首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nathan Egan Rank 《Oecologia》1994,97(3):342-353
Several species of willow leaf beetles use hostplant salicin to produce a defensive secretion that consists of salicylaldehyde. Generalist arthropod predators such as ants, ladybird beetles, and spiders are repelled by this secretion. The beetle larvae produce very little secretion when they feed on willows that lack salicylates, and salicin-using beetles prefer salicylate-rich willows over salicylate-poor ones. This preference may exist because the larvae are better defended against natural enemies on salicylate-rich willows. If this is true, the larvae should survive longer on those willows in nature. However, this prediction has not been tested. I determined the larval growth and survival of Chrysomela aeneicollis (Coleoptera: Chrysomelidae) on five willow species (Salix boothi, S. drummondiana, S. geyeriana, S. lutea, and S. orestera). These species differed in their salicylate chemistries and in leaf toughness but not in water content. The water content varied among the individual plants. Larval growth of C. aeneicollis did not differ among the five species in the laboratory, but it varied among the individual plants and it was related to the water content. In the field, C. aeneicollis larvae developed equally rapidly on the salicylate-poor S. lutea and on the salicylate-rich S. orestera. Larval survival was greater on S. orestera than on S. lutea in one year (1986), but there was no difference between them during three succeeding years. In another survivorship experiment, larval survival was low on the medium-salicylate S. geyeriana, but high on the salicylate-poor S. boothi and on S. orestera. Larval survival in the field was related to the larval growth and water content that had been previously measured in the laboratory. These results showed that the predicted relationship between the host plant chemistry and larval survival did not usually exist for C. aeneicollis. One possible reason for this was that the most important natural enemies were specialist predators that were unaffected by the host-derived defensive secretion. One specialist predator, Symmorphus cristatus (Hymenoptera: Eumenidae), probably caused much of the mortality observed in this study. I discuss the importance of other specialist predators to salicin-using leaf beetles.  相似文献   

2.
Abstract.
  • 1 Generalist predators are repelled by chrysomelid (Chrysomela spp., Phratora vitellinue L.) larval defensive secretions that are obtained from salicin in their host plants. But little is known about the effect of these secretions on specialist predators.
  • 2 In this study, we describe the feeding behaviour of a fly, Parasyrphus melanderi Curran (Diptera: Syrphidae), which feeds on Chrysomela aeneicollis Schaeffer (Coleoptera: Chrysomelidae). Parasyrphus melanderi lays its eggs on C.aeneicollis egg clutches, and its larvae consume C.aeneicollis eggs and larvae.
  • 3 Chrysomela aeneicollis hatching rates were significantly lower (20%) on clutches with fly eggs than on clutches without them (40%). Half of the clutches with one fly egg had survival rates below 5%, and when two fly eggs were present (four clutches), the entire clutch was consumed.
  • 4 In nature, P.melanderi eggs were 3 times more abundant on a salicylaterich willow species S.orestera Schneider, than on the medium-salicylate S.geyeriana Anderss. (1.8 v 0.6 eggs per clutch). On 18% of the S.orestera clones, all the beetle clutches contained fly eggs. In laboratory-choice tests, P.melanderi larvae fed equally rapidly on C.aeneicollis larvae that were chemically defended (feeding on S.orestera) as on larvae that produced no secretion (feeding on the salicylate-poor S.lutea Nutt.). This predator does not appear to be deterred by C.aeneicollis's defensive secretion. We discuss the implications of specialist predators on determining host suitability to herbivorous insects.
  相似文献   

3.
To examine whether enemy-free space is an important factor determining the host utilization pattern of a leaf beetle Plagiodera versicolora, we investigated the relationship between adult preference and offspring performance on three co-occurring willow species, Salix sachalinensis, S. miyabeana and S. integra. Salix sachalinensis was by far the most preferred host plant of feeding adults, while both S. miyabeana and S. integra were rarely fed upon. The fact that most oviposition was observed on S. sachalinensis also suggested that P. versicolora preferred S. sachalinensis to other willows for oviposition. This adult preference did not correspond well to patterns of larval performance on the three willow species in the absence of enemies. Higher survivorship, shorter developmental time and larger adult size were achieved on S. sachalinensis and S. miyabeana than on S. integra. Performance as indicated by female adult size and development time on S. miyabeana were higher than on S. sachalinensis. In the presence of enemies, however, the survivorship of first-instar larvae on S. miyabeana was much lower than on other willows. Adults of P. versicolora apparently avoided S. miyabeana as an oviposition and feeding host and preferred S. sachalinensis as an enemy-free space. This was not because larvae had poorer performance on S. miyabeana, but because predation pressure on eggs and early instar larvae was more severe on S. miyabeana.  相似文献   

