首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
2010年,Coste等首次在小鼠神经母细胞瘤中筛选鉴定出Piezo1,其为一种受力学信号刺激影响的新型机械敏感性离子通道蛋白.这类蛋白质嵌于细胞膜上,可将机械信号通过变形传递到其孔核结构,在毫秒内将机械刺激转化为电信号或生化信号,是细胞对力学产生感知和响应的分子基础.Piezo1蛋白自发现以来一直备受关注.本文详细介...  相似文献   

2.
机械敏感离子通道(mechanosensitive ion channels, MSC)是一类受机械压力影响而产生兴奋电信号的离子通道,广泛分布于生物各组织器官中,参与生物体内的多种生理过程。最近在哺乳动物体内发现了一种新型的MSC蛋白Piezo1,它与其他MSC蛋白不具有同源性,在细胞感应机械应力的过程中发挥着重要作用。大量研究结果表明,Piezo1在动脉血压的控制、红细胞体积的改变、心脏相关因子的分泌等生理过程中扮演了重要角色,与心血管系统关系密切。在哺乳动物心血管系统中,心脏、动脉血管、毛细微血管和红细胞等都可感受来自细胞外环境机械应力刺激,而Piezo1将机械应力转化为生物电信号,进而影响后续的生理过程。本文介绍了Piezo1在心血管系统中的作用,并总结Piezo1蛋白的具体作用机制及其差异,以期为进一步的研究提供有益参考。  相似文献   

3.
Piezo1是细胞力学信号转导过程中重要的机械敏感阳离子通道,可将机械刺激转化为电化学信号。其高分辨率结构为三聚体三叶螺旋桨状的大分子跨膜蛋白,并与血管发育、血压调节、红细胞体积调节和上皮细胞稳态等生理过程密切相关。Piezo1突变或缺失与多种人类遗传性疾病有关,揭示其功能重要性、病理相关性和作为治疗靶点的潜力。该文将主要对Piezo1离子通道的门控特点、结构、药理学特征及生理功能的研究进展进行综述。  相似文献   

4.
默克尔细胞是一种感知机械力,参与识别物体外形和纹理的轻触觉感受器,位于皮肤表皮基底层和体内感知机械力的上皮组织中。作为感知机械力的感受器细胞,默克尔细胞在个体的生存中非常重要。多种信号通路以及微环境因子参与默克尔细胞的发育调控,但其发育机制仍然没有被完全研究清楚。该文对默克尔细胞的来源及其发育中涉及的相关信号通路等进行调研总结,概述现有默克尔细胞发育相关的调控机制。了解默克尔细胞的发育过程有助于优化其体外培养体系,从而为研究默克尔细胞提供更好的研究系统,这将对触觉异常相关疾病的发生机制及其治疗策略具有重要意义。  相似文献   

5.
胚胎干细胞的生长、增殖、分化和形状改变等过程受微环境、机械力等多种因素的影响。胚胎干细胞能够感知微小机械力刺激,并将其转化成生物化学信号,进而通过F-肌动蛋白、肌球蛋白-II、Cdc42、Rho和Src等产生一系列分子水平的应答反应,最终导致基因差异表达。胚胎干细胞应答外力基本过程的研究对于胚胎早期发育和分化机制研究、克隆和再生药物的研制与开发等均有重要意义。该文就机械力对胚胎干细胞结构、形态和分化的影响及其潜在机制等进行论述。  相似文献   

6.
机械敏感离子通道(mechanosensitive channels,MSCs)是一类分布于各种细胞膜上可将细胞受到的机械刺激转化为电信号或化学信号的特殊膜蛋白。由于机械敏感通道所具有的特性,使其成为超声调控的重要潜在靶点。超声由于具有良好的空间分辨率和聚焦效果,并且理论上可实现无创条件下的全脑范围定位,具有用于进行物理性神经调制和治疗神经系统疾病的潜力。近年来,越来越多的离子通道被鉴定出具有机械敏感特性,但其中有明确报道可以被超声激活的依然数量较少。此外,现阶段超声激励下机械敏感通道的开放过程和机制仍未被阐明。本文着重介绍了大电导机械敏感通道、瞬时受体电位通道、退化蛋白/上皮钠通道、双孔钾通道和Piezo通道等机械敏感离子通道在超声神经调制中的研究进展及其应用,为未来超声神经调制的深入研究和临床应用提供参考。  相似文献   

