首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
3.
Tst-1, a member of the POU domain gene family, is expressed in specific neurons and in myelinating glia in the mammalian nervous system. Bacterially expressed Tst-1 binds specifically to the promoter of the gene encoding myelin protein P0, a Schwann cell surface adhesion molecule. In cotransfection assays, Tst-1 can specifically repress the P0 promoter. The N-terminal part of Tst-1 protein is highly glycine- and alanine-rich, a structural feature shared by the helix-loop-helix protein TFEB.  相似文献   

4.
5.
6.
Transforming growth factor-beta-activated kinase 1 (TAK1) is a member of the mitogen-activated protein (MAP) kinase family and is an upstream signaling molecule of nuclear factor-kappaB (NF-kappaB). Given that NF-kappaB regulates keratinocyte differentiation and apoptosis, TAK1 may be essential for epidermal functions. To test this, we generated keratinocyte-specific TAK1-deficient mice from Map3k7(flox/flox) mice and K5-Cre mice. The keratinocyte-specific TAK1-deficient mice were macroscopically indistinguishable from their littermates until postnatal day 2 or 3, when the skin started to roughen and wrinkle. This phenotype progressed, and the mice died by postnatal day 7. Histological analysis showed thickening of the epidermis with foci of keratinocyte apoptosis and intra-epidermal micro-abscesses. Immunohistochemical analysis showed that the suprabasal keratinocytes of the TAK1-deficient epidermis expressed keratin 5 and keratin 14, which are normally confined to the basal layer. The expression of keratin 1, keratin 10, and loricrin, which are markers for the suprabasal and late phase differentiation of the epidermis, was absent from the TAK1-deficient epidermis. Furthermore, the TAK1-deficient epidermis expressed keratin 16 and had an increased number of Ki67-positive cells. These data indicate that TAK1 deficiency in keratinocytes results in abnormal differentiation, increased proliferation, and apoptosis in the epidermis. However, the keratinocytes from the TAK1-deficient epidermis induced keratin 1 in suspension culture, indicating that the TAK1-deficient keratinocytes retain the ability to differentiate. Moreover, the removal of TAK1 from cultured keratinocytes of Map3k7(flox/flox) mice resulted in apoptosis, indicating that TAK1 is essential for preventing apoptosis. In conclusion, TAK1 is essential in the regulation of keratinocyte growth, differentiation, and apoptosis.  相似文献   

7.
8.
9.
SCIP: a glial POU domain gene regulated by cyclic AMP   总被引:28,自引:0,他引:28  
E S Monuki  G Weinmaster  R Kuhn  G Lemke 《Neuron》1989,3(6):783-793
We have isolated cDNA clones encoding SCIP, a POU domain gene expressed by myelin-forming glial of the central and peripheral nervous systems. In purified Schwann cells cultured in the absence of neurons, expression of SCIP is suppressed. This suppression is relieved by cAMP, and induction of SCIP mRNA by this second messenger precedes cAMP induction of myelin-specific genes. Similarly, SCIP expression in vivo precedes full expression of myelin-specific genes in developing oligodendrocytes and Schwann cells. The sequence of the SCIP POU domain is identical to that of Tst-1, a recently identified member of a family of POU domain genes expressed by restricted subsets of neurons. Our results demonstrate that SCIP is also expressed by myelin-forming glia and suggest that it plays a central role in the progressive determination of these cells and their commitment to myelination.  相似文献   

10.
11.
12.
We investigated whether ectopic expression of CRABPI, a cellular retinoic acid binding protein, influenced the actions of all-trans retinoic acid (ATRA) in transgenic (TG) mice. We targeted CRABPI to the basal vs. suprabasal layers of mouse epidermis by using the keratin 14 (K14) and keratin 10 (K10) promoters, respectively. Greater CRABPI protein levels were detected in the epidermis of adult transgenic(+) mice than in transgenic(-) mice for both transgenes. In adult mouse skin CRABPI overexpression in the basal or suprabasal keratinocytes did not cause morphological abnormalities, but did result in decreased CRABPII mRNA levels. Ectopically overexpressed CRABPI in suprabasal keratinocytes, but not in basal keratinocytes, enhanced the thickening of the epidermis induced by topical ATRA treatments (10 microM, 400 microl for 4 days) by 1.59+/-0.2-fold (p<0.05). ATRA treatment (10 microM) resulted in a 59.9+/-9.8% increase (p<0.05) in the BrdU labeling index in K10/FLAG-CRABPI TG(+) mice vs. TG(-) mice. Retinoid topical treatments reduced p27 and CYP26A1 mRNA levels in TG(+) and TG(-) mouse skin in K14 and K10/FLAG-CRABPI transgenic mice. As epidermal basal keratinocyte proliferation is stimulated by paracrine growth factors secreted by ATRA activated suprabasal keratinocytes, our results indicate that CRABPI overexpression in suprabasal keratinocytes enhances the physiological functions of ATRA.  相似文献   

