首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on recent advances in plant gene technology, I propose to develop a new category of GM plants, orgenic plants, that are compatible with organic farming. These orgenic plants do not contain herbicide resistance genes to avoid herbicide application in agriculture. Furthermore, they either contain genes that are naturally exchanged between species, or are sterile to avoid outcrossing if they received a transgene from a different species. These GM plants are likely to be acceptable to most sceptics of GM plants and facilitate the use of innovative new crops.  相似文献   

2.
The western honey bee (Apis mellifera L.) is a widespread pollinator species. The present study aimed to test if Africanized honey bee larvae are negatively affected by the ingestion of diet contaminated with the Bacillus thunringiensis toxin Cry1Ac, which is expressed in GM cotton plants. The toxin activity was confirmed in bioassays with the velvetbean caterpillar (Anticarsia gemmatalis), a soybean pest species susceptible to Cry1Ac. The honey bee larvae were subjected to ingestion of either pure larval diet (control), diluted larval diet (diluted control) or larval diet diluted in a Cry1Ac solution at a concentration compatible with the maximum possible field exposure. Although diluted diet slightly increased larval mortality, Cry1Ac ingestion did not affect survival, developmental time, and neither adult body mass nor size, indicating that GM plants are unlikely to significantly impair the development of honey bee larvae. The larval‐rearing system reported here was suitable to assess the lethal and sub‐lethal effects of GM expressed toxins against honey bee larvae.  相似文献   

3.
Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds.  相似文献   

4.
So far, no compelling scientific evidence has been found to suggest that the consumption of transgenic or genetically modified (GM) plants by animals or humans is more likely to cause harm than is the consumption of their conventional counterparts. Despite this lack of scientific evidence, the economic prospects for GM plants are probably limited in the short term and there is public opposition to the technology. Now is a good time to address several issues concerning GM plants, including the potential for transgenes to migrate from GM plants to gut microbes or to animal or human tissues, the consequences of consuming GM crops, either as fresh plants or as silage, and the problems caused by current legislation on GM labelling and beyond.  相似文献   

5.
Worldwide, plants obtained through genetic modification are subject to a risk analysis and regulatory approval before they can enter the market. An area of concern addressed in environmental risk assessments is the potential of genetically modified (GM) plants to adversely affect non-target arthropods and the valued ecosystem services they provide. Environmental risk assessments are conducted case-by-case for each GM plant taking into account the plant species, its trait(s), the receiving environments into which the GM plant is to be released and its intended uses, and the combination of these characteristics. To facilitate the non-target risk assessment of GM plants, information on arthropods found in relevant agro-ecosystems in Europe has been compiled in a publicly available database of bio-ecological information during a project commissioned by the European Food Safety Authority (EFSA). Using different hypothetical GM maize case studies, we demonstrate how the information contained in the database can assist in identifying valued species that may be at risk and in selecting suitable species for laboratory testing, higher-tier studies, as well as post-market environmental monitoring.  相似文献   

6.
Biotechnologies have been utilized "ante litteram" for thousands of years to produce food and drink and genetic engineering techniques have been widely applied to produce many compounds for human use, from insulin to other medicines. The debate on genetically modified (GM) organisms broke out all over the world only when GM crops were released into the field. Plant ecologists, microbiologists and population geneticists carried out experiments aimed at evaluating the environmental impact of GM crops. The most significant findings concern: the spread of transgenes through GM pollen diffusion and its environmental impact after hybridisation with closely related wild species or subspecies; horizontal gene transfer from transgenic plants to soil microbes; the impact of insecticide proteins released into the soil by transformed plants on non-target microbial soil communities. Recent developments in genetic engineering produced a technology, dubbed "Terminator", which protects patented genes introduced in transgenic plants by killing the seeds in the second generation. This genetic construct, which interferes so heavily with fundamental life processes, is considered dangerous and should be ex-ante evaluated taking into account the data on "unexpected events", as here discussed, instead of relying on the "safe until proven otherwise" claim. Awareness that scientists, biotechnologists and genetic engineers cannot answer the fundamental question "how likely is that transgenes will be transferred from cultivated plants into the natural environment?" should foster long-term studies on the ecological risks and benefits of transgenic crops.  相似文献   