7.
Piezo1是哺乳动物中新发现的一种机械敏感(mechanosensitive,MS)离子通道,在不同组织和器官中发挥着重要功能,包括骨骼、泌尿道、眼球和动脉等。然而,异常的Piezo1机械传导会造成多种疾病的发生并促进病程的发展。纤维化疾病几乎可以发生在任何一个组织和器官中,其主要特征是胶原蛋白和其他细胞外基质(extracellular matrix,ECM)成分的过度交联与累积,最终导致组织器官刚度增加,生理功能受到影响。目前,越来越多的研究表明,Piezo1在纤维化疾病的发生和发展中扮演着重要的调控作用,与其基质力学状态变化有着密切联系。本文叙述了Piezo1的结构和激活机理,并且系统地总结了Piezo1在心、肾、胰和肝等多种器官纤维化疾病中的研究进展,以期为纤维化疾病的治疗提供新的视角和策略。  相似文献   

8.
2010年科学家在小鼠神经瘤母细胞中筛选鉴定出Piezo1和Piezo2蛋白.Piezo2是一个由机械刺激直接激活且可将机械刺激转换为电信号进而形成机械敏感性电流通道的蛋白质.Piezo2自发现以来一直受到广泛的关注,在触觉、本体感觉、痛觉、肿瘤癌症等多种生理病理过程中发挥重要作用.本文在前期研究的基础上阐述了机械敏感...  相似文献   

9.
目前心血管系统疾病已成为人类发病率、致残率和病死率最高的疾病之一,严重影响着人们的生活质量.Piezo1 是一种机械敏感性阳离子通道,可将机械刺激转化为电化学信号,介导信息的传递.越来越多的证据表明,Piezo1 在心血管系统的代谢过程中可发挥广泛的生物学作用.本文对近年来Piezo1 参与血流剪切应力感受转导、血管发...  相似文献   

10.
机械力是生物体生命活动中普遍存在的一种物理刺激,高等生物对机械力的感受是听觉、触觉、压觉以及平衡觉等重要生理过程的生物学基础。生物体中的感受器细胞对机械力信号的转导是上述感受的关键,这一信号转导过程可将细胞外机械力刺激转换为细胞的电信号或者化学信号。"门控-弹簧"模型("Gating-Spring"model)在细胞水平定量地描述了机械力信号转导的原理,但是其分子基础(包括机械力信号转导通路的分子组分,结构基础以及力学原理)依然有待探索。近年来,人们以果蝇为模式生物对上述问题进行了系统的研究,取得了重要的进展。本文对"门控-弹簧"理论进行了概述,并对在果蝇系统中取得的研究进展以及有待解决的问题进行综述和展望。  相似文献   

11.
梁鑫 《生理学报》2016,(1):87-97
机械力是生物体生命活动中普遍存在的一种物理刺激,高等生物对机械力的感受是听觉、触觉、压觉以及平衡觉等重要生理过程的生物学基础。生物体中的感受器细胞对机械力信号的转导是上述感受的关键,这一信号转导过程可将细胞外机械力刺激转换为细胞的电信号或者化学信号。"门控-弹簧"模型("Gating-Spring"model)在细胞水平定量地描述了机械力信号转导的原理,但是其分子基础(包括机械力信号转导通路的分子组分,结构基础以及力学原理)依然有待探索。近年来,人们以果蝇为模式生物对上述问题进行了系统的研究,取得了重要的进展。本文对"门控-弹簧"理论进行了概述,并对在果蝇系统中取得的研究进展以及有待解决的问题进行综述和展望。  相似文献   

