首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Xylem plays a major role in plant development and is considered part of the apoplast. Here, we studied the proteome of Brassica oleracea cv Bartolo and compared it to the plant cell wall proteome of another Brassicaceae, the model plant Arabidopsis thaliana. B. oleracea was chosen because it is technically difficult to harvest enough A. thaliana xylem sap for proteomic analysis. We studied the whole proteome and an N-glycoproteome obtained after Concanavalin A affinity chromatography. Altogether, 189 proteins were identified by LC-MS/MS using Brassica EST and cDNA sequences. A predicted signal peptide was found in 164 proteins suggesting that most proteins of the xylem sap are secreted. Eighty-one proteins were identified in the N-glycoproteome, with 25 of them specific of this fraction, suggesting that they were concentrated during the chromatography step. All the protein families identified in this study were found in the cell wall proteomes. However, proteases and oxido-reductases were more numerous in the xylem sap proteome, whereas enzyme inhibitors were rare. The origin of xylem sap proteins is discussed. All the experimental data including the MS/MS data were made available in the WallProtDB cell wall proteomic database.  相似文献   

3.
水分胁迫是影响植物生长发育的主要生长因子。通过蛋白质组学技术可对水分胁迫下植物差异变化的蛋白和基因进行挖掘,在研究植物抗旱生理机制方面意义重大。总结了植物蛋白质组学的基本方法与关键技术,同时从光合与碳代谢相关蛋白、抗氧化系统、渗透调节蛋白、热激蛋白、胚胎发育晚期丰富蛋白、转录因子等方面综述了近几年国际上在植物水分胁迫蛋白质组研究方面的进展,并展望了今后蛋白质组学技术发展的方向。  相似文献   

4.
Antioxidant isoenzymes function to eliminate free radicals and are localized to several different subcellular compartments within the plant cell. In Arabidopsis thaliana exposed to ozone (O3), we have monitored the accumulation of mRNAs encoding both cytosolic and chloroplastic antioxidant isoenzymes. Two different O3 exposure protocols yielded similar results. Upon O3 exposure, the steady-state levels of three mRNAs encoding cytosolic antioxidant isoenzymes (ascorbate peroxidase, copper/zinc superoxide dismutase, and glutathione S-transferase) increase. The glutathione S-transferase mRNA responds very quickly to the oxidative stress (2-fold increase in 30 min) and is elevated to very high levels, especially in plants grown with a 16-h photoperiod. In contrast, O3 exposure causes a decline in the levels of two chloroplastic antioxidant mRNAs (iron superoxide dismutase and glutathione reductase) and two photosynthetic protein mRNAs (chlorophyll a/b-binding protein and ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit). We show that this decline does not include all mRNAs encoding chloroplast-targeted proteins, since O3 causes an elevation of mRNA encoding the chloroplast-localized tryptophan biosynthetic enzyme phosphoribosylanthranilate transferase. Two alternative hypotheses that could explain this differential mRNA accumulation in response to O3 are discussed.  相似文献   

5.
Regulation of protein function through oxidative modification has emerged as an important molecular mechanism modulating various biological processes. Here, we report a proteomic study of redox-sensitive proteins in Arabidopsis cells subjected to H(2)O(2) treatment. Four gel-based approaches were employed, leading to the identification of four partially overlapping sets of proteins whose thiols underwent oxidative modification in the H(2)O(2)-treated cells. Using a method based on differential labeling of thiols followed by immunoprecipitation and Western blotting, five of the six selected putative redox-sensitive proteins were confirmed to undergo oxidative modification following the oxidant treatment in Arabidopsis leaves. Another method, which is based on differential labeling of thiols coupled with protein electrophoretic mobility shift assay, was adopted to reveal that one of the H(2)O(2)-sensitive proteins, a homologue of cytokine-induced apoptosis inhibitor 1 (AtCIAPIN1), also underwent oxidative modification in Arabidopsis leaves after treatments with salicylic acid or the peptide elicitor flg22, two inducers of defense signaling. The redox-sensitive proteins identified from the proteomic study are involved in various biological processes such as metabolism, the antioxidant system, protein biosynthesis and processing, and cytoskeleton organization. The identification of novel redox-sensitive proteins will be helpful toward understanding of cellular components or pathways previously unknown to be redox-regulated.  相似文献   

