首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nitrogen atom of glycine was incorporated into the thiazole moiety of thiamin in the aerobic microorganisms Bacillus subtilis, Pseudomonas putida, Saccharomyces cerevisiae, Mucor racemosus, Neurospora crassa, and Emericella nidulans. It was not incorporated in the case of the facultative anaerobic microorganisms Escherichia coli and Enterobacter aerogenes, which, however, did incorporate the nitrogen atom of tyrosine. These results show that aerobic microorganisms and facultative anaerobic microorganisms have different biosynthetic pathways for the thiazole moiety of thiamin.  相似文献   

2.
The thiO gene of Bacillus subtilis encodes an FAD-dependent glycine oxidase. This enzyme is a homotetramer with a monomer molecular mass of 42 kDa. In this paper, we demonstrate that ThiO is required for the biosynthesis of the thiazole moiety of thiamin pyrophosphate and describe the structure of the enzyme with N-acetylglycine bound at the active site. The closest structural relatives of ThiO are sarcosine oxidase and d-amino acid oxidase. The ThiO structure, as well as the observation that N-cyclopropylglycine is a good substrate, supports a hydride transfer mechanism for the enzyme. A mechanistic proposal for the role of ThiO in thiazole biosynthesis is also described.  相似文献   

3.
While most of the proteins required for the biosynthesis of thiamin pyrophosphate have been known for more than a decade, the reconstitution of this biosynthesis in a defined biochemical system has been difficult due to the novelty of the chemistry involved. Here we demonstrate the first successful enzymatic synthesis of the thiazole moiety of thiamin from glycine, cysteine, and deoxy-D-xylulose-5-phosphate using overexpressed Bacillus subtilis ThiF, ThiS, ThiO, ThiG, and a NifS-like protein. This has facilitated the identification of the biochemical function of each of the proteins involved: ThiF catalyzes the adenylation of ThiS; NifS catalyzes the transfer of sulfur from cysteine to the acyl adenylate of ThiS; ThiO catalyzes the oxidation of glycine to the corresponding imine; and ThiG catalyzes the formation of the thiazole phosphate ring. The complex oxidative cyclization reaction involved in the biosynthesis of the thiamin thiazole has been greatly simplified by replacing ThiF, ThiS, ThiO, and NifS with defined biosynthetic intermediates in a reaction where ThiG is the only required enzyme.  相似文献   

4.
Radioactivity from [2-14C]glycine enters C-2 of the thiazole moiety of thiamin and no other site, in Saccharomyces cerevisiae (strains A.T.C.C. 24903 and 39916, H.J. Bunker). Radioactivity from L-[Me-14C]methionine or from DL-[2-14C]tyrosine does not enter thiamin.  相似文献   

5.
1. Yeast was grown in a minimal synthetic medium together with a range of (14)C-labelled substrates under standardized conditions. After isolation, the purified thiamine was cleaved by sulphite and the pyrimidine and thiazole moieties were purified and assayed for radioactivity. 2. In order of decreasing incorporation, [(14)C]formate, [3-(14)C]serine, [2-(14)C]glycine and [2-(14)C]acetate supplied label for the pyrimidine, and [2-(14)C]glycine, [3-(14)C]serine, [1-(14)C]glycine, [(14)C]formate and [2-(14)C]acetate for the thiazole. Incorporation of label into the fragments from several other (14)C-labelled substrates, including [Me-(14)C]- and [3,4-(14)C(2)]-methionine, was insignificant. 3. [3-(14)C]Serine was shown not to contribute label to C-2 of the thiazole ring. 4. Significant incorporation of nitrogen from [(15)N]glycine into the thiazole moiety, but not into the pyrimidine moiety, was established. 5. It appears that C-2 and N-3 of the thiazole ring are formed from C-2 and the nitrogen atom of glycine, but the entire methionine molecule does not appear to be implicated.  相似文献   

6.
Recently, we identified CyPBP37 of Neurospora crassa as a binding partner of cyclophilin41. CyPBP37 function had not yet been described, although orthologs in other organisms have been implicated in the biosynthesis of the thiazole moiety of thiamine (vitamin B1) and/or stress-related pathways. Here, CyPBP37 is characterized as an abundant cytosolic protein with a functional NAD-binding site. Saccharomyces cerevisiae mutants lacking Thi4p (the CyPBP37 ortholog) are auxotrophic for vitamin B1 (thiamine) but can grow in the presence of the thiazole moiety of thiamine, suggesting a role for Thi4p in the biosynthesis of thiazole. N.crassa CyPBP37 is able to functionally replace Thi4p in yeast thiazole synthesis. Cellular fractionation studies revealed that Thi4p is a cytosolic protein in S.cerevisiae, like its ortholog CyPBP37 in N.crassa. This implies that thiamine synthesis takes place in the cytosol of both organisms and not in the mitochondria, as suggested. The expression of CyPBP37 and Thi4p is repressed by thiamine but not by thiazole in the growth medium. In addition to its function in thiazole synthesis, CyPBP37 is a stress-inducible protein. N.crassa cyclophilin41 can chaperone the folding of CyPBP37, its own binding partner.  相似文献   