12.
以人的骨髓间充质干细胞为种子,在体位构建体外细胞机械牵张应力模型,探究新型机械敏感性离子通道Piezo1在干细胞向皮肤成纤维细胞转化的作用。采用梯度离心与贴壁筛选相结合的方法,体外培养人的骨髓间充质干细胞,隔代培养后,取生长状态良好的第3代干细胞,进行后面的研究。根据预实验结果,将干细胞分成以下几组:0 h机械牵张应力组、6 h机械牵张应力组、12 h机械牵张应力组和48 h机械牵张应力组,以及Piezo1蛋白的抑制剂Gs MTx4组。将各组细胞种植在Flexcell公司的膜性6孔板中,待融合率在80%左右时,进行体外机械牵张应力的干预。然后采用RT-qPCR、Western-blotting以及激光共聚焦免疫荧光的实验方法检测各组细胞中Piezo1的表达水平,以及干细胞向表皮成纤维细胞的转化水平。原代骨髓间充质干细胞大多呈短梭形,Piezo1表达水平较低。在周期性机械牵张应力的干预下,细胞向成纤维细胞的长梭形的形态学上发展,并且随着时间的延长,变化越明显。RT-qPCR、Western-blotting以及激光共聚焦免疫荧光均发现Piezo1和Vimentin蛋白的表达水平随着干预时间的延长,其表达量也相应增加。机械敏感性离子通道Piezo1蛋白可以介导骨髓间充质干细胞向表皮成纤维细胞转化,为体外构建组织工程皮肤提供种子细胞。  相似文献   

13.
钙信号是植物生长发育和逆境响应的重要调控因子, 是植物生理与逆境生物学研究领域中的热点之一。当植物细胞受到外界逆境刺激时, 其胞内会产生具有时空特异性的Ca2+信号变化, 这种变化首先被胞内钙感受器所感知并解码, 再由钙感受器互作蛋白将信号传递到下游, 从而激活下游早期响应基因的表达或相关离子通道的活性, 最终产生特异性逆境响应。植物细胞通过感知胞内钙信号的变化如何识别来自外界不同性质或不同强度的刺激, 是近几年植物生物学家所关注的科学问题。文章主要总结了近几年在植物钙感受器研究领域中的最新进展, 包括钙依赖蛋白激酶(CDPKs)、钙调素(CaMs)、类钙调素蛋白(CMLs)、类钙调磷酸酶B蛋白(CBLs)及其互作蛋白激酶(CIPKs)等的结构、功能及其介导的逆境信号途径, 并提供新的见解和展望。  相似文献   

14.
皮肤完美再生是烧创伤后皮肤愈合过程中难以解决的临床难题,所谓完美再生就包括了汗腺功能的恢复。作为皮肤附属器之一,汗腺在维持机体体温和内环境稳态中发挥重要作用,因此研究汗腺发育及功能具有重大科学和临床意义。汗腺源自胚胎期的外胚层,目前的研究发现其发育受到Wnt、Eda、Shh、Bmp等通路的调控,但具体的调控机制尚有待深入探讨。汗腺的功能主要通过分泌细胞完成,即明细胞和暗细胞,这两种细胞均表达有大量的离子通道,这些离子通道共同参与了汗腺发育及汗液分泌过程。类胆碱能刺激通过第二信使Ca~(2+)、Na_-~+K~+-Cl~-共转运模型这两种信号激发汗液的分泌,但分子机制尚未明确。该文旨在总结近期汗腺发育及汗液分泌的相关研究,为皮肤愈合过程中的汗腺再生提供研究基础。  相似文献   

15.
倪磊  金震宇  杨帅  金帆 《生物工程学报》2017,33(9):1611-1624
蹭行运动在生物被膜形成过程中对细菌适应表面环境以及后续生物被膜三维结构的形成起重要作用。因此,对蹭行运动的原位表征、量化是生物被膜研究中的重要科学问题之一。我们通过高通量数据采集、自动化图像处理、数据库建立以及图形化输出等技术手段,建立了一整套基于单细菌的统计分析方法。利用这一方法对蹭行运动中的行走、弹射过程进行了详细分析,发现弹射运动过程中存在以0.9 s为周期的周期性弛豫。并定量比较了群体感知信号分子对蹭行运动的影响,发现加入信号分子后蹭行运动在高速区明显增强。该方法的建立为后续蹭行运动分子机制以及调节方式的研究奠定了基础。  相似文献   