6.
Chlorophyll-free leaf protein concentrates for human consumption can be produced after separation of the chlorophyll-associated protein from the rest of the leaf protein. This protein separation was studied in four plant species using heat fractiona-tion. Press juice was prepared on a laboratory scale from field grown Atriplex hortensis, Brassica napus. Brassica oleracea and Helianthus annuus. Some further experiments were made with greenhouse grown plant material. After adjustment of pH to values between 4.0 and 8.0 the press juice was heated in water baths at 20, 35, 40, 45, 50, 55 and 60°C with or without 20 min holding time at appropriate temperature. Thereafter the juices were briefly centrifuged at 2500g. The protein content of the sediment was determined and the colour of the supernatant was observed. The species showed different protein sedimentation patterns, especially at neutral and weakly alkaline pH. Brassica napus had rapidly sedimenting proteins, low temperature was sufficient for complete sedimentation of chlorophyll-associated proteins and gave a high percentage of the total press juice protein as chlorophyll-free protein. Atriplex hortensis had slowly sedimenting proteins irrespective of temperature, required high temperature for complete sedimentation of chlorophyll-associated proteins and gave a low percentage chlorophyll-free proteins. Brassica oleracea and Helianthus annuus showed intermediated properties. Reasons for these differences among the species are discussed.  相似文献   

7.
Epidemiological studies indicate that consumption of green-yellow vegetables rich in chlorophyll, vitamin C, vitamin E, and carotenoids reduce the risk of cancer. We sought to examine the antigenotoxic and antioxidant properties of chlorophyll-rich methanol extracts of Angelica keiskei, Oenanthe javanica, and Brassica oleracea (kale). In the Salmonella mutagenicity assay, A. keiskei caused dose-dependent inhibition against three heterocyclic amine mutagens in the presence of S9, O. javanica was antimutagenic only at the highest concentration in the assay (2 mg/plate), and B. oleracea showed no consistent inhibitory activity at non-toxic levels. None of the extracts were effective against three direct-acting mutagens in the absence of S9. Extracts of A. keiskei and, to a lesser extent O. javanica, inhibited two of the major enzymes that play a role in the metabolic activation of heterocyclic amines, based on ethoxyresorufin-O-deethylase and methoxyresorufin-O-demethylase assays in vitro. All three plant extracts were highly effective in assays which measured ferric reducing/antioxidant power, oxygen radical absorbance capacity, and Fe2+/H2O2-mediated DNA nicking. Finally, using the 'comet' assay, all three plant extracts protected against H2O2-induced genotoxic damage in human HCT116 colon cancer cells. These findings provide support for the antigenotoxic and antioxidant properties of chlorophyll-rich extracts of A. keiskei, O. javanica, and B. oleracea, through mechanisms that include inhibition of carcinogen activation and scavenging of reactive oxygen species.  相似文献   

8.
Chuang MH  Wu MS  Lin JT  Chiou SH 《Proteomics》2005,5(15):3895-3901
  相似文献   

9.
Henschke P  Vorum H  Honoré B  Rice GE 《Proteomics》2006,6(6):1957-1962
The aim of this study was to test the hypothesis that acute in vitro exposure of prematurely delivered fetal rabbit lungs to hyperoxic conditions will induce the expression of an adaptive cassette of proteins that mediates antioxidant and inflammatory processes. To test this hypothesis, ex situ fetal rabbit lung explants were prepared from New Zealand white rabbits delivered by cesarean section on day 29 of gestation and incubated under air (21% O2; 5% CO2) or hyperoxic (95% O2; 5% CO2) atmospheres. Total tissue protein was extracted following incubation and subjected to 2-DE. Using this technique, 1500-2000 protein spots were resolved per gel. Treatment-dependent, differentially expressed proteins were identified by image analysis (Melanie II) and MALDI-TOF MS and MALDI-MS/MS. The analysis identified 12 protein spots that were differentially expressed by 1.5-fold or more (p<0.05) by exposure to hyperoxic conditions. Six of these differentially expressed proteins were identified as vimentin, annexin I, inorganic pyrophosphatase, prohibitin, an N-terminal fragment of ATP synthase and heat shock protein 27. The data obtained are consistent with the roles of these proteins in mediating cellular response to oxidative stress and in regulating cell proliferation.  相似文献   

