首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The aguA gene encoding α-glucuronidase was isolated from the thermophilic fungus Talaromyces emersonii by degenerate PCR. AguA has no introns and consists of an open reading frame of 2511 bp, encoding a putative protein of 837 amino acids. The N-terminus of the protein contains a putative signal peptide of 17 amino acids yielding a mature protein of 820 amino acids with a predicted molecular mass of 91.6 kDa. Twenty putative N-glycosylation sites and four O-glycosylation were identified. The T. emersonii α-glucuronidase falls into glycosyl hydrolase family 67, showing approximately 63% identity to similar enzymes from other fungi. Analysis of the aguA promoter revealed several possible regulatory motifs including two XlnR and a CreA binding site. Enzyme activity was optimal at 50 °C and pH 5. Enzyme production was investigated on a range of carbon sources and showed induction on beechwood, oat spelt and birchwood xylan, and repression by glucose or glucuronic acid.  相似文献   

2.
3.
The extracellular inulinase structural gene was isolated from the genomic DNA of the marine yeast Pichia guilliermondii strain 1 by PCR. The gene had an open reading frame of 1,542 bp long encoding an inulinase. The coding region of the gene was not interrupted by any intron. It encoded 514 amino acid residues of a protein with a putative signal peptide of 18 amino acids and the calculated molecular mass of 58.04 kDa. The protein sequence deduced from the inulinase structural gene contained the inulinase consensus sequences (WMNXPNGL) and (RDPKVF). It also had ten conserved putative N-glycosylation sites. The inulinase from P. guilliermondii strain 1 was found to be closely related to that from Kluyveromyces marxianus. The inulinase gene without the signal sequence was subcloned into pPICZαA expression vector and expressed in Pichia pastoris X-33. The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 60 kDa was found. Enzyme activity assay verified the recombinant protein as an inulinase. A maximum activity of 58.7 ± 0.12 U/ml was obtained from the culture supernatant of P. pastoris X-33 harboring the inulinase gene. A large amount of monosaccharides, disaccharides and oligosaccharides were detected after the hydrolysis of inulin with the crude recombinant inulinase.  相似文献   

4.
Liu Z  Li X  Chi Z  Wang L  Li J  Wang X 《Antonie van Leeuwenhoek》2008,94(2):245-255
The extracellular lipase structural gene was isolated from cDNA of Aureobasidium pullulans HN2-3 by using SMARTTM RACE cDNA amplification kit. The gene had an open reading frame of 1245 bp long encoding a lipase. The coding region of the gene was interrupted by only one intron (55 bp). It encodes 414 amino acid residues of a protein with a putative signal peptide of 26 amino acids. The protein sequence deduced from the extracellular lipase structural gene contained the lipase consensus sequence (G-X-S-X-G) and three conserved putative N-glycosylation sites. According to the phylogenetic tree of the lipases, the lipase from A. pullulans was closely related to that from Aspergillus fumigatus (XP_750543) and Neosartorya fischeri (XP_001257768) and the identities were 50% and 52%, respectively. The mature peptide encoding cDNA was subcloned into pET-24a (+) expression vector. The recombinant plasmid was expressed in Escherichia coli BL21(DE3). The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 47 kDa was found. Enzyme activity assay verified the recombinant protein as a lipase. A maximum activity of 0.96 U/mg was obtained from cellular extract of E. coli BL21(DE3) harboring pET-24a(+)LIP1. Optimal pH and temperature of the crude recombinant lipase were 8.0 and 35 °C, respectively and the crude recombinant lipase had the highest hydrolytic activity towards peanut oil.  相似文献   

5.
A 2.3-kb BamHI-KpnI fragment was isolated from a partial genomic library and shown by nucleotide sequence analysis to contain the entire coding region of the gene encoding the β subunit of the Blastocladiella mitochondrial processing peptidase (β-MPP). The predicted β-MPP protein has 465 amino acids and a calculated molecular mass of 50.8 kDa. S1 nuclease protection assays revealed an intron, 209 bp in size, interrupting the coding region between the putative signal sequence and the mature protein. Northern blot analysis showed that β-MPP mRNA levels decrease significantly during B. emersonii sporulation, reaching basal levels in the zoospore stage. The amount of β-MPP protein, determined in Western blots, unlike its mRNA, does not vary significantly throughout the fungal life cycle.  相似文献   

