首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant plasmids carrying Drosophila melanogaster tRNA genes were constructed by ligation of HindIII-cleaved Drosophila DNA to HindIII cut pBR322 DNA. 90 clones were isolated that contained genes for one or more of eleven tRNAs. 43 of the plasmids were characterized by a number of methods: restriction nuclease digestion; agarose gel electrophoresis; hybridization with individual, purified, 125I-labelled Drosophila tRNA molecules and in situ hybridization to Drosophila chromosomes. The results show that several different tRNA genes have been isolated which code for single, specific isoacceptors. The DNAs from 8 plasmids each hybridize to single sites on Drosophila polytene chromosomes. In addition, the data show examples of two different plasmids hybridizing to different loci coding for the same tRNA; this means that we have isolated representatives of tRNA genes which map at widely separated points on the Drosophila genome.  相似文献   

2.
P H Yen  A Sodja  M Cohen  S E Conrad  M Wu  N Davidson 《Cell》1977,11(4):763-777
A plasmid with the vector Col E1 attached to an insert of Drosophila melanogaster DNA carrying four tRNA genes has been cloned in E. coli. Some features of the sequence arrangement and the positions of the tRNA genes have been determined by electron microscopic methods and by restriction endonuclease mapping. tRNA genes were mapped at 1.4, 4.7, 5.9 and 8.6 kb from one of the Drosophila/Col E1 junctions in the Drosophila insert of total length 9.34 kb. There are several secondary structure features consisting of inverted repeat sequences of length about 70-100 nucleotide pairs, some with and some without intervening loops, irregularly distributed on the insert. Cross-hybridization of tRNAs isolated by hybridization to separated restriction fragments indicate that the tRNA genes at 4.7, 5.9 and 8.6 kb are identical and differ from the one at 1.4 kb. Thus the positions of the genes, of the secondary structure features and of the restriction endonuclease sites all indicate that the spacers between the genes are not identical tandem repeats. In situ hybridization with cRNA transcribed from the plasmid showed localization at region 42A of chromosome 2R.  相似文献   

3.
R R Robinson  N Davidson 《Cell》1981,23(1):251-259
A recombinant DNA phage containing a cluster of Drosophila melanogaster tRNA genes has been isolated and analyzed. The insert of this phage has been mapped by in situ hybridization to chromosomal region 50AB, a known tRNA site. Nucleotide sequencing of the entire Drosophila tRNA coding region reveals seven tRNA genes spanning 2.5 kb of chromosomal DNA. This cluster is separated from other tRNA regions on the chromosome by at least 2.7 kb on one side, and 9.6 kb on the other. Two tRNA genes are nearly identical and contain intervening sequences of length 38 and 45 bases, respectively, in the anticodon loop. These two genes are assigned to be tRNALeu genes because of significant sequence homology with yeast tRNA3Leu, and secondary structure homology with yeast tRNA3Leu intervening sequence. In addition, an 8 base sequence (AAAAUCUU) is conserved in the same location in the intervening sequences of Drosophila tRNALeu genes and a yeast tRNA3Leu gene. Similar sequenes occur in all other tRNAs containing intervening sequences. The remaining five genes are identical tRNAIle genes, which are also identical to a tRNAIle gene from chromosomal region 42A. The 5' flanking regions are only weakly homologous, but each set of isoacceptors contains short regions of strong homology approximately 20 nucleotides preceding the tRNA coding sequences: GCNTTTTG preceding tRNAIle genes; and GANTTTGG preceding tRNALeu genes. The genes are irregularly distributed on both DNA strands; spacing regions are divergent in sequence and length.  相似文献   