13.
14.
The epidermal keratinocytes express two major pairs of keratin polypeptides. One pair (K5/K14) expressed specifically in basal generative compartment and the other (K1/K10) expressed specifically in the differentiating suprabasal compartment. The switch in the expression of the keratins from proliferating to differentiating compartment indicates the changes that occur in the keratin filament organization which in turn influences the functional properties of the epidermis. Proper regulation of keratin gene expression and the filament organization are absolutely necessary for normal functioning of the skin. Keratin gene mutations can influence the filament integrity thereby causing several heritable blistering disorders of the skin such as epidermolysis bullosa, bullous icthyosiform erythroderma, etc. Changes in the keratin gene expression may lead to incomplete differentiation of the epidermal keratinocyte, causing hyperproliferative diseases of the skin such as psoriasis, carcinomas, etc. This review briefly describes the changes in keratin structure or gene expression that are known to result in various disorders of the skin.  相似文献   

15.
16.
17.
Corneal epithelium transdifferentiation into a hair-bearing epidermis provides a particularly useful system for studying the possibility that transient amplifying (TA) cells are able to activate different genetic programs in response to a change in their fibroblast environment, as well as to follow the different steps of rebuilding an epidermis from induced stem cells. Corneal stem and TA cells are found in different locations - stem cells at the periphery, in the limbus, and TA cells more central. Moreover, the TA cells already express the differentiating corneal-type keratin pair K3/K12, whereas the limbal keratinocytes express the basal keratin pair K5/K14. In contrast, suprabasal epidermal keratinocytes express keratin pair K1-2/K10, and basal keratinocytes the keratin pair K5/K14. The results of tissue recombination experiments show that adult central corneal cells are able to respond to specific information originating from embryonic dermis. First, the cells located at the base of the corneal epithelium show a decrease in expression of K12 keratin, followed by an increase in K5 expression; they then proliferate and form hair follicles. The first K10 expressing cells appear at the junction of the new hair follicles and the covering corneal epithelium. Their expansion finally gives rise to epidermal strata, which displace the corneal suprabasal keratinocytes. Corneal TA cells can thus be reprogrammed to form epidermal cells, first by reverting to a basal epithelial-type, then to hair pegs and probably concomitantly to hair stem cells. This confirms the role of the hair as the main reservoir of epidermal stem cells and raises the question of the nature of the dermal messages which are both involved in hair induction and stem cell specification.  相似文献   

18.
19.
The desmoglein 1 (Dsg1) and desmocollin 1 (Dsc1) isoforms of the desmosomal cadherins are expressed in the suprabasal layers of epidermis, whereas Dsg3 and Dsc3 are more strongly expressed basally. This differential expression may have a function in epidermal morphogenesis and/or may regulate the proliferation and differentiation of keratinocytes. To test this hypothesis, we changed the expression pattern by overexpressing human Dsg3 under the control of the keratin 1 (K1) promoter in the suprabasal epidermis of transgenic mice. From around 12 weeks of age, the mice exhibited flaking of the skin accompanied by epidermal pustules and thinning of the hair. Histological analysis of affected areas revealed acanthosis, hypergranulosis, hyperkeratosis, localized parakeratosis, and abnormal hair follicles. This phenotype has some features in common with human ichthyosiform diseases. Electron microscopy revealed a mild epidermal spongiosis. Suprabasally, desmosomes showed incorporation of the exogenous protein by immunogold labeling but were normal in structure. The epidermis was hyperproliferative, and differentiation was abnormal, demonstrated by expression of K14 in the suprabasal layer, restriction of K1, and strong induction of K6 and K16. The changes resembled those found in previous studies in which growth factors, cytokines, and integrins had been overexpressed in epidermis. Thus our data strongly support the view that Dsg3 contributes to the regulation of epidermal differentiation. Our results contrast markedly with those recently obtained by expressing Dsg3 in epidermis under the involucrin promoter. Possible reasons for this difference are considered in this paper.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号