首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, batch removal of hexavalent chromium from aqueous solutions by powdered Colocasia esculenta leaves was investigated. Batch experiments were conducted to study the effects of adsorption of Cr(VI) at different pH values, initial concentrations, agitation speeds, temperatures, and contact times. The biosorbent was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectrometer analysis. The biosorptive capacity of the adsorbent was dependent on the pH of the chromium solution in which maximum removal was observed at pH 2. The adsorption equilibrium data were evaluated for various adsorption isotherm models, kinetic models, and thermodynamics. The equilibrium data fitted well with Freundlich and Halsey models. The adsorption capacity calculated was 47.62 mg/g at pH 2. The adsorption kinetic data were best described by pseudo-second-order kinetic model. Thus, Colocasia esculenta leaves can be considered as one of the efficient and cheap biosorbents for hexavalent chromium removal from aqueous solutions.  相似文献   

2.
The feasibility of using fish (Labeo rohita) scales as low-cost biosorbent for the removal of hazardous Malachite Green (MG) dye from aqueous solutions was investigated. Employing a batch experimental setup, the effect of operational parameters such as biosorbent dose, initial solution pH, contact time, and temperature on the dye removal process was studied. The equilibrium biosorption data followed both Langmuir and Freundlich isotherm models, whereas the experimental kinetic data fitted well to the pseudo-second-order kinetic model. Thermodynamic study indicated spontaneous and endothermic nature of the biosorption process. The results suggest that fish scales could be used as an effective biosorbent for removal of MG dye from aqueous solutions.  相似文献   

3.
The kinetics of the hydrogen-deuterium exchange reaction in a subtilisin inhibitor from Streptomyces albogriseolus has been examined by infrared absorption measurement in aqueous solutions at various pH values and temperatures. In the analysis of each piece of kinetic data, it was assumed that the total 104 peptide hydrogen atoms are classified into three kinetic classes A, B1, and B2, and that the sizes of these classes are 72, 15, and 17, respectively at every pH and at every temperature examined. On the basis of the peak position determined for the amide II band in each stage of the exchange reaction, an approximate assignment was suggested of the A, B1 and B2 respectively to an unordered structure, a beta-structure,and an alpha-helical structure in the molecule. This assignment was supported by infrared absorption measurement of a film of this protein and by circular dichroic study of the solutions. On the basis of the temperature effect on the hydrogen-exchange rate constants and on the basis of ultraviolet absorption study in the higher temperature region (40 to 90 degrees C), a discussion has been made on the nature of the fluctuation of the molecular structure of this protein.  相似文献   

4.
The preparation of activated carbon from apricot stone with H2SO4 activation and its ability to remove a basic dye, astrazon yellow 7GL, from aqueous solutions were reported in this study. The adsorbent was characterized by FTIR, BET and SEM, respectively. The effects of various experimental parameters, such as initial dye concentration, pH, adsorbent dosage and temperature were investigated in a batch-adsorption technique. The optimum conditions for removal of the basic dye were found to be pH 10, 6 g/l of adsorbent dosage and equilibrium time of 35 min, respectively. A comparison of three kinetic models, the pseudo first-order, second-order and diffusion controlled kinetic models, on the basic dye-adsorbent system showed that the removal rate was heavily dependent on diffusion controlled kinetic models. The adsorption isotherm data were fitted well to Langmuir and Freundlich isotherms. The adsorption capacity was calculated as 221.23 mg/g at 50 °C. Thermodynamics parameters were also evaluated. The values of enthalpy and entropy were 49.87 kJ/mol and 31.93 J/mol K, respectively, indicating that this process was spontaneous and endothermic. The experimental studies were indicated that ASC had the potential to act as an alternative adsorbent to remove the basic dye from aqueous solutions.  相似文献   

5.
Effects of the water activity (a(w)) and the solvent ordering, as determined by the activity coefficient of water, were investigated on the enzyme kinetics of alcohol dehydrogenase, lysozyme, and beta-galactosidase in various aqueous solutions. The water activity and the solvent ordering were adjusted by addition of electrolytes (NaCl, KCl, CsCl, etc.) or nonelectrolytes (sugars, alcohols, urea, etc.) at various concentrations. Although the enzyme kinetics were strongly dependent on a(w), a(w) was not a complete determinant of the enzyme behavior in aqueous solutions. Enzyme kinetics were also dependent on the solvent ordering. At a fixed a(w), all the enzyme kinetic parameters tested had a good correlation with the solvent ordering parameter as represented by the parameter alpha, an index of the deviation of the water state from the ideal solution, determined from the activity coefficient of water in solutions. Solvent ordering was expected to affect the enzyme kinetics through its effect on the hydrophobic interaction between the enzyme and the substrate and also on the thermal fluctuation.  相似文献   