4.
An opal suppressor phosphoserine tRNA gene and pseudogene have been isolated from a human DNA library and sequenced (O'Neill, V., Eden, F., Pratt, K., and Hatfield, D. (1985) J. Biol. Chem. 260, 2501-2508). Southern hybridization of human genomic DNA with an opal suppressor tRNA probe suggested that the gene and pseudogene are present in single copy. In this study, we have determined the chromosome location of the human gene and pseudogene by utilizing a 193-base pair fragment encoding the opal suppressor phosphoserine tRNA gene as probe to examine DNAs isolated from human-rodent somatic cell hybrids that have segregated human chromosomes. These studies show that the probe hybridized with two regions in the human genome; one is located on chromosome 19 and the second on chromosome 22. By comparing the restriction sites within these two regions to those previously determined for the human opal suppressor phosphoserine tRNA gene and pseudogene, we tentatively assigned the gene to chromosome 19 and the pseudogene to chromosome 22. These assignments were confirmed by utilizing a 350-base pair fragment which was isolated from the 5'-flanking region of the human gene as probe. This fragment hybridized only to chromosome 19, demonstrating unequivocally that the opal suppressor phosphoserine tRNA gene is located on chromosome 19. The flanking probe hybridized to a single homologous band in hamster and in mouse DNA to which the gene probe also hybridized, demonstrating that the 5'-flanking region of the opal suppressor tRNA gene is conserved in mammals. Restriction analysis of DNAs obtained from the white blood cells of 10 separate individuals demonstrates that the gene is polymorphic. This study provides two additional markers for the human genome and constitutes only the second set of two tRNA genes assigned to human chromosomes.  相似文献   

5.
6.
7.
Cloning of heat-shock locus 93D from Drosophila melanogaster.   总被引:6,自引:1,他引:5       下载免费PDF全文
Using the microcloning approach a number of recombinant lambda phages carrying DNA from the 93D region have been isolated. Screening genomic libraries, cloned in phage lambda or cosmid vectors, with this isolated DNA yielded a series of overlapping DNA fragments from the region 93D6-7 as shown by in situ hybridization to polytene chromosomes. In vitro 32P-labelled nuclear RNA prepared from heat-shocked third instar larvae hybridized specifically to one fragment within 85 kb of cloned DNA. The region which is specifically transcribed after heat shock could be defined to a cluster of internally-repetitive DNA and its neighbouring proximal sequences. Over a sequence of 10-12 kb in length the DNA is cut into repeat units of approximately 280 nucleotides by the restriction endonuclease TaqI. The TaqI repeat sequences are unique in the Drosophila genome.  相似文献   

8.
We have isolated and sequenced a tRNAPhe gene from Neurospora crassa. Hybridization analyses suggest that trnaPhe is the only tRNA encoded on the cloned 5 kb DNA fragment. The tRNAPhe gene contains an intervening sequence 16 nucleotides in length located one nucleotide 3' to the anticodon position. The tRNAPhe coding region of Neurospora and yeast are 91% conserved, whereas their intervening sequences are only 50% identical. The pattern of sequence conservation is consistent with a proposed secondary structure for the tRNA precursor in which the anticodon is base paired with the middle of the intervening sequence and the splice points are located in adjacent single-stranded loops. The DNA sequence following the tRNAPhe coding region is similar to sequences following other genes transcribed by RNA polymerase III in that it is AT-rich and includes a tract of A residues in the coding strand. In contrast, the sequence preceding the Neurospora tRNAPhe coding region does not resemble sequences preceding other sequenced tRNA genes.  相似文献   

9.
Structural comparison of two yeast tRNA Glu 3 genes.   总被引:11,自引:6,他引:5       下载免费PDF全文
A Eigel  J Olah    H Feldmann 《Nucleic acids research》1981,9(12):2961-2970
DNA sequences in a 1.7 kb Pst fragment from yeast have been determined. This fragment is part of a yeast 7.4 kb Hind III segment cloned ino pBR322 (pY 5). The fragment carries a single gene for a glutamate tRNA. The coding portion of this gene is identical in sequence to that of the tRNA Glu 3 gene from pY 20 [1]. The flanking regions differ in their sequences, but possible secondary structures within the 5'-flanking regions bear similar features. Sequence homologies between pY 5 and pY 20 were detected far outside the tRNA genes. More surprisingly, extended sequence homologies were seen between the flanking regions of the pY 20 tRNA Glu 3 gene and a tRNA Ser gene [2,3]. We have also checked the known tRNA genes for structural similarities. Hybridization studies indicate that portions of the Pst fragment are repeated within the yeast genome.  相似文献   