16.
近年来,植物对环境胁迫的响应在细胞和分子水平上得到了广泛研究。一般来说,胁迫信号首先被膜受体感知,然后传递至细胞中启动胁迫响应基因,调节植物对胁迫的耐受。了解植物感知与传递环境胁迫信号的途径并完成对环境胁迫的响应,是生物学重要的基础研究内容。简要介绍了在盐胁迫下植物细胞信号转导的一系列过程。  相似文献   

17.
<正>Nature:研究揭示蛋白Piezo2调节肺部充气在一项新的研究中,来自美国几个研究机构的研究人员发现证据证实一种被称作Piezo2的蛋白起着对小鼠呼吸过程存在一定控制的作用。相关研究结果发表在Nature期刊上,论文标题为"Piezo2 senses airway stretch and mediates lung inflation-induced apnoea"。来自法国巴黎高等师范大学生物研究所的Christo Goridis针对这项研究发表一篇新闻与观点类型的文章。  相似文献   

18.
目的 本研究旨在探讨细胞外基质刚度变化对神经干细胞(neural stem cells,NSCs)分化的影响及其作用机制。方法 本研究基于成功构建脊髓损伤大鼠模型,并制备不同刚度(0.7 kPa、40 kPa)的聚丙烯酰胺凝胶基底,将大鼠原代NSCs于不同刚度基底上培养。压电型机械敏感离子通道组件1(piezo type mechanosensitive ion channel component 1,Piezo1)shRNA质粒转染NSCs细胞。免疫荧光染色检测神经元标志物双皮质醇(doublecortion,DCX)和星形胶质细胞标志物胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)阳性细胞百分比。免疫组织化学及蛋白质免疫印迹(Western blot)法检测损伤组织及NSCs细胞中Piezo1蛋白的表达水平。结果 与0.7 kPa基质刚度组相比,40 kPa基质刚度组中DCX阳性细胞数增加,而GFAP阳性细胞数减少,Piezo1蛋白表达量上升。脊髓损伤大鼠损伤组织Piezo1蛋白表达显著高于空白对照(sham)组。40 kPa基质刚度条件下沉默Piezo1后,DCX阳性细胞数减少,而GFAP阳性细胞数增加,差异具有统计学意义(P<0.05)。机制研究发现,沉默Piezo1导致IV型胶原及纤连蛋白表达下降。重组纤连蛋白逆转了Piezo1 shRNA对NSCs分化的影响,即DCX阳性细胞数增加,而GFAP阳性细胞数减少。结论 综上可见,硬基底刚度通过促进Piezo1蛋白表达,上调IV型胶原及纤连蛋白表达,从而调控NSCs细胞分化。本研究为基于生物材料治疗脊髓损伤提供了新的视角。  相似文献   

19.
内耳毛细胞是一种感受器,负责将机械声能转化为神经脉冲,使机体感知外界声音。毛细胞的功能丧失是永久性感音性神经耳聋的主要原因之一,毛细胞在成体哺乳动物中不会自发再生,研究人员通过模拟哺乳动物内耳损伤,发现Notch信号通路通过侧抑制和侧诱导作用形成新的感觉毛细胞。Notch的下游信号Wnt和上游信号FGF-FGFR是促进内耳发育、细胞增殖、分化以及毛细胞再生的关键信号通路。因此,了解Notch、Wnt、FGF等信号通路及相关转录因子在哺乳动物内耳毛细胞再生过程中的作用机制极为重要,该文重点阐述Notch信号通路以及相关信号分子互作在内耳毛细胞再生中的调控作用,旨在分析耳蜗毛细胞增殖和再生的调控机制,为耳聋治疗方法的实验研究和临床应用提供理论参考。  相似文献   

20.
细胞骨架对离子通道的调节作用   总被引:4,自引:0,他引:4  
Zhou SS 《生理科学进展》2005,36(2):172-175
细胞骨架是细胞的重要保守结构之一,它的作用除了维持细胞的特定形状及细胞内部结构的有序性等基本功能外,还在细胞的物质运输、能量与信息传递、基因表达、细胞的分裂分化及凋亡中起重要作用,细胞骨架的动力学变化代表了一种新的信号转导机制。近来研究表明细胞骨架对离子通道有调节作用。研究细胞骨架与离子通道之间的关系,将有助于了解离子通道活动规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号