6.
An extracellular α-glucuronidase was purified and characterized from a commercial Aspergillus preparation and from culture filtrate of Aspergillus tubingensis. The enzyme has a molecular mass of 107 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 112 kDa as determined by mass spectrometry, has a determined pI just below 5.2, and is stable at pH 6.0 for prolonged times. The pH optimum for the enzyme is between 4.5 and 6.0, and the temperature optimum is 70°C. The α-glucuronidase is active mainly on small substituted xylo-oligomers but is also able to release a small amount of 4-O-methylglucuronic acid from birchwood xylan. The enzyme acts synergistically with endoxylanases and β-xylosidase in the hydrolysis of xylan. The enzyme is N glycosylated and contains 14 putative N-glycosylation sites. The gene encoding this α-glucuronidase (aguA) was cloned from A. tubingensis. It consists of an open reading frame of 2,523 bp and contains no introns. The gene codes for a protein of 841 amino acids, containing a eukaryotic signal sequence of 20 amino acids. The mature protein has a predicted molecular mass of 91,790 Da and a calculated pI of 5.13. Multiple copies of the gene were introduced in A. tubingensis, and expression was studied in a highly overproducing transformant. The aguA gene was expressed on xylose, xylobiose, and xylan, similarly to genes encoding endoxylanases, suggesting a coordinate regulation of expression of xylanases and α-glucuronidase. Glucuronic acid did not induce the expression of aguA and also did not modulate the expression on xylose. Addition of glucose prevented expression of aguA on xylan but only reduced the expression on xylose.  相似文献   

7.
8.
The α-galactosidase gene of Streptomyces coelicolor A3(2) was cloned, expressed in Escherichia coli and characterized. It consisted of 1497 nucleotides encoding a protein of 499 amino acids with a predicted molecular weight of 57,385. The observed homology between the deduced amino acid sequences of the enzyme and α-galactosidase from Thermus thermophilus was over 40%. The α-galactosidase gene was assigned to family 36 of the glycosyl hydrolases. The enzyme purified from recombinant E. coli showed optimal activity at 40 °C and pH 7. The enzyme hydrolyzed p-nitrophenyl-α-D-galactopyroside, raffinose, stachyose but not melibiose and galactomanno-oligosaccharides, indicating that this enzyme recognizes not only the galactose moiety but also other substrates.  相似文献   

9.
A new deoC gene encoding deoxyribose 5-phosphate aldolase (DERA) was identified in Yersinia sp. EA015 isolated from soil. The DERA gene had an open reading frame (ORF) of 672 base pairs encoding 223 amino acids to yield a protein of molecular mass 24.8 kDa. The amino acid sequence was 94% identical to that of DERA from Yersinia intermedia ATCC 29909. DERA was over-expressed in Escherichia coli and purified using Ni–NTA affinity chromatography. The specific activity was 137 μmol/min/mg. The Michaelis constant (km value) of DERA was 9.1 mM. DERA was optimally active at pH 6.0 and 50 °C. DERA was tolerant to a high concentration (300 mM) of acetaldehyde.  相似文献   

10.
A novel cryptic plasmid, pMP1, from an environmental Vibrio vulnificus MP-4 isolated from Mai Po Nature Reserve in Hong Kong, has been characterized. The 7.6-kb plasmid had guanine–cytosine content of 40.03% and encoded four open reading frames (ORFs) with >100 amino acids. The predicted protein of ORF1 contained 478 amino acids showing 29% identity and 50% similarity over 309 amino acids to the integrase of Vibrio cholerae phage VP2. ORF2 encoded a putative protein of 596 amino acids, which were 23% identity and 42% similarity over 455 amino acids to the tail tape measure protein TP901 of Chromohalobacter salexigens phage. ORF3 and ORF4 encoded putative proteins of 103 and 287 amino acids, respectively, but showed no homologies to any known proteins. Further experiments indicated that a 3.2-kb fragment from EcoRI digestion could self-replicate. Analysis indicated that a sequence upstream of ORF4 had the features characteristic of theta-type replicons: AT-rich region, six potential direct repeats (iterons) spaced approximately two DNA helical turn apart (about 23 bp), two copies of 9 bp dnaA boxes, three Dam methylation sites, and five inverted repeats. Complementation experiments confirmed that the protein encoded by ORF4 was required for plasmid replication. We propose that ORF4 encode a new type of Rep protein and pMP1 is a new type of theta plasmid.  相似文献   

