首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of glycosylational-processing inhibitors on the synthesis, cell surface expression, endocytosis, and transforming function of the v-fms oncogene protein (gp140fms) was examined in McDonough feline sarcoma virus-transformed Fischer rat embryo (SM-FRE) cells. Swainsonine (SW), a mannosidase II inhibitor, blocked complete processing, but an abnormal v-fms protein containing hybrid carbohydrate structures was expressed on the cell surface. SW-treated SM-FRE cells retained the transformed phenotype. In contrast, two glucosidase I inhibitors (castanospermine [CA] and N-methyl-1-deoxynojirimycin [MdN]) blocked carbohydrate remodeling at an early stage within the endoplasmic reticulum and prevented cell surface expression of v-fms proteins. CA-treated SM-FRE cells reverted to the normal phenotype. Neither SW, CA, nor MdN affected either endocytosis or the tyrosine kinase activity associated with the v-fms gene product in vitro. These results demonstrate the necessity of carbohydrate processing for cell surface expression of the v-fms gene product and illustrate the unique ability to modulate the transformed state of SM-FRE cells with the glycosylational-processing inhibitors CA and MdN.  相似文献   

2.
The effects of castanospermine on various parameters associated with transformation were examined in cells expressing the viral oncogene v-fms. Fischer rat embryo (FRE) cells transformed by the oncogene v-fms and grown in the presence of castanospermine reverted to a more normal cell morphology and accumulated fms protein within the endoplasmic reticulum. Treated cells attained contact inhibition of cell growth at a much lower cell density compared to the untreated controls. No effect of castanospermine on cell growth was observed for FRE cells transformed by a different oncogene v-fgr. Castanospermine-treated SM-FRE (v-fms transformed) cells reexpressed extracellular matrix fibronectin and exhibited an extensive actin-containing cytoskeleton similar to that of normal nontransformed FRE cells. Castanospermine treatment of SM-FRE cells resulted in a sixfold decrease in [3H]deoxyglucose uptake compared to that of the nonreverted SM-FRE cells. Again, no effect was observed in FRE cells transformed by the oncogene v-fgr (GR-FRE). These results further characterize the reversion caused by castanospermine and indicate that cell surface expression coordinately controls anchorage independent growth, cell morphology, contact inhibition of growth, and hexose uptake.  相似文献   

3.
The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180gag-fms encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180gag-fms) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence of the resulting v-fms-coded glycoprotein, gp120v-fms, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. Both constructs were biologically active when transfected into NIH 3T3 cells and produced morphologically transformed foci at equivalent efficiencies. When transfected into a cell line (psi 2) expressing complementary viral gene functions, G418-resistant (Neor) cells containing either of these vector DNAs produced high titers of transforming viruses. Analysis of proteins produced in cells containing the vector lacking gag gene sequences showed that gP180gag-fms was not synthesized, whereas normal levels of both immature gp120v-fms and mature gp140v-fms were detected. The glycoprotein was efficiently transported to the cell surface, and it retained wild-type tyrosine kinase activity. We conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180gag-fms is mediated by signal peptidase and that the amino termini of gp140v-fms and the c-fms gene product are identical.  相似文献   

4.
Cells transformed by the McDonough strain of feline sarcoma virus express at their surface a v-fms-specific transmembrane glycoprotein designated gp140v-fms. By labeling with 32Pi, gp140v-fms was shown to be phosphorylated 30-fold more in serine residues than were the cytosolic v-fms polypeptides gp180gag-fms and gp120v-fms. By using the phosphotyrosine phosphatase-specific inhibitor sodium orthovanadate, an additional tyrosine phosphorylation was observed in vivo, again involving predominantly gp140v-fms. In vitro studies showed that the v-fms proteins were phosphorylated by protein kinase C in a calcium- and phosphatidylserine-dependent manner.  相似文献   