10.
Rao MV  Hale BA  Ormrod DP 《Plant physiology》1995,109(2):421-432
O3-induced changes in growth, oxidative damage to protein, and specific activities of certain antioxidant enzymes were investigated in wheat plants (Triticum aestivum L. cv Roblin) grown under ambient or high CO2. High CO2 enhanced shoot biomass of wheat plants, whereas O3 exposure decreased shoot biomass. The shoot biomass was relatively unaffected in plants grown under a combination of high CO2 and O3. O3 exposure under ambient CO2 decreased photosynthetic pigments, soluble proteins, and ribulose-1,5-bisphosphate carboxylase/oxygenase protein and enhanced oxidative damage to proteins, but these effects were not observed in plants exposed to O3 under high CO2. O3 exposure initially enhanced the specific activities of superoxide dismutase, peroxidase, glutathione reductase, and ascorbate peroxidase irrespective of growth in ambient or high CO2. However, the specific activities decreased in plants with prolonged exposure to O3 under ambient CO2 but not in plants exposed to O3 under high CO2. Native gels revealed preferential changes in the isoform composition of superoxide dismutase, peroxidases, and ascorbate peroxidase of plants grown under a combination of high CO2 and O3. Furthermore, growth under high CO2 and O3 led to the synthesis of one new isoform of glutathione reductase. This could explain why plants grown under a combination of high CO2 and O3 are capable of resisting O3-induced damage to growth and proteins compared to plants exposed to O3 under ambient CO2.  相似文献   

11.
Saline stress is a major factor that limits crop yield. Nitric oxide (NO) is functional during plant growth, development, and defense responses. In the present study, the protective role of NO in alleviating saline stress in maize at the physiological and proteomic levels was examined. Our results showed that salt treatment quickly induced NO accumulation and addition of the NO donor S-nitroso-N-acetylpenicillamine (SNAP) efficiently eliminated the inhibitory effect of salt on shoot growth and photosynthesis and inhibited salt-inducible H2O2 accumulation. These effects could be reversed by NO metabolic scavengers and inhibitors. Further proteomic and Western blotting analysis revealed that NO induced G-protein-associated protein accumulation and antioxidant enzymes activities, in addition to activation of defense proteins, energy metabolism, and cell structure/division in salt-treated maize seedlings. Controlling the G-protein status with G-protein activators or inhibitors also affected NO generation and root and stem growth in maize seedlings after saline stress. On the basis of these results, we propose that NO enhances salt tolerance in maize seedlings by enhancing antioxidant enzyme activities and controlling H2O2 levels, and these effects are accompanied by diverse downstream defense responses. During this process, G-protein signaling is an early event that works upstream of NO biogenesis.  相似文献   

12.
13.
Carissa spinarum is one of the secondary advantage plants grown in dry‐hot valleys in China, which can survive under stress conditions of high temperature and extreme low humidity. Here, we studied the physiological and proteomic changes of C. spinarum in response to 42°C heat stress treatment in combination with drought stress. Dynamic changes in the leaf proteome were analyzed at four time points during the stress treatment and recovery stages. Approximately, 650 protein spots were reproducibly detected in each gel. Forty‐nine spots changed their expression levels upon heat and drought treatment, and 30 proteins were identified by MS and 2‐D Western blot. These proteins were classified into several categories including HSP, photosynthesis‐related protein, RNA‐processing protein and proteins involved in metabolism and energy production. The potential roles of these stress‐responsive proteins are discussed.  相似文献   