4.
The phenolic glycosides salicin and salicortin were found to influence larval growth and development rates and adult feeding preference of Phratora vulgatissima in laboratory feeding studies. Salicortin was more toxic to larvae than salicin, and none of the third instar larvae fed on Salix viminalis leaves amended with 1.52% (fresh mass) salicortin pupated. Condensed tannins (proanthocyanadins) did not affect larval performance. It was concluded that Salix burjatica resistance to willow beetle is due to the high levels of salicortin which occur in leaves of this species.  相似文献   

5.
Choice and no-choice studies were conducted to determine how the glandular trichomes of the wild potato,Solanum berthaultii Hawkes, affect host preference of the Colorado potato beetle,Leptinotarsa decemlineata (Say). Given a feeding choice betweenS. tuberosum andS. berthaultii, larvae and adults preferred the foliage ofS. tuberosum, but adults were more discriminating. When foliage ofS. berthaultii was appressed toS. tuberosum leaflets, fewer adults fed on the appressed leaflets. When given a choice between ‘trichome-intact’ and ‘trichome-removed’S. berthaultii foliage, adults preferred to feed on the latter. The preference for ‘trichome-removed’ foliage and the percent of adults initiating feeding, increased with the degree of trichome removal. These studies provide evidence that the resistance ofS. berthaultii is associated with feeding deterrents localized in the glandular trichomes, thatS. berthaultii possesses more than one mechanism of resistance to the Colorado potato beetle, and that the expression of resistance is dependent on the developmental stage of the insect.  相似文献   

6.
7.
The leaf beetle genus Phratora (L.) (Coleoptera: Chrysomelidae) includes important pests of cultivated willows and poplars. The feeding preference of P. vulgatissima and P. vitellinae collected from different geographical locations was studied under laboratory conditions. There were geographic differences in the amount consumed of different willow host genotypes by each beetle species. Correlation analysis showed that, regardless of these individual differences between willow genotypes and locations, the ranking of preferred host genotypes was significantly related between locations. There were differences in the preference of host genotypes by P. vulgatissima adults and larvae after being confined to a specific willow genotype for a month, suggesting the possibility of a conditioning effect on food preference. This study also permitted the assessment of possible geographic differentiation in morphological traits. Both beetle species generally showed an increase in body size, width, and percentage fat of dry body weight with a more northerly location. These results are discussed in relation to using varietal mixtures as a pest management strategy.  相似文献   

8.
Herbivorous insects that use the same host plants as larvae and adults can have a subdivided population structure that corresponds to the distribution of their hosts. Having a subdivided population structure favors local adaptation of subpopulations to small-scale environmental differences and it may promote their genetic divergence. In this paper, I present the results of a hierarchical study of population structure in a montane willow leaf beetle, Chrysomela aeneicollis (Coleoptera: Chrysomelidae). This species spends its entire life associated with the larval host (Salix spp.), which occurs in patches along high-elevation streams and in montane bogs. I analyzed the genetic differentiation of C. aeneicollis populations along three drainages in the Sierra Nevada mountains of California at five enzyme loci: ak-1, idh-2, mpi-1, pgi-1, and pgm-1, using recent modifications of Wright's F-statistics. My results demonstrated significant differentiation (FST = 0.043) among drainages that are less than 40 kilometers apart. One locus, pgi-1, showed much greater differentiation than the other four (FST = 0.412), suggesting that it is under natural selection. C. aeneicollis populations were also subdivided within drainages, with significant differentiation 1) among patches of willows (spanning less than three kilometers) and 2) in some cases, among trees within a willow patch. My results demonstrate that this species has the capacity to adapt to local environmental variation at small spatial scales.  相似文献   