5.
The Susan McDonough strain of feline sarcoma virus contains an oncogene, v-fms, which is capable of transforming fibroblasts in vitro. The mature protein product of the v-fms gene (gp140fms) is found on the surface of transformed cells; this glycoprotein has external, transmembrane, and cytoplasmic domains. To assess the functional role of these domains in transformation, we constructed a series of nine linker insertion mutations throughout the v-fms gene by using a dodecameric BamHI linker. The biological effects of these mutations on the function and intracellular localization of v-fms-encoded proteins were determined by transfecting the mutated DNA into Rat-2 cells. Most of the mutations within the external domain of the v-fms-encoded protein eliminated focus formation on Rat-2 cells; three of these mutations interfered with the glycosylation of the v-fms protein and interfered with formation of the mature gp140fms. One mutation in the external domain led to cell surface expression of v-fms protein even in the absence of complete glycosylational processing. Cell surface expression of mutated v-fms protein is probably necessary, but is not sufficient, for cell transformation since mutant v-fms protein was found on the surface of several nontransformed cell lines. Mutations that were introduced within the external domain had little effect on in vitro kinase activity, whereas mutations within the cytoplasmic domain all had strong inhibitory effects on this activity.  相似文献   

6.
The McDonough strain of feline sarcoma virus contains an oncogene called v-fms whose ultimate protein product (gp140v-fms) resembles a cell surface growth factor receptor. To identify and characterize the protein product of the proto-oncogene c-fms, antisera were prepared to the viral fms sequences and used to detect specific cross-reacting sequences in human choriocarcinoma cells (BeWo) known to express c-fms mRNA. Both tumor-bearing rat sera and a rabbit antiserum prepared to a segment of v-fms expressed in Escherichia coli detected a 140-kilodalton (kDa) glycoprotein in the BeWo cells. Tryptic fingerprint analysis of [35S]methionine-labeled proteins indicated that the viral fms proteins and the 140-kDa BeWo cell protein were highly related. This 140-kDa glycoprotein contained an associated tyrosine kinase activity in vitro and was labeled principally on serine after 32Pi metabolic labeling. These results suggest that the 140-kDa protein in BeWo cells is the protein product of the human c-fms proto-oncogene. This conclusion is supported by the finding that a similar protein is detectable only in other human cells that express c-fms mRNA. These other human cells include adherent monocytes and the cell line ML-1, which can be induced to differentiate along the monocyte-macrophage pathway. This is in agreement with current thought that the c-fms proto-oncogene product functions as the CSF-1 receptor specific to this pathway.  相似文献   

7.
Monoclonal antibodies prepared to epitopes encoded by the transforming gene (v-fms) of the McDonough strain of feline sarcoma virus were used to study v-fms-coded antigens in feline sarcoma virus-transformed rat and mink cells. These antibodies reacted with three different polypeptides (gP180gag-fms, gp140fms, and gp120fms), all of which were shown to be glycosylated. Protein blotting with [125I]-labeled monoclonal immunoglobulin G's was used to determine the relative steady-state levels of these glycoproteins in transformed cells and showed that gp120 and gp140 were the predominant products. Immunofluorescence assays and subcellular fractionation experiments localized these molecules to the cytoplasm of transformed cells in quantitative association with sedimentable organelles. Thus, v-fms-coded glycoproteins differ both chemically and topologically from the partially characterized products of other known oncogenes and presumably transform cells by a different mechanism.  相似文献   

8.
The McDonough strain of feline sarcoma virus encodes a polyprotein that is cotranslationally glycosylated and proteolytically cleaved to yield transforming glycoproteins specified by the viral oncogene v-fms. The major form of the glycoprotein (gp120fms) contains endoglycosidase H-sensitive, N-linked oligosaccharide chains lacking fucose and sialic acid, characteristic of glycoproteins in the endoplasmic reticulum. Kinetic and steady-state measurements showed that most gp120fms molecules were not converted to mature forms containing complex carbohydrate moieties. Fixed-cell immunofluorescence confirmed that the majority of v-fms-coded antigens were internally sequestered in transformed cells. Dual-antibody fluorescence performed with antibodies to intermediate filaments (IFs) showed that the IFs of transformed cells were rearranged, and their distribution coincided with that of v-fms-coded antigens. No specific disruption of actin cables was observed. The v-fms gene products cofractionated with IFs isolated from virus-transformed cells and reassociated with IFs self-assembled in vitro. A minor population of v-fms-coded molecules (gp140fms) acquired endoglycosidase H-resistant, N-linked oligosaccharide chains containing fucose and sialic acid residues, characteristic of molecules processed in the Golgi complex. Some gp140fms molecules were detected at the plasma membrane and were radiolabeled by lactoperoxidase-catalyzed iodination of live transformed cells. We suggest that v-fms-coded molecules are translated as integral transmembrane glycoproteins, most of which are inhibited in transport through the Golgi complex to the plasma membrane.  相似文献   