11.
A cDNA expression library constructed from Culicoides variipennis sonorensis was screened using an antibody specific for Hsp60 of Heliothis virescens. A single clone encoding the complete heat shock protein (Hsp60) of C. variipennis was identified and its 2400-bp insert was sequenced. The encoded 62-kDa protein contains 581 amino acids and includes a 26-amino acid putative mitochondrial targeting sequence at its N terminus and a GGM motif at its carboxyl terminus. Deduced amino acid sequences are highly similar (67–78%) to Hsp60 of other species, including the fruit fly, the house mouse, the Norwegian rat, the Chinese hamster, the human, a nematode, and the tobacco budworm moth. This is the initial isolation of a coding sequence for a stress-induced protein in C. variipennis.  相似文献   

12.
A bacterial strain with high cellulase activity (0.26 U/ml culture medium) was isolated from hot spring, and classified and named as B. subtilis DR by morphological and 16SrDNA gene sequence analysis. A thermostable endocellulase, CelDR, was purified from the isolated strain. The optimum temperature of the enzyme reaction was 50°C, and CelDR retained 70% of its maximum activity at 75°C after incubation for 30 min. The putative gene celDR, consisting an open reading frame (ORF) of 1,524 nucleotides and encoding a protein of 508 amino acids with a molecular weight of 55 kDa, was purified from B. subtilis DR and cloned into pET-28a for expression. The cellulase production in E. coli BL21 (DE3) was enhanced to approximately three times that of the wild-type strain.  相似文献   

13.
14.
15.
The ORF encoding the Debaryomyces castellii CBS 2923 phytase was isolated. The deduced 461-amino-acid sequence corresponded to a 51.2 kDa protein and contained the consensus motif (RHGXRXP) which is conserved among phytases. No signal sequence cleavage site was detected. Nine potential N-glycosylation sites have been predicted. The protein shared 21–69% sequence identities with various phytases of yeast or fungal origin. Heterologous expression of the D. castellii CBS 2923 phytase in the methylotrophic yeast Pichia pastoris was tested under both the P. pastoris inducible alcohol oxidase (AOX1) promoter and the constitutive glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. Maximum production levels obtained were 476 U ml−1, with the AOX1 expression system and 16.5 U ml−1 with the GAP one. These productions corresponded to a 320-fold and a 10-fold overexpression of the protein, respectively as compared to the homologous production. The biochemical characteristics of the recombinant phytase were identical to those of the native enzyme.  相似文献   

16.
Transforming growth factor beta-induced protein (TGFBIp), is secreted into the extracellular space. When fragmentation of C-terminal portions is blocked, apoptosis is low, even when the protein is overexpressed. If fragmentation occurs, apoptosis is observed. Whether full-length TGFBIp or integrin-binding fragments released from its C-terminus is necessary for apoptosis remains equivocal. More importantly, the exact portion of the C-terminus that conveys the pro-apoptotic property of TGFBIp is uncertain. It is reportedly within the final 166 amino acids. We sought to determine if this property is dependent upon the final 69 amino acids containing the integrin-binding, EPDIM and RGD, sequences. With MG-63 osteosarcoma cells, transforming growth factor (TGF)-β1 treatment increased expression of TGFBIp over 72 h (p < 0.001). At this time point, apoptosis was significantly increased (p < 0.001) and was prevented by an anti-TGFBIp, polyclonal antibody (p < 0.05). Overexpression of TGFBIp by transient transfection produced a 2-fold increase in apoptosis (p < 0.01). Exogenous purified TGFBIp at concentrations of 37–150 nM produced a dose dependent increase in apoptosis (p < 0.001). Mass spectrometry analysis of TGFBIp isolated from conditioned medium of cells treated with TGF-β1 revealed truncated forms of TGFBIp that lacked integrin-binding sequences in the C-terminus. Recombinant TGFBIp truncated, similarly, at amino acid 614 failed to induce apoptosis. A recombinant fragment encoding the final 69 amino acids of the TGFBIp C-terminus produced significant apoptosis. This apoptosis level was comparable to that induced by TGF-β1 upregulation of endogenous TGFBIp. Mutation of the integrin-binding sequence EPDIM, but not RGD, blocked apoptosis (p < 0.001). These pro-apoptotic actions are dependent on the C-terminus most likely to interact with integrins.  相似文献   