7.
Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore-natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs. In this study, we looked at transgenic disease-resistant wheat (Triticum aestivum) and its effect on aphid-parasitoid food webs. We hypothesized that the GM of the wheat lines directly or indirectly affect aphids and that these effects cascade up to change the structure of the associated food webs. Over 2 years, we studied different experimental wheat lines under semi-field conditions. We constructed quantitative food webs to compare their properties on GM lines with the properties on corresponding non-transgenic controls. We found significant effects of the different wheat lines on insect community structure up to the fourth trophic level. However, the observed effects were inconsistent between study years and the variation between wheat varieties was as big as between GM plants and their controls. This suggests that the impact of our powdery mildew-resistant GM wheat plants on food web structure may be negligible and potential ecological effects on non-target insects limited.  相似文献   

8.
Concerns about genetically modified (GM) crops include transgene flow to compatible wild species and unintended ecological consequences of potential transgene introgression. However, there has been little empirical documentation of establishment and distribution of transgenic plants in wild populations. We present herein the first evidence for escape of transgenes into wild plant populations within the USA; glyphosate-resistant creeping bentgrass (Agrostis stolonifera L.) plants expressing CP4 EPSPS transgenes were found outside of cultivation area in central Oregon. Resident populations of three compatible Agrostis species were sampled in nonagronomic habitats outside the Oregon Department of Agriculture control area designated for test production of glyphosate-resistant creeping bentgrass. CP4 EPSPS protein and the corresponding transgene were found in nine A. stolonifera plants screened from 20,400 samples (0.04 +/- 0.01% SE). CP4 EPSPS-positive plants were located predominantly in mesic habitats downwind and up to 3.8 km beyond the control area perimeter; two plants were found within the USDA Crooked River National Grassland. Spatial distribution and parentage of transgenic plants (as confirmed by analyses of nuclear ITS and chloroplast matK gene trees) suggest that establishment resulted from both pollen-mediated intraspecific hybridizations and from crop seed dispersal. These results demonstrate that transgene flow from short-term production can result in establishment of transgenic plants at multi-kilometre distances from GM source fields or plants. Selective pressure from direct application or drift of glyphosate herbicide could enhance introgression of CP4 EPSPS transgenes and additional establishment. Obligatory outcrossing and vegetative spread could further contribute to persistence of CP4 EPSPS transgenes in wild Agrostis populations, both in the presence or absence of herbicide selection.  相似文献   

9.
We have incorporated artificial lipid-anchored streptavidin conjugates with fully saturated or polyunsaturated lipid anchors into the plasma membranes of Jurkat T-lymphocytes to assess previous conclusions that the activation of signaling processes induced in these cells by clustering of endogenous glycosylphosphatidylinositol-anchored proteins or ganglioside GM1 depends specifically on the association of these membrane components with lipid rafts. Lipid-anchored streptavidin conjugates could be incorporated into Jurkat or other mammalian cell surfaces by inserting biotinylated phosphatidylethanolamine-polyethyleneglycols (PE-PEGs) and subsequently binding streptavidin to the cell-incorporated PE-PEGs. Saturated dipalmitoyl-PE-PEG-streptavidin conjugates prepared in this manner partitioned substantially into the detergent-insoluble membrane fraction isolated from Jurkat or fibroblast cells, whereas polyunsaturated dilinoleoyl-PE-PEG-anchored conjugates were wholly excluded from this fraction, consistent with the differences in the affinities of the two types of lipid anchors for liquid-ordered membrane domains. Remarkably, however, antibody-mediated cross-linking of either dipalmitoyl- or dilinoleoyl-PE-PEG-anchored streptavidin conjugates in Jurkat cells induced elevation of cytoplasmic calcium levels and tyrosine phosphorylation of the scaf-folding protein linker of T-cell activation in a manner similar to that observed upon cross-linking of endogenous CD59 or ganglioside GM1. The amplitude of the cross-linking-stimulated elevation of cytoplasmic calcium moreover showed an essentially identical dependence on the level of incorporated streptavidin conjugate for either type of lipid anchor. Confocal fluorescence microscopy revealed that PE-PEG-streptavidin conjugates with saturated versus polyunsaturated anchors showed very similar surface distributions vis à vis GM1 or CD59 under conditions where one or both species were cross-linked. These results indicate that cross-linking of diverse proteins anchored only to the outer leaflet of the plasma membrane can induce activation of Jurkat T-cell-signaling responses, but they appear to contradict previous suggestions that this phenomenon rests specifically on the association of such species with lipid rafts.  相似文献   