9.
The McDonough strain of feline sarcoma virus (SM-FeSV) contains a viral oncogene, v-fms, transduced from cat cellular genetic sequences designated c-fms. Monoclonal antibodies reactive to antigenic determinants encoded by v-fms were prepared by immunizing rats with live, syngeneic SM-FeSV-transformed cells, and fusing splenic lymphocytes from a tumor-bearing animal with cultured rat myeloma cells. Culture supernatants from hybrids producing antibodies to epitopes encoded by v-fms were identified by immunoprecipitation of radiolabeled polypeptides from SM-FeSV-transformed mink cells. Four positive hybrids were cloned twice in soft agar, established as stable lines, and grown in defined serum-free medium to facilitate purification of homogeneous antibodies. The monoclonal antibodies were used to assay SM-FeSV-specific products by "immunoblotting" of electrophoretically separated proteins, and by fixed-cell immunofluorescence.  相似文献   

10.
NRK cells transformed by the McDonough strain of feline sarcoma virus (SM-FeSV) were mutagenized by the use of 5'-azacytidine. Four cell lines expressing different transformation-defective phenotypes were isolated. Superinfection of these cell lines with simian sarcoma-associated virus (SSAV) led in three instances to the recovery of transforming virus particles carrying an intact fms gene. A nonconditional transformation-defective virus, designated td26-SM-FeSV (SSAV), was isolated from one of the cell lines. NRK cells infected with this mutant contained actin cables and fibronectin networks and exhibited normal cell morphology. Such cells formed only small colonies in soft agar and exhibited a mitogenic activity similar to that of noninfected cells. Cells infected with td26-SM-FeSV (SSAV) synthesized a gag-fms fusion glycoprotein (gp180gag-fms). This polypeptide was processed in the normal manner into the intracellular gp120v-fms and a transformation-defective gp140td-v-fms which was expressed at the surface of infected cells. This species had an increased electrophoretic mobility on polyacrylamide gels compared with the molecule from wild-type virus.gp140td-v-fms had endo-beta-N-acetylglucosaminidase H-resistant carbohydrate side chains. No tyrosine kinase activity was detectable in vivo in td26-SM-FeSV (SSAV)-infected cells even when the cells were treated with sodium orthovanadate. In vitro, fms molecules from td26-SM-FeSV (SSAV)-infected cells exhibited tyrosine kinase activity as determined by autophosphorylation and phosphorylation of exogenous (poly)Glu-Tyr. At low ATP concentrations (less than 5 microM) this in vitro tyrosine kinase activity was significantly reduced compared with that of the wild-type counterpart.  相似文献   

11.
The role of tyrosine-specific phosphorylation in v-fms-mediated transformation was examined by immunoblotting techniques together with a high-affinity antibody that is specific for phosphotyrosine. This antiphosphotyrosine antibody detected phosphorylated tyrosine residues on the gp140v-fms molecule, but not gP180v-fms or gp120v-fms, in v-fms-transformed cells. This antibody also identified a number of cellular proteins that were either newly phosphorylated on tyrosine residues or showed enhanced phosphorylation on tyrosine residues as a result of v-fms transformation. However, the substrates of the v-fms-induced tyrosine kinase activity were not the characterized pp60v-src substrates. The phosphorylation of some of these cellular proteins and of the gp140fms molecule was found to correlate with the ability of v-fms/c-fms hybrids to transform cells. In addition, immunoblotting with the phosphotyrosine antibody allowed a comparison to be made of the substrates phosphorylated on tyrosine residues in various transformed cell lines. This study indicates that the pattern of tyrosine phosphorylation in v-fms-transformed cells is strikingly similar to that in v-sis-transformed cells.  相似文献   

