterol synthesis were found to vary 42-fold while the absolute rates of dolichyl phosphate synthesis were unchanged. To determine the basis for this effect, the rates of synthesis of cholesterol and dolichyl phosphate were quantitated as a function of [3H]mevalonolactone concentration. Plots of nanomoles incorporated into the two lipids were nearly parallel, yielding Km values on the order of 1 mM. In addition, increasing concentrations of mevinolin yielded parallel inhibition of incorporation of [3H]acetate into cholesterol and dolichyl phosphate. The specific activity of squalene synthase in liver microsomes from rats having the highest rate of cholesterol synthesis was only 2-fold greater than in microsomes from rats having the lowest rate. Taken together, the results suggest that the maintenance of constant dolichyl phosphate synthesis under conditions of enhanced cholesterogenesis is not due to saturation of the dolichyl phosphate pathway by either farnesyl pyrophosphate or isopentenyl pyrophosphate but coordinate regulation of hydroxymethylglutaryl-CoA reductase and a reaction on the pathway from farnesyl pyrophosphate to cholesterol.  相似文献   

12.
The nonproliferating chicken liver cell culture system described yields cell monolayers with morphological and lipogenic properties characteristic of the physiological-nutritional state of donor animals. Synthesis and secretion of fatty acid, cholesterol, and very low density lipoprotein (VLDL) occur at in vivo rates and respond to hormones and agents which affect these processes in vivo. Cells derived from fed chickens maintain high rates of synthesis of fatty acid and cholesterol for several days if insulin is present in the medium. High rates of fatty acid synthesis are correlated with the appearance of membrane-enclosed triglyceride-rich vesicles in the cytoplasm; deletion of insulin causes a decrease (T1/2 = 22 h) in fatty acid synthetic activity. Addition of glucagon or cyclic AMP (cAMP) causes an immediate cessation of fatty acid synthesis and blocks the appearance of the triglyceride-rich vesicles. Fatty acid synthesis in liver cells prepared from fasted chickens is less than 5% that of cells from fed animals. After 2-3 days in culture with serum-free medium containing insulin +/- triiodothyronine, fatty acid synthesis is restored to normal; glucagon or dibutyryl cAMP blocks this recovery. Liver cells derived from estradiol-treated chickens synthesize and secrete VLDL for at least 48 h in culture. Electron micrographs of these cells reveal more extensive development of the rough endoplasmic reticulum and Golgi complex compared to cells from untreated chickens. Whereas [3H]leucine incorporation into total protein is unaffected by estrogen treatment, [3H]leucine incorporation into cellular and secreted immunoprecipitable VLDL is markedly increased indicating specific activation of VLDL apopeptide synthesis; 8-10% of the labeled protein synthesized and secreted is VLDL. Dodecyl sulfate-acrylamide gel electrophoresis of immunoprecipitated 3H-VLDL reveals three major apopepetides of 300,000, 11,000, and 8,000 daltons corresponding to those of purified chicken VLDL.  相似文献   

13.
The effect of inhibition of glycogen phosphorylase by 1,4-dideoxy-1,4-imino-d-arabinitol on rates of gluconeogenesis, gluconeogenic deposition into glycogen, and glycogen recycling was investigated in primary cultured hepatocytes, in perfused rat liver, and in fed or fasted rats in vivo clamped at high physiological levels of plasma lactate. 1,4-Dideoxy-1,4-imino-d-arabinitol did not alter the synthesis of glycerol-derived glucose in hepatocytes or lactate-derived glucose in perfused liver or fed or fasted rats in vivo. Thus, 1,4-dideoxy-1,4-imino-d-arabinitol inhibited hepatic glucose output in the perfused rat liver (0.77 +/- 0.19 versus 0.33 +/- 0.09, p < 0.05), whereas the rate of lactate-derived gluconeogenesis was unaltered (0.22 +/- 0.09 versus 0.18 +/- 0.08, p = not significant) (1,4-dideoxy-1,4-imino-d-arabinitol versus vehicle, micromol/min * g). Overall, the data suggest that 1,4-dideoxy-1,4-imino-d-arabinitol inhibited glycogen breakdown with no direct or indirect effects on the rates of gluconeogenesis. Total end point glycogen content (micromol of glycosyl units/g of wet liver) were similar in fed (235 +/- 19 versus 217 +/- 22, p = not significant) or fasted rats (10 +/- 2 versus 7 +/- 2, p = not significant) with or without 1,4-dideoxy-1,4-imino-d-arabinitol, respectively. The data demonstrate no glycogen cycling under the investigated conditions and no effect of 1,4-dideoxy-1,4-imino-d-arabinitol on gluconeogenic deposition into glycogen. Taken together, these data also suggest that inhibition of glycogen phosphorylase may prove beneficial in the treatment of type 2 diabetes.  相似文献   