6.
Thermodynamic, kinetic, and operational stabilities of yeast alcohol dehydrogenase (YADH) were measured and compared in aqueous solutions containing various sugars (sucrose, glucose, and ribose) and compatible osmolytes (betaine and sarcosine). In the measurement of operational stability, native YADH was entrapped and physically immobilized in an ultrafiltration hollow fiber tube to retain the native characteristics of the enzyme. All the additives tested increased thermodynamic stability and kinetic stability of YADH. The order of the magnitude of stabilization effect among additives was different between thermodynamic and kinetic stabilities. Compared to the thermodynamic and kinetic stabilities, the effects of additives were much different in operational stability. Sucrose, glucose, and betaine stabilized YADH substantially while ribose and sarcosine destabilized the enzyme. These results show that the thermodynamic and kinetic stabilities do not necessarily guarantee the operational stability of YADH. The coexistence of stabilizing solute was proved effective to increase the productivity of the bioreactor with immobilized YADH.  相似文献   

7.
Thermodynamic, kinetic, and operational stabilities of yeast alcohol dehydrogenase (YADH) were measured and compared in aqueous solutions containing various sugars (sucrose, glucose, and ribose) and compatible osmolytes (betaine and sarcosine). In the measurement of operational stability, native YADH was entrapped and physically immobilized in an ultrafiltration hollow fiber tube to retain the native characteristics of the enzyme. All the additives tested increased thermodynamic stability and kinetic stability of YADH. The order of the magnitude of stabilization effect among additives was different between thermodynamic and kinetic stabilities. Compared to the thermodynamic and kinetic stabilities, the effects of additives were much different in operational stability. Sucrose, glucose, and betaine stabilized YADH substantially while ribose and sarcosine destabilized the enzyme. These results show that the thermodynamic and kinetic stabilities do not necessarily guarantee the operational stability of YADH. The coexistence of stabilizing solute was proved effective to increase the productivity of the bioreactor with immobilized YADH.  相似文献   

8.
9.
Amphiphilic polysaccharides, obtained by the attachment of various hydrocarbon groups onto dextran, are studied in aqueous solutions. The viscosity of their aqueous solutions is examined as a function of concentration and temperature in the range 25-65 degrees C. Varying polymer concentration, viscosity follows a polynomial development of Huggins equation in which the coefficients can be calculated from the Huggins constant determined in the dilute domain (Matsuoka-Cowman equation). For all polymers, the solution viscosity follows an Arrhenius-like variation with temperature. The activation energy of the aqueous solutions is determined as a function of polymer concentration and structural characteristics (nature and amount of grafted hydrocarbon groups). The variation of activation energy with polymer concentration is shown to be consistent with predictions based on the Matsuoka-Cowman equation combined with the equation of Andrade. This conclusion is extended to other polysaccharides using data from the literature.  相似文献   

10.
The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g-1. Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI) aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI)-contaminated water and wastewater.  相似文献   

11.
The reaction rates in aqueous solutions of aminothiols, thiols, and other compounds with N-acetyl dehydroalanine and its methyl ester (2-acetamindoacrylic acid and methyl 2-acetamidoacrylate) were studied as a function of the structure of the thiol compound in aqueous solutions. Correction of the observed second-order rate constants to identical thiol anion concentration gave a series of computed rate constants whose logarithms showed a linear dependence on the pK's of the thiol group in similar steric environments. Comparison of the addition rates of penicillamine to N-acetyl dehydroalanine and its methyl ester showed the methyl ester to react approximately 11,400 times faster than the acid. Addition rates for thiol acids and aromatic and heterocyclic thiols were also compared; each showed sluggish reactivity with dehydroalanine, but each reacted readily with methyl dehydroalanine. The kinetic data were applied in developing a method for preparing lanthionine in high yield.  相似文献   