12.
Varicella-zoster virus (VZV) specifies the synthesis of at least four families of glycoproteins, which have been designated gpI, gpII, gpIII, and gpIV. In this report we describe the assembly and processing of VZV gpII, a structural protein of an apparent Mr of 140,000, which is the homolog of gB of herpes simplex virus. For these studies, we used two anti-gpII monoclonal antibodies which exhibited both complement-independent neutralization activity and inhibition of virus-induced cell-to-cell fusion. Pulse-chase labeling experiments identified a 124,000-Mr intermediate which was chased to the mature 140,000-Mr product when analyzed in nonreducing gels; in the presence of a reducing agent, the native gp140 was cleaved into two closely migrating species (gp66 and gp68). The biosynthesis of VZV gpII was further analyzed in the presence of the following inhibitors of glycoprotein processing: tunicamycin, monensin, castanospermine, swainsonine, and deoxymannojirimycin. All intermediate and mature forms were digested with endoglycosidases H and F, neuraminidase, and O-glycanase to further define high-mannose, complex, and O-linked glycans. Finally, the addition of sulfate residues was investigated. This characterization of VZV gpII revealed the following results. (i) gp128 and gp124 were early high-mannose forms, (ii) gp126 was an intermediate form with complex N-linked oligosaccharides, (iii) gp130 was a later intermediate with both N-linked and O-linked glycans, and (iv) the mature product gp140 contained a mixture of N-linked and O-linked glycans which were both sialated and sulfated. Further investigations indicated that gpII sulfation was inhibited by tunicamycin and castanospermine but not by deoxymannojirimycin or swainsonine. We also concluded that VZV gpII displayed many biological and biochemical properties similar to those of its herpes simplex virus homolog gB.  相似文献   

13.
The feline sarcoma virus oncogene v-fms has significantly contributed to the dissection of peptide growth factor action since it encodes the transmembrane tyrosine kinase gp140v-fms, a transforming version of colony-stimulating factor 1 receptor, a member of the growth factor receptor tyrosine kinase family. In this study, the functional significance of structural differences between distinct tyrosine kinase types, in particular between cellular receptors and viral transforming proteins of distinct structural types, has been further investigated, and their functional compatibility has been addressed. For this purpose, major functional domains of three structurally distinct tyrosine kinases were combined into two chimeric receptors. The cytoplasmic gp140v-fms kinase domain and the kinase domain of Rous sarcoma virus pp60v-src were each fused to the extracellular ligand-binding domain of the epidermal growth factor (EGF) receptor to create chimeras EFR and ESR, respectively, which were studied upon stable expression in NIH 3T3 fibroblasts. Both chimeras were faithfully synthesized and routed to the cell surface, where they displayed EGF-specific, low-affinity ligand-binding domains in contrast to the high- and low-affinity EGF-binding sites of normal EGF receptors. While the EFR kinase was EGF controlled for autophosphorylation and substrate phosphorylation in vitro, in vivo, and in digitonin-treated cells, the ESR kinase was not responsive to EGF. While ESR appeared to recycle to the cell surface upon endocytosis, EGF induced efficient EFR internalization and degradation, and phorbol esters stimulated protein kinase C-mediated downmodulation of EFR. Despite its ligand-inducible kinase activity, EFR was partly EGF independent in mediating mitogenesis and cell transformation, while ESR appeared biologically inactive.  相似文献   

14.
A contact-inhibited revertant of mink cells transformed by the Gardner-Arnstein strain of feline sarcoma virus was isolated by fluorescence-activated sorting of cells stained with the mitochondria-specific dye rhodamine 123. The revertant cell line exhibited a decrease in its proliferative rate and saturation density and a complete loss of its capacity for anchorage-independent growth, but it remained tumorigenic when inoculated into nude mice. The revertant cells retained a rescuable Gardner-Arnstein feline sarcoma provirus, expressed high levels of the v-fes oncogene product and its associated tyrosine kinase activity, manifested elevated levels of phosphotyrosine-containing cellular proteins similar to those observed in v-fes-transformed cells, and were refractory to retransformation by retroviruses containing the v-fes, v-fms, and v-ras oncogenes. Fusion of the revertant and parental cells generated somatic cell hybrids which formed colonies in semisolid medium, indicating that the block in transformation was recessive. These data together with the observation that the revertant phenotype is unstable in continuous culture suggest that the loss of transformation is due to the presence of limiting quantities of a gene product which functions downstream of the v-fes-coded kinase in the mitogenic pathway.  相似文献   

