共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Mark Huxham 《Freshwater Biology》2008,53(3):635-635
4.
5.
6.
Studies of seed bank development have rarely been included in evaluations of wetland restoration. We compared the seed bank of a recently restored tidal freshwater marsh in Washington, D.C., Kingman Marsh, with seed banks of another restored site (Kenilworth Marsh) and two reference marshes (Dueling Creek and Patuxent Marsh). The density and richness of emerging seedlings from Kingman Marsh seed bank samples increased from less than 4 seedlings and 2 taxa/90-cm2 sample in 2000 (the year of restoration) to more than 130 seedlings and 10 taxa/90-cm2 sample in 2003. The most important seed bank taxa at Kingman Marsh included Cyperus spp., Juncus spp., Lindernia dubia , Ludwigia palustris , and the non-native Lythrum salicaria . These taxa are not abundant in most mid-Atlantic tidal freshwater marshes but are almost identical to those described for a created tidal freshwater wetland in New Jersey. Seed banks of both the restored sites contained few seeds of several important species found at the reference sites. Flooding had a significant negative effect on emerging seedling density and taxa density, suggesting that slight decreases in soil elevation in restored wetlands will dramatically decrease recruitment from the seed bank. Because seed banks integrate processes affecting growth and reproduction of standing vegetation, we suggest that seed banks are a useful metric of wetland restoration success and urge that seed bank studies be incorporated into monitoring programs for restored wetlands. 相似文献
7.
Freshwater wetlands constitute important ecosystems, and their benthic, attached microbial communities, including biofilms,
represent key habitats that contribute to primary productivity, nutrient cycling, and substrate stabilization. In many wetland
biofilms, algae constitute significant parts of the microbial population, yet little is known about their activities in these
communities. An analysis of wetland biofilms from the Adirondack region of New York (USA) was performed with special emphasis
on desmids, a group of evolutionarily advanced green algae commonly found in these habitats. Desmids constituted as much as
23.7% of the total algal and cyanobacterial flora of the biofilms during the July and August study periods. These algae represented
some of the first eukaryotes to colonize new substrates, and during July their numbers correlated with fluctuations in general
biofilm parameters such as biofilm thickness and dry weight as well as total carbohydrate. Significant numbers of bacteria
were associated with both the EPS sheaths and cell wall surfaces of the desmids. Colonization of new substrates and development
of biofilms were rapid and were followed by various fluctuations in microbial community structure over the short- and long-term
observations. In addition to desmids, diatoms, filamentous green algae and transient non-motile phases of flagellates represented
the photosynthetic eukaryotes of these biofilms. 相似文献
8.
Dan L. Danielopol 《Freshwater Biology》2004,49(4):502-503
9.
10.
Erika C. Brandt John E. Petersen Jake J. Grossman George A. Allen David H. Benzing 《PloS one》2015,10(8)
The diversity of plant species and their distribution in space are both thought to have important effects on the function of wetland ecosystems. However, knowledge of the relationships between plant species and spatial diversity remains incomplete. In this study, we investigated relationships between spatial pattern and plant species diversity over a five year period following the initial restoration of experimental wetland ecosystems. In 2003, six identical and hydrologically-isolated 0.18 ha wetland “cells” were constructed in former farmland in northeast Ohio. The systems were subjected to planting treatments that resulted in different levels of vascular plant species diversity among cells. Plant species diversity was assessed through annual inventories. Plant spatial pattern was assessed by digitizing low-altitude aerial photographs taken at the same time as the inventories. Diversity metrics derived from the inventories were significantly related to certain spatial metrics derived from the photographs, including cover type diversity and contagion. We found that wetlands with high cover type diversity harbor higher plant species diversity than wetlands with fewer types of patches. We also found significant relationships between plant species diversity and spatial patterning of patch types, but the direction of the effect differed depending on the diversity metric used. Links between diversity and spatial pattern observed in this study suggest that high-resolution aerial imagery may provide wetland scientists with a useful tool for assessing plant diversity. 相似文献
11.
12.
13.
The exchange of water between the main channel of the tidal freshwater Hudson River and its tidal wetlands is a large proportion of the whole-river water volume and causes large changes in concentrations of some dissolved and suspended constituents. Ten representative wetlands were assessed for their ability to alter quantities of inorganic nutrients, suspended particles, dissolved organic carbon (DOC), and dissolved oxygen during tidal exchange. The majority of sites acted as sinks for oxygen and nitrate and as sources of DOC. For other variables such as phosphate and pigments, individual wetlands varied broadly in both the direction and magnitude of change. For some variables (oxygen, DOC) we found mechanistically plausible predictors for the magnitude of alteration. The proportional coverage of submerged vegetation or intertidal marsh graminoid vegetation was related to the degree of change in oxygen and DOC. For most cases, however, we did not find strong predictors and we attribute this to the spatial positioning of “hot spots” or redundancy in the processes actually responsible for the transformation. Our ability to predict ecosystem performance from whole-ecosystem attributes may be impeded by lack of consideration of within-system spatial contingencies or lack of knowledge of which process is actually responsible for the observed alteration in material flux. 相似文献
14.