14.
1. Synthesis de novo of fatty acids in the rat liver, measured per g wet wt. of tissue, was increased by a factor of about two, between 1 and 4 days after partial hepatectomy, compared with rates in sham-operated control rat livers. 2. There were no associated changes in the rates of liver cholesterol synthesis or of adipose-tissue fatty acid synthesis in rats after partial hepatectomy, compared with rates in sham-operated rats. 3. In regenerating livers, perfused under three different conditions, there was no alteration in the capacity for fatty acid synthesis compared with that of control rats. 4. The increased synthesis of fatty acids in regenerating liver was associated with insignificant increases in plasma concentrations of tricylglycerols and free fatty acids, with a decrease in content of liver glycogen, and with no change in hepatic activity of acetyl-CoA carboxylase. 5. The accelerated rate of synthesis of fatty adids in regenerating liver appears not to be due to any intrinsic alteration in hepatic capacity for fatty acid synthesis, but it may be caused by the continuous action on liver of unidentified circulating factors.  相似文献   

15.
The major liver phosphofructokinase isozyme decreased 60–70% in 6-day fasted rats or rats made diabetic with alloxan or streptozotocin. Refeeding induced a return to normal within 72 hr, and insulin treatment for 72 hr increased the amount, of this isozyme 6- to 8-fold greater than the diabetic levels. The level of this isozyme was measured after separation of isozymes on DEAE-cellulose and by titration with antiserum. The minor liver isozyme is slightly, if at all, affected by insulin and only slightly affected during fasting (20% decrease after 6-day fast period).For the fasted rat the results indicated that the decreased amount of the major isozyme was a consequence of increased degradation, with little if any change in the rate of synthesis. However, during refeeding it appeared that the increased enzyme content was a result of both increased synthesis and reduced degradation. Thus. the isozyme representing the bulk of liver phosphofructokinase activity is regulatable through effects on the rates of its synthesis and degradation, while the minor isozyme is relatively unaffected.  相似文献   

16.
The existence of a circadian rhythm in the rate of hepatic cholesterol synthesis in the rat has been demonstrated in vivo by measuring the conversion of both [1-(14)C]acetate and (3)H(2)O to cholesterol. By both methods there was observed a similar increase in the rate of hepatic cholesterol synthesis between the nadir at noon and the peak at midnight. Circadian changes in the rate of hepatic cholesterol synthesis measured in vivo with [1-(14)C]acetate were very similar to changes in the activity of hepatic microsomal HMG CoA reductase. Cholesterol synthesis in the jejunum and in the distal ileum was also shown to exhibit the same circadian rhythm in vivo but with smaller amplitude (1.6- and 1.3-fold, respectively). Rats trained to eat during a 4-hr period (9 am-1 pm) while housed under normal illumination showed changes in the timing of the circadian rhythm of cholesterol synthesis; in the liver the maximum rate of cholesterol synthesis occurred at 6 pm, 9 hr after the presentation of food, while the two sections of the intestine investigated exhibited a maximum synthetic response between noon and 6 pm. Results obtained in this study support the hypothesis that the major portion of the rise in HMG CoA reductase activity and the increase in overall rate of cholesterol synthesis in liver and intestine during the circadian rhythm are due to the ingestion of food. Under the limited feeding schedule (food access 9 am-1 pm), the rates of hepatic and intestinal synthesis of fatty acids from the injected acetate also showed a circadian rhythm with a peak at about 3 hr after presentation of food.  相似文献   