14.
We reported that an aqueous extract of Portulaca oleracea L. inhibited high-fat-diet-induced oxidative injury in a dose-dependent manner. Male kunming mice (5-weeks-old, 24 g) were used in this experiment. After a 4-day adaptation period, animals were randomly divided into four groups (n = 10 in each group); Group 1: animals received normal powdered rodent diet; Group 2: animals received high fat diet; Groups 3 and 4: animals received high fat diet and were fed by gavage to mice once a day with aqueous extract at the doses of 100 and 200 mg/kg body weight, respectively. In mice fed with high-fat diet, blood and liver lipid peroxidation level was significantly increased, whereas antioxidant enzymes activities were markedly decreased compared to normal control mice. Administration of an aqueous extract of P. oleracea L. significantly dose-dependently reduced levels of blood and liver lipid peroxidation and increased the activities of blood and liver antioxidant enzymes activities in high fat mice. Moreover, administration of an aqueous extract of P. oleracea L. significantly dose-dependently increase liver Leptin/β-actin (B), and Liver PPARα/β-actin, decrease liver, spleen FAS mRNA, p-PERK and p-PERK/PERK protein expression levels. Taken together, these data demonstrate that aqueous extract of P. oleracea L. can markedly alleviate high fat diet-induced oxidative injury by enhancing blood and liver antioxidant enzyme activities, modulating Leptin/β-actin (B), and Liver PPARα/β-actin, decrease liver, spleen FAS mRNA, p-PERK and p-PERK/PERK protein expression levels in mice.  相似文献   

15.
The thermophilic bacterium Bacillus stearothermophilus P1 is unique in its ability to thrive in extreme environments such as high temperatures or high pH conditions. The study of cold shock response is very interesting and interpreted as a shock response to express the genes involved in synthesis of specific proteins. This study investigated the study of cold shock protein of B. stearothermophilus P1 when the cell culture temperature shifted from 65 degrees C to 37 degrees C and 25 degrees C. Cell growth at 37 degrees C weakly increased in the previous 3 h and then slowly decreased. In contrast, cell growth at 25 degrees C was slowly decreased. The protein contents after temperature downshifts were analyzed by proteomic techniques using protein chip and two-dimensional (2-D) electrophoresis that are highly effective and useful for protein separation and identification. The different proteins after a temperature decrease from 65 degrees C to 37 degrees C and 25 degrees C were expressed on 2-D gel patterns and the cold shock protein was detected in the acidic area with the isoelectric point and molecular mass approximately 4.5 and 7.3 kDa, respectively. The NH(2)-terminal sequence of a major cold shock protein from B. stearothermophilus P1 was MQRGKVKWFNNEKGFGFIEVEGGSD, similar to other cold shock proteins from Bacillus sp. up to 96% identity, but different from the other bacteria with homology less than 80% identity.  相似文献   

16.
Hippophae rhamnoides L. is uniquely capable of growing well under extreme environmental conditions such as water deficit, low temperature, and high altitude. Such tolerance invokes much interest in understanding the biology of this plant species and its utilization potential. In this study, analysis of drought stress-responsive proteins in H. rhamnoides was conducted wherein greenhouse-grown seedlings were subjected to drought stress. By using proteomic techniques, proteins, extracted from leaves, were analyzed using two-dimensional electrophoresis and MALDI-TOF MS. Altogether, 55 proteins exhibited changes in abundance under stress. Of these, 13 proteins were identified, including three that disappeared under drought (a putative ABC transporter ATP-binging protein, a heat shock protein HslU, and a hypothetical protein XP-515578), seven that were up-regulated (three large subunits of rubisco, a hypothetical protein DSM3645–23351, a putative acyl-CoA dehydrogenase, a nesprin-2, and a J-type co-chaperone HSC20), and three that were only detected under drought (a probable nitrogen regulation protein (NtrX), a 4-hydroxyphenylpyruvate dioxygenase, and an unnamed protein product). These proteins may function in β-oxidation pathways in mitochondria, across membranes transport, abnormal protein removal, or prevent protein aggregation arrest, cell division, cytoskeleton stabilization, iron–sulfur cluster assembly, nitrogen metabolism regulation, and antioxidant substance biosynthesis. Four proteins (J-type co-chaperone Hsc20, a putative ABC transporter ATP-binging protein, NtrX, and HslU) were deemed as new discoveries in higher plants, and their functions were predicted either from their conserved domains or homologies to other organisms. These results provide new insights into our understanding of the mechanism of drought tolerance in plants.  相似文献   