12.
The kinetic parameters of 20 beta-hydroxysteroid dehydrogenase were determined in aqueous solutions and in reversed micellar media composed with either an anionic, a cationic or a nonionic surfactant, at low and at high ionic strength. The velocity data were analysed in two ways: first by extrapolation to infinite concentrations of both substrates to determine 'apparent' Michaelis constants and V values, and secondly by comparison to reaction rates calculated using the model presented (see first of this series of papers in this issue of the journal). Data analysis according to the first method reveals some differences in the kinetic parameters in reversed micelles as compared to those in aqueous solution, though the kinetic parameters of the enzyme seem not to be much affected by enclosure in reversed micelles. It is shown that the changes that do occur are not caused by a shift of the intramicellar pH or by electrostatic interactions between the enzyme and the surfactant head groups. Interpretation of the data using the second method assumes that the enzyme is not affected by the enclosure in reversed micelles, and that deviations with respect to the aqueous parameters are caused by exchange phenomena between distinct aqueous droplets in the organic phase and by a high effective intramicellar substrate concentration. This model is able to predict reaction rates that agree rather well with experimentally determined rates and explains why the enzyme mechanism in reversed micelles is, at all progesterone concentrations used, the same as observed at high progesterone concentrations in aqueous solution. Furthermore it clarifies the occurrence of substrate inhibition in sodium-di(ethylhexyl)sulphosuccinate-reversed micelles and the observed low activity in Triton-reversed micelles, as arising from the high partition coefficient of progesterone and the slow rate of diffusion of progesterone into the reversed micelles. From these results, and those reported for enoate reductase (see preceding paper in this issue of the journal) it can be concluded that the theory presented before (see first of this series of papers in this issue of the journal) offers a good explanation for the observed kinetic behaviour in reversed micelles, and emphasizes the importance of exchange processes between micelles.  相似文献   

13.
Adsorption kinetic and equilibrium of a basic dye (Astrazon Yellow 7GL) from aqueous solutions at various initial dye concentration (50-300 mg/l), pH (4-10), adsorbent dosage (2-8 g/l), particle size (354-846 microm) and temperature (30-50 degrees C) on wheat bran were studied in a batch mode operation. The result showed that the amount adsorbed of the dye increased with increasing initial dye concentration and contact time, whereas particle size and pH had no significant affect on the amount of dye adsorbed by the adsorbent. A comparison of kinetic models on the overall adsorption rate showed that dye/adsorbent system was best described by the pseudo second-order rate model. The removal rate was also dependent on both external mass transfer and intra-particle diffusion. The low value of the intraparticle diffusivity, 10(-11) cm2/s, indicated the significant influence of intraparticle diffusion on the kinetic control. The adsorption capacity (Q0) calculated from the Langmuir isotherm was 69.06 mg/g for at pH 5.6, 303 K for the particle size of 354 microm. The experimental data yielded excellent fits with Langmuir and Tempkin isotherm equations. Different thermodynamic parameters showed that the reaction was spontaneous and endothermic in nature.  相似文献   

14.
The Raman and infrared spectra of poly(L -lysine) and poly(DL -lysine) in solution are reported and the effects of various salts are investigated. The results demonstrate that α-helix formation in solution is induced by specific salts and the spectral data support the hypothesis of regions of local order for poly(L -lysine) in aqueous solutions of low ionic strength.  相似文献   

15.
Carica papaya, a novel sorbent, was evaluated for sorption of Hg(II) from synthetic aqueous solutions using various pseudo-second order kinetic models as well as equilibrium sorption models. Batch kinetic and equilibrium experiments were carried out for the sorption of Hg(II) onto C. papaya at pH 6.5 and solid to liquid ratio (s/l) 1.0 g L?1. The kinetic data were fitted to second order models of Sobkowsk and Czerwinski, Ritchie, Blanchard, Ho and McKay, whereas Langmuir, Freundlich, and Redlich-Peterson models were used for the equilibrium data. A comparative study on both linear and nonlinear regression showed that the Sobkowsk and Czerwinski and Ritchie's second order model were the same. Ho and McKay's pseudo-second order model fitted well to the experimental data when compared with the other second order kinetic expressions. Langmuir isotherm parameters obtained from the four Langmuir linear equations by using linear method were dissimilar, but were the same when nonlinear method was used. Additionally, various thermodynamic parameters, such as ΔG 0, ΔH 0, and ΔS 0, were calculated. The negative values of Gibbs free energy (ΔG 0) and ΔH 0 confirmed the intrinsic nature of biosorption process and exothermic, respectively. The negative value of ΔS 0 showed the decreased randomness at the solid-solution interface during biosorption.  相似文献   