9.
In the leaves of 13 Finnish willow species, the content of a phenolic, chlorogenic acid, was found to vary from 0 up to 18 mg g–1 D.W. Effects of pure chlorogenic acid on insect feeding behaviour were tested using four common leaf beetle species which are in the field mainly found on willows with low-chlorogenic acid leaves. One species, Lochmaea capreae L., was invariably deterred by pure chlorogenic acid applied in naturally occurring concentrations on the willow leaves. Accordingly, in 2-choice laboratory feeding trials L. capreae was found to prefer low-chlorogenic acid leaves of four willow species over high-chlorogenic acid leaves of Salix pentandra L. and S. myrsinifolia Salisb. When presented on the leaves of S. phylicifolia L, pure chlorogenic acid inhibited also the feeding by Phratora polaris Sp.-Schn. Instead, chlorogenic acid had no significant effect on Ph. polaris when it was presented on the leaves of another willow S. cinerea L. In laboratory, Ph. polaris did not show general preference for willow species with low chlorogenic acid content in their leaves. Thus, the response of Ph. polaris to chlorogenic acid seems to depend on the plant species. Apparently variation in other traits such as leaf hairyness may easily override the potential effect of chlorogenic acid content on Ph. polaris. To two other leaf beetle species, Galerucella lineola F. and Plagiodera versicolora Laich., chlorogenic acid is an ineffective deterrent even at unnaturally high concentrations. In laboratory, G. lineola and P. versicolora did not prefer willows with low chlorogenic acid content in their leaves. Thus, among four studied leaf beetle species, only L. capreae seems to be clearly affected by this phenolic. Therefore, overall importance of chlorogenic acid as a defence against willow-feeding leaf beetles appears to be very limited.  相似文献   

10.
We studied preference for willows along a pollution gradient on the Kola Peninsula, Russia, by the leaf beetle, Melasoma lapponica. Multiple tests with leaf disks demonstrated low preference for Salix borealis, S. caprea and S. phylicifolia from the plot situated 14 km from the smelter, in comparison with conspecific plants from plots situated at 1 and 29 km distances. This pattern was observed when testing beetles orginating from any plot both in 1993 and 1994, using both young and mature leaves of S. borealis. Although fumigation of S. borealis with realistic SO2 concentration (100 g/m3) increased plant palatability, preference for plants from our study plots did not correlate with plot-specific mean SO2 concentrations. Furthermore, no correlation with foliar concentrations of the main metal pollutants (Ni and Cu) was found. Palatability of plants was negatively correlated with population density of M. lapponica, which peaked in the moderately polluted plot 14 km from the smelter. Within this plot, beetles clearly preferred non-damaged bushes of S. borealis to previously damaged bushes. We therefore conclude that low preference of S. borealis from the moderately polluted area was caused by plant resistance induced by severe damage from M. lapponica in previous years rather than by pollution impact. However, S. caprea and S. phylicifolia had little damage from M. lapponica, and low palatability of these species in the moderately polluted plot suggests changes in plant quality similar to changes in heavily damaged bushes of S. borealis.  相似文献   

11.
We investigated geographic differences in the host specificity of Epilachna niponica Lewis (Coleoptera: Coccinellidae). The Yuwaku population feeds mainly on Cirsium matsumurae Nakai (Asteraceae) and secondarily on Cirsrium kagamontanum Nakai. The Asiu population, located 150 km away from the Yuwaku, feeds exclusively on C. ashiuense Yokoyama et T. Shimizu. Under laboratory conditions, we examined the differences between the two populations in adult feeding acceptance, adult feeding preference, and larval performance, using several closely related thistle species and varieties, including their native hosts. In the Asiu population, adult beetles clearly avoided the host of the Yuwaku population, C. kagamontanum, and no larvae were able to complete their development, whereas in the Yuwaku population, adults accepted and even preferred it to some other thistle species, and about 10% of first instar larvae became adults. This indicates that the Yuwaku population evolved its feeding preference and physiological adaptation to C. kagamontanum through a utilization of this low‐ranked host under natural conditions. Apart from C. kagamontanum, the two populations showed a similar host susceptibility pattern, indicating that this ladybird beetle has a conserved hierarchy in feeding preference and growth performance. We also observed adult leaf choice behavior when given different thistle species, and found that difference in biting rate after palpation determined the leaf areas consumed, implying that factors on the leaf surface played an important role in the choice.  相似文献   