10.
Classic plant breeding has increased the beauty and utility of ornamental plants, but biotechnology can offer completely new traits for plants used in homes and gardens. The creation of blue petal color in carnations and roses are examples where biotechnology has created novelty that conventional hybridization cannot match. However, all innovations have benefits and risks, and future commercialization of transgenic ornamental plants raises complex questions about potential negative impacts to managed landscapes and natural ecosystems. Predictive ecological risk assessment is a process that uses current knowledge to estimate future environmental harms or benefits arising from direct or indirect exposure to a genetically-modified (GM) plant, its genes, or gene products. This article considers GM ornamental plants in the context of current ecological risk assessment principles, research results, and current regulatory frameworks. The use of ecological risk assessment by government agencies to support decision-making is reviewed in the context of ornamental plants. Government risk assessments have usually emphasized the potential for pollen-mediated gene flow, weediness in managed areas, invasion of natural areas, and direct harm to nontarget organisms. Some of the major challenges for predictive risk assessment include characterizing gene flow over time and space, plant fitness in changing environments, and impacts to nontarget organisms, communities and ecosystems. The lack of baseline information about the ecology and biodiversity of urban areas, gardens, and natural ecosystems limits the ability to predict potential hazards, identify exposure pathways, and design hypothesis-driven research. The legacy of introduced ornamental plants as invasive species generates special concern about future invasions, especially for GM plants that exhibit increased stress tolerance or adaptability. While ecological risk assessments are a valuable tool and have helped harmonize regulation of GM plants, they do not define the acceptable level of risk or uncertainty. That responsibility belongs to regulators, stakeholders and citizens.  相似文献   

11.
One of the concerns surrounding the commercial release of genetically modified (GM) crops is the escape of transgenes into agricultural or semi‐natural habitats through vertical gene flow, as this may cause environmental or economic problems. There is also the concern that GM crops may affect pollinators and the pollination services they provide. Despite the growing commercial interest of GM tomato (Solanum lycopersicum), gene flow has been assessed only sparsely in tomato. To evaluate the likelihood of gene flow from GM tomato plants to sexually compatible plants, and to assess whether bumblebee activity is affected by GM tomato, three experiments were conducted under greenhouse conditions, using a Bt‐tomato expressing the insecticidal Cry3Bb1 protein as model system: (a) artificial crosses between a GM tomato line, two wild tomato relatives (Solanum hirsutum and Solanum nigrum) and a non‐GM tomato variety; (b) bumblebee‐mediated crosses between GM and non‐GM tomato plants and (c) visual observations of bumblebees' feeding behaviour. No hybrids were obtained between the GM tomato line and S. hirsutum and S. nigrum. In an experimental design where non‐GM receptor plants outnumbered GM plants by approximately 3:1, the bumblebee‐mediated cross‐fertilisation rate between GM and non‐GM tomato plants was measured at 4.3 ± 5.47%. No significant differences in feeding behaviour of bumblebees foraging on GM and non‐GM tomato plants were observed. Therefore, we conclude that: (a) the probability of transgene introgression between the GM tomato line used in this study and its wild relatives S. hirsutum and S. nigrum is negligible; (b) bumblebee activity can mediate cross‐fertilisation between GM and non‐GM tomato and (3) the Cry3Bb1‐expressing tomato line tested does not adversely affect the feeding behaviour of bumblebees.  相似文献   