16.
X-ALD is an inherited neurodegenerative disorder where mutations in the ABCD1 gene result in clinically diverse phenotypes: the fatal disorder of cerebral childhood ALD (cALD) or a milder disorder of adrenomyeloneuropathy (AMN). The various models used to study the pathobiology of X-ALD disease lack the appropriate presentation for different phenotypes of cALD vs AMN. This study demonstrates that induced pluripotent stem cells (IPSC) derived brain cells astrocytes (Ast), neurons and oligodendrocytes (OLs) express morphological and functional activities of the respective brain cell types. The excessive accumulation of saturated VLCFA, a “hallmark” of X-ALD, was observed in both AMN OLs and cALD OLs with higher levels observed in cALD OLs than AMN OLs. The levels of ELOVL1 (ELOVL Fatty Acid Elongase 1) mRNA parallel the VLCFA load in AMN and cALD OLs. Furthermore, cALD Ast expressed higher levels of proinflammatory cytokines than AMN Ast and control Ast with or without stimulation with lipopolysaccharide. These results document that IPSC-derived Ast and OLs from cALD and AMN fibroblasts mimic the respective biochemical disease phenotypes and thus provide an ideal platform to investigate the mechanism of VLCFA load in cALD OLs and VLCFA-induced inflammatory disease mechanisms of cALD Ast and thus for testing of new therapeutics for AMN and cALD disease of X-ALD.  相似文献   

17.
A combination of olive pomace after solvent extraction and charcoal produced from the solid waste of olive oil press industry was used as an adsorbent for the removal of methylene blue (MB) dye from aqueous solutions. Batch tests showed that up to 80% of dye was removed when the dye concentration was 10 mg/ml and the sorbent concentration was 45 mg/ml. An increase in the olive pomace concentration resulted in greater dye removal from aqueous solution, and an increase in MB dye concentration at constant adsorbent concentration increased the dye loading per unit weigh of adsorbent. In the kinetic of the adsorbent process, the adsorption data followed the second-order kinetic model better than first order kinetic model. Charcoal showed higher sorption capacity (uptake) than that of olive pomace. In the fixed bed adsorption experiment, the breakthrough curves showed constant pattern behavior, typical of favorable isotherms. The breakthrough time increased with increasing bed height, decreasing flow rate and decreasing influent concentration and methylene blue dye uptake. The uptake of MB dye was significantly increased when a mixture of olive pomace and charcoal was packed in the column in a multi-layer fashion. Different models were used to describe the behavior of this packed-sorption process.  相似文献   

18.
Heavy metals in the soil and ground water have endangered our environment and human bodies by direct or indirect pathways. Currently, bioremediation is a developing process that offers the possibility to destroy various contaminants using natural biological activity. Biopolymers are industrially attractive because of their capability of lowering transition metal ion concentrations to parts per billion, they are widely available, and they are environmentally safe. This paper deals with the preparation of an ethylamine-modified biopolymer (chitosan) and carbon from biowaste (rice husk) composite beads (EAM-CCRCB) for metal ion removal. The prepared adsorbent was used for the adsorption of hexavalent chromium ions from aqueous solutions. The activation and surface properties of the adsorbent were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) analyses. The effect of process variables such as initial metal ion concentration, adsorbent dosage, and pH of the solution on the performance of percentage removal and adsorption capacity were studied. Various isotherm and kinetic models were fitted with experimental data to describe the solute interaction and nature of adsorption with the adsorbent through batch studies. Mass thermodynamic parameters were determined. Regeneration studies were attempted to check the stability and activity of the adsorbent.  相似文献   

19.
The potential use of the immobilized Mentha arvensis distillation waste (IMADW) biomass for removal and recovery of Cu(II) and Zn(II) from aqueous was evaluated in the present study. Biosorption capacity of Cu(II) and Zn(II) on IMADW increased with increase in pH reaching a maximum at 5 for Cu(II) and 6 for Zn(II). The equilibrium sorption data agreed well with Langmuir isotherm model and pseudo-second-order kinetic model in batch mode. Cu(II) and Zn(II) uptake by IMADW was best described by pseudo-first-order kinetic model in continuous mode. Maximum Cu(II) and Zn(II) uptake by IMADW was 104.48 and 107.75 mg/g, respectively. Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were also carried out to investigate functional groups and surface changes of biomass. The results showed that IMADW biomass is a potential biomaterial to remove Cu(II) and Zn(II) ions with a high biosorption capacity from aqueous solutions.  相似文献   

20.
This paper reports a study on the potential use of sheep manure waste (SMW) for the removal of nickel ions from aqueous solutions. The adsorption of nickel ions from aqueous solutions on SMW has been studied as functions of contact time, initial pH, amount of sorbent, sorbent particle size, initial concentration of nickel ions, salt, and chelating agents. The experimental results showed that the SMW has a high affinity for nickel binding, where 79 % removal of 100 ppm initial nickel ions concentration was obtained using 8.0 mg SMW/mL, at pH 6.5 in 4 minutes equilibrium time. The equilibrium adsorption data were analyzed using four different isotherms: the Langmuir, Freundlich, Redlich‐Peterson, and Sips isotherm equations. The results of the kinetic studies showed that the adsorption of nickel ions on SMW is a pseudo‐first order with respect to the nickel ions solution concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号