12.
Diet-induced changes in food preference by fifth instar larvae of the tobacco hornworm, Manduca sexta (Johan.) (Lepidoptera, Sphingidae), were examined. Two groups of larvae with different diet experience were used: larvae reared on a host or on an acceptable non-host plant species. Each group of larvae was offered a choice between leaf discs from each rearing plant species (2-plant choice test) and food preference was measured as the consumption of one plant species relative to that of the other plant species. Diet-induced changes in preferences were larger with the host versus acceptable non-host plant pairs Solanum pseudocapsicum (L.) versus Raphanus sativus (L.), Lycopersicon esculentum (Mill.) versus Vigna sinensis (Savi), and Datura innoxia (L.) versus V. sinensis than with the host versus host plant pairs L. esculentum versus Capsicum annuum (L.) and L. esculentum versus D. innoxia. To examine how much the food preference had been altered for each test plant species alone, two other groups of larvae were offered a choice between leaf discs from a single plant species and filter paper discs laced with distilled water (1-plant choice test). Larvae preferred the dietary plant species more strongly than the non-dietary plant species in tests using the following plant species: for C. annuum with C. annuum and L. esculentum as diets, for V. sinensis with V. sinensis and L. esculentum or D. innoxia as diets, and for R. sativus with R. sativus and S. pseudocapsicum as diets. The preference for the hosts L. esculentum and D. innoxia did not change significantly after rearing larvae on different hosts or on an acceptable non-host. Thus, diet-induction by M. sexta larvae results in an enhancement of preference for the dietary plant species which is much stronger with acceptable non-hosts than with hosts.  相似文献   

13.
In order to better understand the maintenance of a fairly narrow diet breadth in monarch butterfly larvae, Danaus plexippus L. (Lepidoptera: Nymphalidae: Danainae), we measured feeding preference and survival on host and non-host plant species, and sensitivity to host and non-host plant chemicals. For the plant species tested, a hierarchy of feeding preferences was observed; only plants from the Asclepiadaceae were more or equally preferred to Asclepias curassavica, the common control. The feeding preferences among plant species within the Asclepiadaceae are similar to published mean cardenolide concentrations. However, since cardenolide data were not collected from individual plants tested, definitive conclusions regarding cardenolide concentrations and plant acceptability cannot be made. Although several non-Asclepiadaceae were eaten in small quantities, all were less preferred to A. curassavica. Additionally, these non-Asclepiadaceae do not support continued feeding, development, and survival of first and fifth-instar larvae. Preference for a host versus a non-host (A. curassavica versus Vinca rosea) increased for A. curassavica reared larvae as compared to diet-reared larvae suggesting plasticity in larval food preferences. Furthermore, host species were significantly preferred over non-host plant species in bioassays using a host plant or sucrose as a common control. Larval responses to pure chemicals were examined in order to determine if host and non-host chemicals stimulate or deter feeding in monarch larvae. We found that larvae were stimulated to feed by some ubiquitous plant chemicals, such as sucrose, inositol, and rutin. In contrast, several non-host plant chemicals deterred feeding: caffeine, apocynin, gossypol, tomatine, atropine, quercitrin, and sinigrin. Additionally the cardenolides digitoxin and ouabain, which are not in milkweed plants, were neutral in their influence on feeding. Another non-milkweed cardenolide, cymarin, significantly deterred feeding. Extracts of A. curassavica leaves were tested in bioassays to determine which components of the leaf stimulate feeding. Both an ethanol extract of whole leaves and a hexane leaf-surface extract are phagostimulatory, suggesting the involvement of both polar and non-polar plant compounds. These data suggest that the host range of D. plexippus larvae is maintained by both feeding stimulatory and deterrent chemicals in host and non-host plants.  相似文献   