7.
R M Kappes  B Kempf    E Bremer 《Journal of bacteriology》1996,178(17):5071-5079
The accumulation of the osmoprotectant glycine betaine from exogenous sources provides a high degree of osmotic tolerance to Bacillus subtilis. We have identified, through functional complementation of an Escherichia coli mutant defective in glycine betaine uptake, a new glycine betaine transport system from B. subtilis. The DNA sequence of a 2,310-bp segment of the cloned region revealed a single gene (opuD) whose product (OpuD) was essential for glycine betaine uptake and osmoprotection in E. coli. The opuD gene encodes a hydrophobic 56.13-kDa protein (512 amino acid residues). OpuD shows a significant degree of sequence identity to the choline transporter BetT and the carnitine transporter CaiT from E. coli and a BetT-like protein from Haemophilus influenzae. These membrane proteins form a family of transporters involved in the uptake of trimethylammonium compounds. The OpuD-mediated glycine betaine transport activity in B. subtilis is controlled by the environmental osmolarity. High osmolarity stimulates de novo synthesis of OpuD and activates preexisting OpuD proteins to achieve maximal glycine betaine uptake activity. An opuD mutant was constructed by marker replacement, and the OpuD-mediated glycine betaine uptake activity was compared with that of the previously identified multicomponent OpuA and OpuC (ProU) glycine betaine uptake systems. In addition, a set of mutants was constructed, each of which synthesized only one of the three glycine betaine uptake systems. These mutants were used to determine the kinetic parameters for glycine betaine transport through OpuA, OpuC, and OpuD. Each of these uptake systems shows high substrate affinity, with Km values in the low micromolar range, which should allow B. subtilis to efficiently acquire the osmoprotectant from the environment. The systems differed in their contribution to the overall glycine betaine accumulation and osmoprotection. A triple opuA, opuC, and opuD mutant strain was isolated, and it showed no glycine betaine uptake activity, demonstrating that three transport systems for this osmoprotectant operate in B. subtilis.  相似文献   

8.
J Boch  B Kempf    E Bremer 《Journal of bacteriology》1994,176(17):5364-5371
Exogenously provided glycine betaine functions as an efficient osmoprotectant for Bacillus subtilis in high-osmolarity environments. This gram-positive soil organism is not able to increase the intracellular level of glycine betaine through de novo synthesis in defined medium (A. M. Whatmore, J. A. Chudek, and R. H. Reed, J. Gen. Microbiol. 136:2527-2535, 1990). We found, however, that B. subtilis can synthesize glycine betaine when its biosynthetic precursor, choline, is present in the growth medium. Uptake studies with radiolabelled [methyl-14C]choline demonstrated that choline transport is osmotically controlled and is mediated by a high-affinity uptake system. Choline transport of cells grown in low- and high-osmolarity media showed Michaelis-Menten kinetics with Km values of 3 and 5 microM and maximum rates of transport (Vmax) of 10 and 36 nmol min-1 mg of protein-1, respectively. The choline transporter exhibited considerable substrate specificity, and the results of competition experiments suggest that the fully methylated quaternary ammonium group is a key feature for substrate recognition. Thin-layer chromatography revealed that the radioactivity from exogenously provided [methyl-14C]choline accumulated intracellularly as [methyl-14C]glycine betaine, demonstrating that B. subtilis possesses enzymes for the oxidative conversion of choline into glycine betaine. Exogenously provided choline significantly increased the growth rate of B. subtilis in high-osmolarity media and permitted its proliferation under conditions that are otherwise strongly inhibitory for its growth. Choline and glycine betaine were not used as sole sources of carbon or nitrogen, consistent with their functional role in the process of adaptation of B. subtilis to high-osmolarity stress.  相似文献   

9.
Thiamin-deficient mutants of Bacillus subtilis were characterized by their growth responses to the pyrimidine and thiazole moieties of the vitamin molecule and by cross-feeding tests. All mutants growing on the thiazole moiety and all mutants with an absolute requirement for thiamin fed all those growing on the pyrimidine moiety. No other cross-feeding effects were observed. From the culture fluid of a mutant growing on the thiazole moiety, two compounds were isolated which supported growth of mutants requiring the pyrimidine moiety. These compounds were identified by chromatographic, bioautographic and spectrophotometric procedures as 4-amino-5-hydroxymethyl-2-methylpyrimidine and its monophosphate derivative.  相似文献   