12.
Genetic engineering of food is the science which involves deliberate modification of the genetic material of plants or animals. It is an old agricultural practice carried on by farmers since early historical times, but recently it has been improved by technology. Many foods consumed today are either genetically modified (GM) whole foods, or contain ingredients derived from gene modification technology. Billions of dollars in U.S. food exports are realized from sales of GM seeds and crops. Despite the potential benefits of genetic engineering of foods, the technology is surrounded by controversy. Critics of GM technology include consumer and health groups, grain importers from European Union (EU) countries, organic farmers, environmentalists, concerned scientists, ethicists, religious rights groups, food advocacy groups, some politicians and trade protectionists. Some of the specific fears expressed by opponents of GM technology include alteration in nutritional quality of foods, potential toxicity, possible antibiotic resistance from GM crops, potential allergenicity and carcinogenicity from consuming GM foods. In addition, some more general concerns include environmental pollution, unintentional gene transfer to wild plants, possible creation of new viruses and toxins, limited access to seeds due to patenting of GM food plants, threat to crop genetic diversity, religious, cultural and ethical concerns, as well as fear of the unknown. Supporters of GM technology include private industries, research scientists, some consumers, U.S. farmers and regulatory agencies. Benefits presented by proponents of GM technology include improvement in fruit and vegetable shelf-life and organoleptic quality, improved nutritional quality and health benefits in foods, improved protein and carbohydrate content of foods, improved fat quality, improved quality and quantity of meat, milk and livestock. Other potential benefits are: the use of GM livestock to grow organs for transplant into humans, increased crop yield, improvement in agriculture through breeding insect, pest, disease, and weather resistant crops and herbicide tolerant crops, use of GM plants as bio-factories to yield raw materials for industrial uses, use of GM organisms in drug manufacture, in recycling and/or removal of toxic industrial wastes. The potential risks and benefits of the new technology to man and the environment are reviewed. Ways of minimizing potential risks and maximizing the benefits of GM foods are suggested. Because the benefits of GM foods apparently far outweigh the risks, regulatory agencies and industries involved in GM food business should increase public awareness in this technology to enhance worldwide acceptability of GM foods. This can be achieved through openness, education, and research.  相似文献   

13.
Several species of plants have developed a tolerance to metal that enables them to survive in metal contaminated and polluted sites. Some of these aquatic plants have been reported to accumulate significant amounts of specific trace elements and are, therefore, useful for phytofiltration. This work focuses the potential of aquatic plants for the phytofiltration of uranium (U) from contaminated water. We observed that Callitriche stagnalis, Lemna minor, and Fontinalis antipyretica, which grow in the uraniferous geochemical province of Central Portugal, have been able to accumulate significant amounts of U. The highest concentration of U was found in Callitriche stagnalis (1948.41 mg/kg DW), Fontinalis antipyretica (234.79 mg/kg DW), and Lemna minor (52.98 mg/kg DW). These results indicate their potential for the phytofiltration of U through constructed treatment wetlands or by introducing these plants into natural water bodies in the uraniferous province of Central Portugal.  相似文献   