15.
The product of the c-fms proto-oncogene is related to, and possibly identical with, the receptor for the macrophage colony-stimulating factor, M-CSF (CSF-1). Unlike the product of the v-erbB oncogene, which is a truncated version of the EGF receptor, the glycoprotein encoded by the v-fms oncogene retains an intact extracellular ligand-binding domain so that cells transformed by v-fms express CSF-1 receptors at their surface. Although fibroblasts susceptible to transformation by v-fms generally produce CSF-1, v-fms-mediated transformation does not depend on an exogenous source of the growth factor, and neutralizing antibodies to CSF-1 do not affect the transformed phenotype. An alteration of the v-fms gene product at its extreme carboxyl-terminus represents the major structural difference between it and the c-fms-coded glycoprotein and may affect the tyrosine kinase activity of the v-fms-coded receptor. Consistent with this interpretation, tyrosine phosphorylation of the v-fms products in membranes was observed in the absence of CSF-1 and was not enhanced by addition of the murine growth factor. Cells transformed by v-fms have a constitutively elevated specific activity of a guanine nucleotide-dependent, phosphatidylinositol-4,5-diphosphate-specific phospholipase C. We speculate that the tyrosine kinase activity of the v-fms/c-fms gene products may be coupled to this phospholipase C, possibly through a G regulatory protein, thereby increasing phosphatidylinositol turnover and generating the intracellular second messengers diacylglycerol and inositol triphosphate.  相似文献   

16.
The potential role of glycoprotein N-glycans in the proliferation and adhesion of C6 glioblastoma cells was investigated using a set of N-glycosylation inhibitors (tunicamycin, deoxynojirimycin, castanospermine, deoxymannojirimycin, swainsonine), and traffic (monensin). It was observed that both the proliferative and adhesive properties of C6 cells were dependent upon the expression at the cell surface of glycoproteins with oligomannosidic and hybrid type N-glycans, whereas the absence of N-glycans (tunicamycin) or the presence of glucosyl-oligomannosides (deoxynojirimycin and castanospermine) and the absence of glycoproteins at the cell surface (monensin) reduced both the proliferative and adhesive properties of C6 cells. Studies of the classical elements of signalling pathways indicated that the different inhibitors have a low impact on tyrosine phosphorylations and oncogene product expression (except the ras oncogene product), except on phosphorylations on other residues. An endogenous soluble lectin (CSL; J. Neurochem. 49 (1987) 1250), specific for oligomannosidic and hybrid type N-glycans, was present and externalised by the cells through a pinching-off of large intracellular vesicles, a mechanism that was not blocked by monensine; in contrast with the externalisation of its glycoprotein ligands. The inhibitory effect of anti-CSL Fab fragments on adhesion indicates that the polyvalent CSL acts as a bridging molecule for a family of surface glycoproteins expressed at the surface of C6 cells. The inhibitory effect of the same Fab fragments on the proliferation indicates that CSL is a mitogen for these cells, possibly involved in clustering its surface glycoprotein ligands. A mechanism for the loss of contact inhibition is discussed based on the over-expression of CSL ligands in C6 glioblastoma cells relative to normal cells.  相似文献   

17.
Previously we described induction of cross-reactive HIV-1 neutralizing antibody responses in rabbits using a soluble HIV-1 gp140 envelope glycoprotein (Env) in an adjuvant containing monophosphoryl lipid A (MPL) and QS21 (AS02A). Here, we compared different forms of the same HIV-1 strain R2 Env for antigenic and biophysical characteristics, and in rabbits characterized the extent of B cell induction for specific antibody expression and secretion and neutralizing responses. The forms of this Env that were produced in and purified from stably transformed 293T cells included a primarily dimeric gp140, a trimeric gp140 appended to a GCN4 trimerization domain (gp140-GCN4), gp140-GCN4 with a 15 amino acid flexible linker between the gp120 and gp41 ectodomain (gp140-GCN4-L), also trimeric, and a gp140 with the flexible linker purified from cell culture supernatants as either dimer (gp140-L(D)) or monomer (gp140-L(M)). Multimeric states of the Env proteins were assessed by native gel electrophoresis and analytical ultracentrifugation. The different forms of gp140 bound broadly cross-reactive neutralizing (BCN) human monoclonal antibodies (mAbs) similarly in ELISA and immunoprecipitation assays. All Envs bound CD4i mAbs in the presence and absence of sCD4, as reported for the R2 Env. Weak neutralization of some strains of HIV-1 was seen after two additional doses in AS02A. Rabbits that were given a seventh dose of gp140-GCN4-L developed BCN responses that were weak to moderate, similar to our previous report. The specificity of these responses did not appear similar to that of any of the known BCN human mAbs. Induction of spleen B cell and plasma cells producing immunoglobulins that bound trimeric gp140-GCN4-L was vigorous, based on ELISpot and flow cytometry analyses. The results demonstrate that highly purified gp140-GCN4-L trimer in adjuvant elicits BCN responses in rabbits accompanied by vigorous B cell induction.  相似文献   