17.
利用蛋白质组学技术揭示的植物高温胁迫响应机制   总被引:1,自引:1,他引:0  
高温是限制植物生长和产量的主要非生物胁迫因子.近年来,蛋白质组学研究为我们从系统生物学水平深入认识植物高温胁迫应答的复杂的分子机制提供了重要信息.目前,已经分析了模式植物拟南芥、主要粮食作物(大豆、水稻和小麦)、耐热植物(匍匐剪股颖、马齿苋、假虎刺),以及野生毛葡萄、胡杨、苜蓿、半夏等应答高温胁迫过程中的蛋白质组变化特征.这些研究共鉴定到838种响应高温胁迫的蛋白质,其中534种蛋白质表达受到高温诱导,304种蛋白质表达受到抑制.本文整合分析了上述植物在应对不同程度高温胁迫(30~45 ℃处理0~10 d)时蛋白质表达模式的变化特征,为解释高温胁迫应答网络体系中重要的信号与代谢通路(如:信号转导、胁迫防御、糖类与能量代谢、光合作用、转录、蛋白质合成与命运、膜与转运等)的变化提供了证据和线索,为深入认识植物应答高温胁迫的分子调控机制奠定了坚实的基础.  相似文献   

18.
Cadmium (Cd) is a major environmental toxicant to plant cells due to its potential inhibitory effects on many physiological processes. To gain a comprehensive understanding of plant response to Cd, wheat seedlings were exposed to a range of Cd concentrations (10, 100 and 200 μM) for 1 week and a combination of physiological and proteomic approaches were used to evidence Cd effects and to access the plant response to Cd toxicity. Root and shoot elongation was decreased, whereas the H2O2 and malondialdehyde content in wheat seedlings was increased significantly at higher Cd concentration. Protein profiles analyzed by two-dimensional electrophoresis revealed that 46 protein spots showed 1.5-fold change in protein abundance following Cd exposure; 31 protein spots were up-regulated and 15 protein spots were down-regulated; 25 of them were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. As expected, most of the up-regulated proteins are involved in heavy metal detoxification and antioxidant processes. Enzyme activity analysis revealed that ascorbate peroxidase and glutathione S-transferase activity was stimulated by Cd treatment. Abundance changes of these proteins, together with their putative functions provide us a new insight that can lead to an integrated understanding of the molecular basis of Cd responses in plants.  相似文献   

19.
Germination is a complex process, highly dependent on various environmental factors, including temperature and water availability. Germinating soybean seeds are especially vulnerable to unfavorable environmental conditions and exposure to long-term abiotic stresses may result in diminishing much of the yield and most importantly – restrained germination. In the present study, a proteomic approach was employed to analyze influence of cold and osmotic stress on roots of germinated soybean (Glycine max, L.) seeds. Seeds were germinating under continuous conditions of cold stress (+10 °C/H2O), osmotic stress (+25 °C/−0.2 MPa) as well as cold and osmotic stress combined (+10 °C/−0.2 MPa). Proteome maps established for control samples and stress-treated samples displayed 1272 CBB-stained spots. A total of 59 proteins, present in both control and stress-treated samples and showing significant differences in volume, were identified with LC/nanoESI-MS. Identified proteins divided into functional categories, revealed 9 proteins involved in plant defense, 8 proteins responsible for plant destination and storage and 10 proteins involved in various tracks of carbohydrate metabolism. Furthermore, a number of proteins were assigned to electron transport, range of metabolic pathways, secondary metabolism, protein synthesis, embryogenesis and development, signal transduction, cellular transport, translocation and storage. By analyzing differences in expression patterns, it was possible to trace the soybean response to long-term abiotic stress as well as to distinguish similarities and differences between response to cold and osmotic stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号