14.
Choice tests with whole plants and leaf discs indicated that fourth instar Spodoptera exigua (Hübner) (Noctuidae: Amphypyrini) were found more frequently and ate significantly more of the weed Chenopodium murale than the associated crop plant Apium graveolens. In order to explain the preference, plant extracts, plant volatiles, soluble protein concentrations, water contents, and leaf toughness of the two plants were investigated. Bioassays of aqueous methanol (90%) and hexane extracts of leaves on cellulose discs indicated that neither attractants in C. murale nor repellents in A. graveolens could account for the observed preference. No significant difference could be found between the effects of plant volatiles from C. murale, A. graveolens and a control on larval dispersal by S. exigua. Selective feeding for higher levels of proteins also was not a factor, because A. graveolens had nearly twice the soluble protein of C. murale. Water content was approximately 6% higher (by weight) in C. murale than A. graveolens but most polyphagous larvae do not typically show compensatory feeding for water alone. However, the potentially related characteristic of leaf toughness was significantly different, with A. graveolens exhibiting 1.53 times the toughness of C. murale. Studies comparing five types of larval behavior on both plant species showed that the time spent in swallowing behavior was significantly greater on the tougher A. graveolens leaves relative to C. murale. To test the hypothesis that leaf toughness was affecting larval host choice, both plants were finely ground and incorporated into agar blocks. No differences in feeding behavior were detected. The implications of leaf toughness for larval diet and host choice are discussed.  相似文献   

15.
Fecundity and feeding of two introduced sibling biological control species, Galerucella calmariensis and G. pusilla (Coleoptera: Chrysomelidae) on purple loosestrife, Lythrum salicaria L. (Lythraceae) were compared at constant temperatures of 12.5, 15, 20, 25, and 27.5 °C. Larval feeding was also carried out at 30 °C, but at this temperature, larvae developed only to the L2 stage and none pupated. Thus, data for this temperature were not used in the analysis. There were significant species × temperature interactions in fecundity. Of the two species, Galerucella pusilla laid more eggs. Although egg production of both species was lowest at 12.5 °C and increased to 20 °C, at higher temperatures, the two species reacted differently. From 25 to 27.5 °C, egg production decreased for G. pusilla, but G. calmariensis fecundity peaked at 27.5 °C. Significant temperature × species × life-stage interactions were also observed in feeding. For each species, the amount of feeding varied with temperature and stage of development. Galerucella pusilla adults consumed more foliage at 15, 20, and 27.5 °C. However, at 12.5 °C G. calmariensis adults fed more than G. pusilla. G. pusilla larvae consumed an average of 25% less foliage than G. calmariensis. The lower larval consumption of G. pusilla suggests that when food is limited, G. pusilla larvae may have a higher survival rate because of its ability to complete larval development with less food and produce more progeny due to its greater fecundity. When food is not limited neither species would have a competitive advantage and both species could coexist temporally and spatially. However, since G. calmariensis larvae consumed more leaf material, the larval stage of this species would have a greater impact on purple loosestrife than G. pusilla.  相似文献   

16.
Variation in plant communities is likely to modulate the feeding and oviposition behavior of herbivorous insects, and plant‐associated microbes are largely ignored in this context. Here, we take into account that insects feeding on grasses commonly encounter systemic and vertically transmitted (via seeds) fungal Epichloë endophytes, which are regarded as defensive grass mutualists. Defensive mutualism is primarily attributable to alkaloids of fungal origin. To study the effects of Epichloë on insect behavior and performance, we selected wild tall fescue (Festuca arundinacea) and red fescue (Festuca rubra) as grass–endophyte models. The plants used either harbored the systemic endophyte (E+) or were endophyte‐free (E?). As a model herbivore, we selected the Coenonympha hero butterfly feeding on grasses as larvae. We examined both oviposition and feeding preferences of the herbivore as well as larval performance in relation to the presence of Epichloë endophytes in the plants. Our findings did not clearly support the female's oviposition preference to reflect the performance of her offspring. First, the preference responses depended greatly on the grass–endophyte symbiotum. In F. arundinacea, C. hero females preferred E+ individuals in oviposition‐choice tests, whereas in F. rubra, the endophytes may decrease exploitation, as both C. hero adults and larvae preferred E? grasses. Second, the endophytes had no effect on larval performance. Overall, F. arundinacea was an inferior host for C. hero larvae. However, the attraction of C. hero females to E+ may not be maladaptive if these plants constitute a favorable oviposition substrate for reasons other than the plants' nutritional quality. For example, rougher surface of E+ plant may physically facilitate the attachment of eggs, or the plants offer greater protection from natural enemies. Our results highlight the importance of considering the preference of herbivorous insects in studies involving the endophyte‐symbiotic grasses as host plants.  相似文献   