18.
K J Dunn  C C Yuan    D G Blair 《Journal of virology》1993,67(8):4704-4711
We have characterized the restriction mechanism for RD114 virus replication in embryonic feline cells (FeF). By comparing growth properties of the virus in FeF cells with its behavior in a fetal feline glial cell line (G355) permissive for RD114, we showed that both cell lines were readily infectible by virus grown in permissive cells and that no significant differences in viral integration or viral RNA expression could be detected. However, analysis of viral protein expression revealed differences in viral env gene processing in the two cell types. Envelope precursor pR85 was produced, but the expected processed gp70 product was detectable only in permissive (G355) cells. An envelope product of 85 kDa was packaged into virions produced by FeF cells, while virions produced by G355 cells contained the expected RD114 gp70. While the gp85 env-containing virions were infectious for permissive G355 cells, they were unable to infect FeF cells. The block to infection by the gp85-containing particles in FeF cells could be abrogated by treatment with the glycosylation inhibitor tunicamycin. Our results indicate that restriction of RD114 virus involves a novel mechanism dependent on two factors: altered glycosylation of the envelope to a gp85 form and an altered RD114 receptor in FeF cells.  相似文献   

19.
In order to obtain a better understanding of the control mechanisms involved in asparagine-linked glycosylation, we developed conditions under which the glucosidase I and II inhibitor castanospermine and the mannosidase II inhibitor swainsonine were toxic to Chinese hamster ovary (CHO) cells when cultured in the presence of low concentrations of the plant lectin concanavalin A. Cells resistant to castanospermine (CsR cells) and swainsonine (SwR cells) were obtained by gradual stepwise selections. These cells had normal levels of glucosidase II and mannosidase II and appeared to have no major structural alterations in their surface asparagine-linked oligosaccharides. Interestingly, the CsR and SwR cells were each pleiotropically resistant to castanospermine, swainsonine, and deoxymannojirimycin, an inhibitor of mannosidase I. This resistance was not due to the multiple-drug resistance phenomenon. Both the CsR and SwR cell populations synthesized Man5GlcNAc2 in place of Glc3Man9GlcNAc2 as the major dolichol-linked oligosaccharide. This defect was not due to a loss of mannosylphosphoryldolichol synthetase. Furthermore, the Man5GlcNAc2 oligosaccharide was transferred to protein and appeared to give rise to normal mature oligosaccharides. Thus, the CsR and SwR cells achieved resistance to castanospermine, swainsonine, and deoxymannojirimycin by synthesizing altered dolichol-linked oligosaccharides that reduced or eliminated the requirements for glucosidases I and II and mannosidases I and II during the production of normal asparagine-linked oligosaccharides. We propose that this phenotype be termed PIR, for processing inhibitor resistance.  相似文献   

20.
C127 cells resistant to transformation by tyrosine protein kinase oncogenes   总被引:3,自引:0,他引:3  
C127 is a nontumorigenic mouse cell line widely used in in vitro transformation assays due to its normal morphological appearance and its very low levels of spontaneous transformation. We now report that C127 cells are resistant to transformation by tyrosine protein kinase oncogenes derived from growth factor receptors such as the retroviral v-fms and the human trk transforming genes. In contrast, these cells could be efficiently transformed by members of the ras oncogene family and by serine/threonine kinase oncogenes such as v-mos and v-raf. C127 cells were also found to be resistant to transformation by v-src, the prototype of a large family of tyrosine protein kinase oncogenes whose products are associated with the inner side of the plasma membrane. However, morphologically normal C127 cells expressing pp60v-src acquired a transformed phenotype upon continuous passage in vitro. Somatic cell hybrids (neoR, hygroR) obtained by fusion of G418-resistant C127 cells expressing p70trk (neoR) and hygromycin-resistant NIH3T3 cells (hygroR) exhibited transformed properties as determined by their ability to grow in semisolid agar. In contrast, no such growth was observed when these neoR p70trk-containing C127 cells were fused to control hygroR C127 cells. These results indicate that C127 cells may either lack or express insufficient levels of certain critical substrate(s) necessary for the onset of transformation by tyrosine protein kinase oncogenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号