14.
Genetically modified (GM) potatoes expressing a cysteine proteinase inhibitor (cystatin) have been developed as an option for the management of plant parasitic nematodes. The relative impact of such plants on predators and parasitoids (natural enemies) of nontarget insects was determined in a field trial. The trial consisted of GM plants, control plants grown in soil treated with a nematicide and untreated control plants. The quantity of nontarget aphids and their quality as hosts for natural enemies were studied. Aphid density was significantly reduced by nematicide treatment and few natural enemies were recorded from treated potatoes during the study. In contrast, similar numbers of aphids and their more abundant predators were recorded from the untreated control and the GM potatoes. The size of aphids on GM and control plants was recorded twice during the study. During the first sampling period (2-9 July) aphids clip-caged on GM plants were smaller than those on control plants. During the second sampling period (23-30 July) there was no difference in aphid size between those from the GM and control plants. Host size is an important component of host quality. It can affect the size and fecundity of parasitoid females and the sex ratio of their offspring. However, neither the fitness of females of Aphidius ervi, the most prevalent primary parasitoid, nor the sex ratio of their progeny, were affected when the parasitoids developed on aphids feeding on GM plants. Two guilds of secondary parasitoid were also recorded during the study. The fitness of the most abundant species, Aspahes vulgaris, was not affected when it developed on hosts from GM plants. The transgene product, OC I Delta D86, was not detected in aphids that had fed on GM plants in the field, suggesting that there is minimal secondary exposure of natural enemies to the inhibitor. The results indicate that transgenic nematode resistance is potentially more compatible with aphid biological control than is current nematicide use.  相似文献   

15.
With a continued increase in the range of transgenes, and plantspecies for which genetic modification is possible, this reviewattempts to bring together some of the factors that will influencethe eventual fate of transgenes in the environment, and theeffects that such a dispersal may have. The review is developedfrom papers presented at the SEB Swansea meeting (April, 1994). Using experiments with GM (genetically modified) plants, andmarkers in non-GM plants, as well as observations on naturaland crop populations, it is possible to predict isolation distancesrequired for limiting the unintentional release from GM crops,and the probable fate of both GM pollen and seed if it is releasedbeyond the GM plot. Knowledge of wild relatives of crop plants,and ecological mechanisms can also give insights into the possibleeffects of different transgenes on native plants, and otheragricultural crops. A large number of limited scale releasesof GM plants have now taken place from which we can gain informationon the performance of GM crops in an agricultural environment,and the stability of the GM phenotype. All this information,can help to form a sound basis for regulations on the releaseof GM plants, an assessment of the need for, and scope of monitoring,and the best way in which to use GM crops. Key words: Transgenic releases, genetically-modified plants, molecular ecology, transgene stability  相似文献   

16.
We study compartmentalization in a Mediterranean pollination network using three different analytical approaches: unipartite modularity (UM), bipartite modularity (BM) and the group model (GM). Our objectives are to compare compartments obtained with these three approaches and to explore the role of several species attributes related to pollination syndromes, species phenology, abundance and connectivity in structuring compartmentalization. BM could not identify compartments in our network. By contrast, UM revealed four modules composed of plants and pollinators, and GM four groups of plants and five of pollinators. Phenology had a major influence on compartmentalization, and compartments (both UM and GM) had distinct phenophases. Compartments were also strongly characterized by species degree (number of connections) and betweenness centrality. These two attributes were highly related to each other and to phenophase duration. Differences among compartments in abundance were only apparent with GM. We attribute this to the fact that abundance is strongly correlated with Degree, and the GM algorithm is particularly powerful at discriminating species based on degree. On the other hand, the role of pollination syndrome‐related features in compartmentalization mostly emerged with UM. Only UM compartments differed in corolla length and pollen production. Both UM and GM compartments differed in their pollinator spectra. We found inconsistent reciprocity between plant attributes and pollinator spectra, thus it is difficult to conclude compartments follow clear‐cut syndromes. Also, both UM and GM identified a compartment composed of pollinators with long activity periods that acted as connectors, linking all compartments providing cohesiveness to the network.  相似文献   