10.
Transfer RNAGlu4 was isolated from Drosophila melanogaster by affinity chromatography. The tRNA was iodinated "in vitro" with Na[25I] and hybridized "in situ" to salivary gland chromosomes from Drosophila. Subsequent autoradiography allowed the localization of the genes for tRNAGlu4 to the right arm of the second chromosome and to the left arm of the third chromosome in the regions 52 F, 56 EF and 62 A.  相似文献   

11.
In Drosophila melanogaster at least six transfer RNA genes are located adjacent to the 3' end of the 5S RNA gene cluster. Three of these have been sequenced and identified as coding for glutamate tRNA4. In the chromosome they are arranged as tandem repeats on the same DNA strand and transcribed in the same direction as is 5S DNA, towards the centromere. We have also identified a sequence, the ACT-TA box, that is highly conserved among the polymerase III transcribed genes. Usually the sequence is located at 37 +/- 8 base pairs upstream from the first nucleotide of the structural gene. A similar sequence is also observed upstream of yeast and silkworm tRNA genes and the mitochondrial tRNA genes of mouse and humans.  相似文献   

12.
Although their amino acid sequences and structure closely resemble DNA methyltransferases, Dnmt2 proteins were recently shown by Goll and colleagues to function as RNA methyltransferases transferring a methyl group to the C5 position of C38 in tRNA(Asp). We observe that human DNMT2 methylates tRNA isolated from Dnmt2 knock-out Drosophila melanogaster and Dictyostelium discoideum. RNA extracted from wild type D. melanogaster was methylated to a lower degree, but in the case of Dictyostelium, there was no difference in the methylation of RNA isolated from wild-type and Dnmt2 knock-out strains. Methylation of in vitro transcribed tRNA(Asp) confirms it to be a target of DNMT2. Using site directed mutagenesis, we show here that the enzyme has a DNA methyltransferase-like mechanism, because similar residues from motifs IV, VI, and VIII are involved in catalysis as identified in DNA methyltransferases. In addition, exchange of C292, which is located in a CFT motif conserved among Dnmt2 proteins, strongly reduced the catalytic activity of DNMT2. Dnmt2 represents the first example of an RNA methyltransferase using a DNA methyltransferase type of mechanism.  相似文献   

13.
Analysis of a drosophila tRNA gene cluster   总被引:23,自引:0,他引:23  
  相似文献   

14.
15.
16.
A functional tRNA(Val) gene, which codes for the major tRNA(ValIAC) isoacceptor species, and three new tRNA(Val) pseudogenes have been isolated from human genomic DNA. Two tRNA(Val) pseudogenes and a tRNA(Val) variant gene were found to be associated with tRNA genes encoding tRNA(ArgICG), tRNA(GlyUCC), and tRNA(ThrIGU), respectively, on distinct DNA fragments. All tRNA genes, including the pseudogenes, are actively transcribed in HeLa nuclear extract. Pre-tRNAs of tRNA(Val), tRNA(Arg), tRNA(Thr), and tRNA(Gly) genes are correctly processed to mature-sized tRNAs, whereas the three tRNA(Val) pseudogenes yield stable pre-tRNAs in vitro. These findings reveal that, together with the three known pseudogenes, half of the members of the human tRNA(Val) gene family are pseudogenes, all of which are active in homologous nuclear extracts in vitro and presumably also in vivo.  相似文献   

17.
18.
We have discovered a member of a new family of copia-like transposable elements inserted into the non-transcribed spacer between two ribosomal genes (rDNA). This family, which we call 3S18, consists of at least 15 elements which are scattered throughout the Drosophila melanogaster genome. The elements of this family are approximately 6.5 kb long and have 0.5 kb terminal direct repeats. All of the elements appear to have the same restriction sites. The element is mobile as the size pattern of homologous fragments varies among different strains. In situ hybridization results confirm the scattered location and transposable qualities of 3S18. The element is not transcribed into abundant RNA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号