17.
Pseudomonas fluorescens GcM5-1A was isolated from the pine wood nematode (PWN), Bursaphelenchus xylophilus, obtained from wilted Japanese black pine, Pinus thumbergii, in China. In this paper, a genomic library of the GcM5-1A strain was constructed and a toxin–producing clone was isolated by bioassay. Nucleotide sequence analysis revealed an open reading frame of 1,290 bp encoding a protein of 429 amino acids with N-terminal putative signal peptide of 36 amino acids, which shared a similarity of 83, 82 and 80% identity with hypothetical protein PFLU2919 from P. fluorescens SBW25, Dyp-type peroxidase family protein from P. fluorescens Pf-5 and Tat-translocated enzyme from P. fluorescens Pf0-1, respectively. The gene encoding a full-length protein or without the putative signal peptide was cloned and expressed as a soluble protein in E. coli. The recombinant protein was purified to electrophoretic homogeneity by affinity chromatography using a Ni2+ matrix column. Its relative molecular weight was estimated to be 48.5 kDa by SDS-PAGE for full-length protein, and 45.0 kDa for the recombinant protein without putative signal peptide. Bioassay results showed that the recombinant protein with or without the putative signal peptide was toxic to both suspension cells and P. thunbergii seedlings. HPLC analysis demonstrated that components in branch extracts of P. thunbergii were significantly changed after addition of the recombinant full-length protein and hydrogen peroxide, which indicated that it is probably a peroxidase. This study offers information that can be used to determine the mechanism of pine wilt disease caused by the PWN.  相似文献   

18.
DNA inserts encoding human interleukin 10 (hIL-10), optimized for codon usage and secondary RNA structure, were purchased from several commercial sources and subcloned into a pMon vector. Despite the optimization, protein expression was nil. We therefore subjected the 5′ segment of the cDNA encoding N-terminal amino acids 2–11 to degenerate PCR in order to create a small library of 130 K theoretical cDNA combinations that would not change the respective amino acid sequence and tested their expression. After screening over 320 colonies 10 hIL-10 clones encoding the original amino acid sequence were identified. Three nucleotide substitutions were sufficient to ensure reasonable protein expression. Subsequently, hIL-10 was expressed in Escherichia coli, refolded and purified to homogeneity, yielding over 95% electrophoretically pure noncovalent homodimeric protein, which was biologically active in MC/9 cells. The yield of recombinant hIL-10 from 10 L of fermentation culture was 60 mg and a protocol for its long-term storage as a carrier-free lyophilized powder at −20° was developed.  相似文献   

19.
20.

AglH, a predicted UDP-GlcNAc-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase, is initiating the protein N-glycosylation pathway in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. AglH successfully replaced the endogenous GlcNAc-1-phosphotransferase activity of Alg7 in a conditional lethal Saccharomyces cerevisiae strain, in which the first step of the eukaryal protein N-glycosylation process was repressed. This study is one of the few examples of cross-domain complementation demonstrating a conserved polyprenyl phosphate transferase reaction within the eukaryal and archaeal domain like it was demonstrated for Methanococcus voltae (Shams-Eldin et al. 2008). The topology prediction and the alignment of the AglH membrane protein with GlcNAc-1-phosphotransferases from the three domains of life show significant conservation of amino acids within the different proposed cytoplasmic loops. Alanine mutations of selected conserved amino acids in the putative cytoplasmic loops II (D100), IV (F220) and V (F264) demonstrated the importance of these amino acids for cross-domain AlgH activity in in vitro complementation assays in S. cerevisiae. Furthermore, antibiotic treatment interfering directly with the activity of dolichyl phosphate GlcNAc-1-phosphotransferases confirmed the essentiality of N-glycosylation for cell survival.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号