17.
In the past 6 years, the global area of commercially grown, genetically modified (GM) crops has increased more than 30-fold to over 52 million hectares. The number of countries involved has more than doubled. Especially in developing countries, the GM crop area is anticipated to increase rapidly in the coming years. Despite this high adoption rate and future promises, there is a multitude of concerns about the impact of GM crops on the environment. Regulatory approaches in Europe and North America are essentially different. In the EU, it is based on the process of making GM crops; in the US, on the characteristics of the GM product. Many other countries are in the process of establishing regulation based on either system or a mixture. Despite these differences, the information required for risk assessment tends to be similar. Each risk assessment considers the possibility, probability and consequence of harm on a case-by-case basis. For GM crops, the impact of non-use should be added to this evaluation. It is important that the regulation of risk should not turn into the risk of regulation. The best and most appropriate baseline for comparison when performing risk assessment on GM crops is the impact of plants developed by traditional breeding. The latter is an integral and accepted part of agriculture.  相似文献   

18.
Testing of seed and grain lots is essential in the enforcement of GM labelling legislation and needs reliable procedures for which associated errors have been identified and minimised. In this paper we consider the testing of oilseed rape seed lots obtained from the harvest of a non-GM crop known to be contaminated by volunteer plants from a GM herbicide tolerant variety. The objective was to identify and quantify the error associated with the testing of these lots from the initial sampling to completion of the real-time PCR assay with which the level of GM contamination was quantified. The results showed that, under the controlled conditions of a single laboratory, the error associated with the real-time PCR assay to be negligible in comparison with sampling error, which was exacerbated by heterogeneity in the distribution of GM seeds, most notably at a small scale, i.e. 25 cm3. Sampling error was reduced by one to two thirds on the application of appropriate homogenisation procedures.  相似文献   

19.
Genetically modified (GM) crops are used extensively worldwide to control diploid agricultural insect pests that reproduce sexually. However, future GM crops will likely soon target haplodiploid and parthenogenetic insects. As rapid pest adaptation could compromise these novel crops, strategies to manage resistance in haplodiploid and parthenogenetic pests are urgently needed. Here, we developed models to characterize factors that could delay or prevent the evolution of resistance to GM crops in diploid, haplodiploid, and parthenogenetic insect pests. The standard strategy for managing resistance in diploid pests relies on refuges of non-GM host plants and GM crops that produce high toxin concentrations. Although the tenets of the standard refuge strategy apply to all pests, this strategy does not greatly delay the evolution of resistance in haplodiploid or parthenogenetic pests. Two additional factors are needed to effectively delay or prevent the evolution of resistance in such pests, large recessive or smaller non-recessive fitness costs must reduce the fitness of resistance individuals in refuges (and ideally also on GM crops), and resistant individuals must have lower fitness on GM compared to non-GM crops (incomplete resistance). Recent research indicates that the magnitude and dominance of fitness costs could be increased by using specific host–plants, natural enemies, or pathogens. Furthermore, incomplete resistance could be enhanced by engineering desirable traits into novel GM crops. Thus, the sustainability of GM crops that target haplodiploid or parthenogenetic pests will require careful consideration of the effects of reproductive mode, fitness costs, and incomplete resistance.  相似文献   

20.
Transgenic chloroplasts have become attractive systems for heterologous gene expressions because of unique advantages. Here, we report a feasibility study for producing the nontoxic B subunit of Escherichia coli heat-labile enterotoxin (LTB) via chloroplast transformation of tobacco. Stable site-specific integration of the LTB gene into chloroplast genome was confirmed by PCR and genomic Southern blot analysis in transformed plants. Immunoblot analysis indicated that plant-derived LTB protein was oligomeric, and dissociated after boiling. Pentameric LTB molecules were the dominant molecular species in LTB isolated from transgenic tobacco leaf tissues. The amount of LTB protein detected in transplastomic tobacco leaf was approximately 2.5% of the total soluble plant protein, approximately 250-fold higher than in plants generated via nuclear transformation. The GM1-ELISA binding assay indicated that chloroplast-synthesized LTB protein bound to GM1-ganglioside receptors. LTB protein with biochemical properties identical to native LTB protein in the chloroplast of edible plants opens the way for inexpensive, safe, and effective plant-based edible vaccines for humans and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号