17.
The rate of dolichol synthesis in normal and diabetic liver slices in the presence or absence of insulin was investigated with radiolabeled acetate and mevalonate as substrates. Cholesterol and dolichol syntheses were found low in diabetic rat liver slices when incubated either with 1-14C-acetate or 2-3H-mevalonate. In the presence of insulin, cholesterol and dolichol synthesis in diabetic rat liver slices returned to normal in nine hours when incubated with 1-14C-acetate; however, with 2-3H-mevalonate, synthesis of cholesterol and dolichol normalized in about three hours. These studies show that dolichol synthesis in rat liver slices is dependent on insulin.  相似文献   

18.
19.
The effect of copper deficiency on hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase, the key enzyme regulating cholesterol biosynthesis, was investigated in the rat. Male weanling rats were fed semipurified diets containing adequate, marginal, or deficient levels of copper for 6 weeks. Two separate studies were conducted; in the first study, animals were fasted 12 hours prior to analysis and in the second study, animals were fed diets ad libitum. Plasma lipid levels, hepatic cholesterol concentrations, and 3-hydroxy-3-methylglutaryl coenzyme A reductase specific activity, total and active, were determined. Consistent with previous findings, plasma total cholesterol and triglyceride levels were significantly elevated in copper-deficient rats. Copper deficiency resulted in a significant decrease in hepatic total cholesterol levels. Total and active levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase in fed animals were elevated twofold with copper deficiency, with the active form of the enzyme constituting approximately 30% of total activity. 3-Hydroxy-3-methylglutaryl coenzyme A reductase activity in copper-deficient fasted rats was twofold higher than for the fasted adequate animal; however, fasting did result in a 10-fold reduction in hepatic reductase specific activity. These data support the hypothesis that copper deficiency results in a hypercholesterolemic state in the rat associated with increased hepatic cholesterol synthesis.  相似文献   

20.
Hepatic specificity of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase may be achieved by efficient first-pass liver extraction resulting in low circulating drug levels, as with lovastatin, or by lower cellular uptake in peripheral tissues, seen with pravastatin. BMY-21950 and its lactone form BMY-22089, new synthetic inhibitors of HMG-CoA reductase, were compared with the major reference agent lovastatin and with the synthetic inhibitor fluindostatin in several in vitro and in vivo models of potency and tissue selectivity. The kinetic mechanism and the potency of BMY-21950 as a competitive inhibitor of isolated HMG-CoA reductase were comparable to the reference agents. The inhibitory potency (cholesterol synthesis assayed by 3H2O or [14C]acetate incorporation) of BMY-21950 in rat hepatocytes (IC50 = 21 nM) and dog liver slices (IC50 = 23 nM) equalled or exceeded the potencies of the reference agents. Hepatic cholesterol synthesis in vivo in rats was effectively inhibited by BMY-21950 and its lactone form BMY-22089 (ED50 = 0.1 mg/kg p.o.), but oral doses (20 mg/kg) that suppressed liver synthesis by 83-95% inhibited sterol synthesis by only 17-24% in the ileum. In contrast, equivalent doses of lovastatin markedly inhibited cholesterol synthesis in both organs. In tissue slices from rat ileum, cell dispersions from testes, adrenal, and spleen, and in bovine ocular lens epithelial cells, BMY-21950 inhibited sterol synthesis weakly in vitro with IC50 values 76- and 188-times higher than in hepatocytes; similar effects were seen for BMY-22089. However, the IC50 ratios (tissue/hepatocyte) for lovastatin and fluindostatin were near unity in these models. Thus, BMY-21950 and BMY-22089 are the first potent synthetic HMG-CoA reductase inhibitors that possess a very high degree of liver selectivity based upon differential inhibition sensitivities in tissues. This cellular uptake-based property of hepatic specificity of BMY-21950 and BMY-22089, also manifest in pravastatin, is biochemically distinct from the pharmacodynamic-based disposition of lovastatin, which along with fluindostatin exhibited potent inhibition in all tissues that were exposed to it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号