Phragmites australis (common reed) has expanded in many wetland habitats. Its ability to exclude other plant species has led to both control and eradication programs. This study examined two control methods—herbicide application or a herbicide‐burning combination—for their efficacy and ability to restore plant biodiversity in non‐tidal wetlands. Two Phragmites‐dominated sites received the herbicide glyphosate. One of these sites was burned following herbicide application. Plant and soil macroinvertebrate abundance and diversity were evaluated pre‐treatment and every year for four years post‐treatment using belt transects. The growth of Phragmites propagules—seeds, rhizomes, and rooted shoots—was examined in the greenhouse and under bare, burned, or vegetated soil conditions. Both control programs greatly reduced Phragmites abundance and increased plant biodiversity. Plant re‐growth was quicker on the herbicide‐burn site, with presumably a more rapid return to wetland function. Re‐growth at both sites depended upon a pre‐existing, diverse soil seed bank. There were no directed changes in soil macroinvertebrate abundance or diversity and they appeared unaffected by changes in the plant community. Phragmites seeds survived only on bare soils, while buried rhizomes survived under all soil conditions. This suggests natural seeding of disturbed soils and inadvertent human planting of rhizomes as likely avenues for Phragmites colonization. Herbicide control, with or without burning, can reduce Phragmites abundance and increase plant biodiversity temporarily. These changes do not necessarily lead to a more diverse animal community. Moreover, unless Phragmites is eradicated and further human disturbance is prohibited, it will likely eventually re‐establish dominance. 相似文献
15.
16.
Malone Sparkle L. Zhao Junbin Kominoski John S. Starr Gregory Staudhammer Christina L. Olivas Paulo C. Cummings Justin C. Oberbauer Steven F. 《Ecosystems》2022,25(3):567-585
Ecosystems - How aquatic primary productivity influences the carbon (C) sequestering capacity of wetlands is uncertain. We evaluated the magnitude and variability in aquatic C dynamics and compared... 相似文献
17.
Genetic Linkage of Soil Carbon Pools and Microbial Functions in Subtropical Freshwater Wetlands in Response to Experimental Warming 总被引:1,自引:0,他引:1
Hang Wang Zhili He Zhenmei Lu Jizhong Zhou Joy D. Van Nostrand Xinhua Xu Zhijian Zhang 《Applied and environmental microbiology》2012,78(21):7652-7661
Rising climate temperatures in the future are predicted to accelerate the microbial decomposition of soil organic matter. A field microcosm experiment was carried out to examine the impact of soil warming in freshwater wetlands on different organic carbon (C) pools and associated microbial functional responses. GeoChip 4.0, a functional gene microarray, was used to determine microbial gene diversity and functional potential for C degradation. Experimental warming significantly increased soil pore water dissolved organic C and phosphorus (P) concentrations, leading to a higher potential for C emission and P export. Such losses of total organic C stored in soil could be traced back to the decomposition of recalcitrant organic C. Warming preferentially stimulated genes for degrading recalcitrant C over labile C. This was especially true for genes encoding cellobiase and mnp for cellulose and lignin degradation, respectively. We confirmed this with warming-enhanced polyphenol oxidase and peroxidase activities for recalcitrant C acquisition and greater increases in recalcitrant C use efficiency than in labile C use efficiency (average percentage increases of 48% versus 28%, respectively). The relative abundance of lignin-degrading genes increased by 15% under warming; meanwhile, soil fungi, as the primary decomposers of lignin, were greater in abundance by 27%. This work suggests that future warming may enhance the potential for accelerated fungal decomposition of lignin-like compounds, leading to greater microbially mediated C losses than previously estimated in freshwater wetlands. 相似文献
18.
19.
Christine E. Prasse Andrew H. Baldwin Stephanie A. Yarwood 《Applied and environmental microbiology》2015,81(10):3482-3491
Restored wetland soils differ significantly in physical and chemical properties from their natural counterparts even when plant community compositions are similar, but effects of restoration on microbial community composition and function are not well understood. Here, we investigate plant-microbe relationships in restored and natural tidal freshwater wetlands from two subestuaries of the Chesapeake Bay. Soil samples were collected from the root zone of Typha latifolia, Phragmites australis, Peltandra virginica, and Lythrum salicaria. Soil microbial composition was assessed using 454 pyrosequencing, and genes representing bacteria, archaea, denitrification, methanogenesis, and methane oxidation were quantified. Our analysis revealed variation in some functional gene copy numbers between plant species within sites, but intersite comparisons did not reveal consistent plant-microbe trends. We observed more microbial variations between plant species in natural wetlands, where plants have been established for a long period of time. In the largest natural wetland site, sequences putatively matching methanogens accounted for ∼17% of all sequences, and the same wetland had the highest numbers of genes coding for methane coenzyme A reductase (mcrA). Sequences putatively matching aerobic methanotrophic bacteria and anaerobic methane-oxidizing archaea (ANME) were detected in all sites, suggesting that both aerobic and anaerobic methane oxidation are possible in these systems. Our data suggest that site history and edaphic features override the influence of plant species on microbial communities in restored wetlands. 相似文献
20.
C. H. Fernando 《International Review of Hydrobiology》1980,65(1):85-125
Based on the study of over 500 zooplankton samples collected in Sri Lanka (Ceylon) during 1965–1974, the species composition from different habitats is analysed. The zooplankton assemblage is typically tropical with relatively few species of Cladocera and Copepoda. The Rotifera include a large number of species of the genus Brachionus. The limnetic zooplankton resembles the pond zooplankton closely in that all the eurytopic species found in the different types of habitats, including ponds, also occur in the limnetic zooplankton. The large Cladocera belonging to the genus Daphnia are very rare. In general, large zooplankters are absent. The size composition of the zooplankton has a smaller range than in temperate regions. This is due to the absence of large-sized zooplankton species. The reasons for the differences in species variety and size composition between zooplankton of temperate and tropical regions is perhaps due to a number of factors. These include the effects of high and uniform temperatures, food availability and predation by fish and invertebrates. 相似文献