17.
Abstract 1 Planting of species mixtures is a strategy for the non‐chemical management of willow beetles in short‐rotation coppice willows. However, the relatively susceptible Salix viminalis genotypes and their hybrids dominate current high‐yielding willows. Interactions between Phratora vulgatissima and different genotypes of S. viminalis were examined under laboratory conditions to determine if these genotypes exhibit genetic differences in susceptibility to willow beetle damage. 2 Seven S. viminalis genotypes and four hybrids were tested for the feeding preference of adult P. vulgatissima, larval performance and within‐season plant response to manual defoliation (50% and 75%). 3 The feeding preference of adult beetles, the growth rate of larvae, and the weight at 33 days of larvae and pupae differed significantly between genotypes. Genotypes also differed significantly in their height and weight responses to mechanical defoliation. Two genotypes were taller, with longer internodes, after defoliation than were undamaged plants. Two hybrids and their S. viminalis parent showed no significant reduction in final dry weight between 0% and 50% defoliation treatments. 4 Susceptibility of genotypes to adult feeding was not correlated with their tolerance to defoliation in terms of weight or height responses; however, larval growth rate on genotypes was negatively correlated both with final height and number of leaves after 75% defoliation and with the susceptibility of genotype to adult feeding. 5 Salix viminalis showed genetic differences for all parameters tested. This suggests that the planting of a mixture of these genotypes would contain genetic differences with respect to host susceptibility to P. vulgatissima. Some parameters showed similarities between a hybrid and its parent, whereas others showed differences between siblings. This offers potential for effective breeding of desirable traits.  相似文献   

18.
《Biological Control》2005,32(2):263-268
Adults from two populations (Brazil and Florida) of Cyrtobagous salviniae were bioassayed to determine if they exhibited a preference for either Salvinia minima or Salvinia molesta. Adults did not discriminate between host species in initial tests that evaluated the tertiary growth form. Further tests which compared two growth forms (primary and tertiary) as well as plant species, found that adults from the Brazil population consistently preferred larger (tertiary) plants without regard for host species. Weevils from the Florida population showed a similar, but less distinct, pattern of preference. Although adults from the Florida population survived equally well and experienced a similar pre-oviposition period on both plant species, they laid more eggs in S. molesta. Adults from the two populations differ in size: Brazil weevils were larger, which may explain their sensitivity to plant size as compared with the smaller Florida adults. Narrower rhizomes in S. minima may restrict usage of this species by the larger weevils, whereas smaller larvae may be better able to burrow in a wider range of plant sizes. Both weevil populations should be suitable biological control agents for use in programs targeting S. molesta.  相似文献   

19.
In this study aphid-plant association and its effect on host preference of parasitic Allothrombium pulvinum larvae was examined with multiple-choice tests. Host species selection, host size selection and superparasitism with mite larvae were studied with two-choice tests. Three aphid species were used: Macrosiphum rosae, Aphis gossypii and Hyalopterus amygdali. In multiple-choice tests, larvae of A. pulvinum showed no significant preference for any aphid-plant association when given M. rosae on rose, A. gossypii on cucumber and H. amygdali on apricot simultaneously. Two-choice tests showed that larval mites preferred H. amygdali to A. gossypii, but had no preference when offered a choice between A. gossypii and M. rosae or between H. amygdali and M. rosae. In host size selection and superparasitism tests, significantly more mites selected the larger host (M. rosae). Furthermore, parasitised H. amygdali were preferred to unparasitised ones. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Summary An investigation of the larval dragonfly fauna associated with the plant, Sagittaria platyphylla, was conducted in a small pond. Despite the presence of several larval anisopteran species in the pond, only Pachydiplax longipennis larvae were found on Sagittaria plants. A study of the microspatial distribution of P. longipennis larvae on S. platyphylla indicated that larvae use the various regions of a plant in a highly non-random fashion. Larvae show a strong preference for the leaf axil area. A generalized predator, the bluegill sunfish (Lepomis macrochirus), was allowed to selectively eat either of two larvae placed in various plant regions. This experiment indicated that larvae in a leaf axil area were significantly less susceptible to bluegill predation than larvae positioned in other plant regions. The microspatial distribution of starved larvae revealed that larvae with high hunger levels occupied the leaf axil area significantly less than well fed larvae, suggesting 1) larvae do not use these regions as feeding sites, and 2) high hunger levels may induce a behavioral shift in habitat use, with starved larvae forced into areas of high predation risk by the need to fulfill nutritional requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号