10.
Saccharomyces cerevisiae secreted human lysozyme in the medium as an active form when the signal peptides of chicken lysozyme and a chicken lysozyme-Aspergillus awamori glucoamylase hybrid were used, whereas it did not synthesize any human lysozyme protein by using the signal peptide of A. awamori glucoamylase. The secreted lysozyme was easily purified and crystallized. On the other hand, Bacillus subtilis secreted an inactive human lysozyme, which seemed to have incorrect disulfide bonds, with the signal peptide of amylase and its mutants. The free energy changes for the membrane translocation of the signal peptides are related to the secretion of human lysozyme in S. cerevisiae, but not in B. subtilis. These results indicate that differences exist between S. cerevisiae and B. subtilis in the secretion of human lysozyme.  相似文献   

11.
Electroporation is an important approach for genetic engineering experiments allowing for introduction of foreign DNA in a selected host. Here, we describe for the first time the use of glycine betaine as an osmoprotectant for electroporation of gram-positive bacteria Bacillus subtilis. High electroporation efficiency (up to 5×10(5) cfu/μg) was obtained using 7.5% glycine betaine. The new method improved the transformation efficiency of B. subtilis with linear integrative DNA nearly 700-fold compared with existing Bacillus transformation techniques.  相似文献   

12.
酿酒酵母X330高浓度发酵时耐酒精性能的初步研究   总被引:4,自引:0,他引:4  
在完全合成培养基条件下,就渗透压保护剂和营养物质对一株产高浓度酒精的酿酒酵母X330高浓度发酵时耐酒精性能的影响进行了初步研究。结果表明,与渗透压相比,营养缺乏对酿酒酵母高浓度发酵时酒精耐受性能可能起着更为关键和重要的作用。发酵培养基中各营养元素对耐酒精性能的影响不同,由高到低的顺序是酵母抽提物>蛋白胨>硫酸镁>维生素C=磷酸二氢钾>氯化钙=硫酸铵。渗透压保护剂(甘氨酸和脯氨酸)能有效提高菌体酒精耐受性能。当甘氨酸添加浓度为20mmol/L或脯氨酸添加浓度为10mmol/L时,发酵终点酒精浓度最高,菌体于30℃在18%(V/V)酒精冲击下的存活率最大,且均高于对照组(未添加甘氨酸且未添加脯氨酸)水平,但甘氨酸的促进作用强于脯氨酸。  相似文献   

13.
Thiamine pyrophosphate is an essential coenzyme in all organisms. Its biosynthesis involves independent syntheses of the precursors, pyrimidine and thiazole, which are then coupled. In our previous study with overexpressed and silent mutants of ActhiS (thiazole biosynthesis enzyme from Acremonium chrysogenum), we found that the enzyme level correlated with intracellular thiamine content in A. chrysogenum. However, the exact structure and function of ActhiS remain unclear. In this study, the enzyme-bound ligand was characterized as the ADP adduct of 5-(2-hydroxyethyl)-4-methylthia-zole-2-carboxylic acid (ADT) using HPLC and 1H NMR. The ligand-free ActhiS expressed in M9 minimal medium catalyzed conversion of NAD+ and glycine to ADT in the presence of iron. Furthermore, the C217 residue was identified as the sulfur donor for the thiazole moiety. These observations confirm that ActhiS is a thiazole biosynthesis enzyme in A. chrysogenum, and it serves as a sulfur source for the thiazole moiety.  相似文献   

14.
The ability to respond to osmotic stress by osmoregulation is common to virtually all living cells. Gram-negative bacteria such as Escherichia coli and Salmonella typhimurium can achieve osmotolerance by import of osmoprotectants such as proline and glycine betaine by an import system encoded in an operon called proU with genes for proteins ProV, ProW, and ProX. In this report, we describe the discovery of a proU-type locus in the gram-positive bacterium Bacillus subtilis. It contains four open reading frames (ProV, ProW, ProX, and ProZ) with homology to the gram-negative ProU proteins, with the B. subtilis ProV, ProW, and ProX proteins having sequence homologies of 35, 29, and 17%, respectively, to the E. coli proteins. The B. subtilis ProZ protein is similar to the ProW protein but is smaller and, accordingly, may fulfill a novel role in osmoprotection. The B. subtilis proU locus was discovered while exploring the chromosomal sequence upstream from the spa operon in B. subtilis LH45, which is a subtilin-producing mutant of B. subtilis 168. B. subtilis LH45 had been previously constructed by transformation of strain 168 with linear DNA from B. subtilis ATCC 6633 (W. Liu and J. N. Hansen, J. Bacteriol. 173:7387-7390, 1991). Hybridization experiments showed that LH45 resulted from recombination in a region of homology in the proV gene, so that the proU locus in LH45 is a chimera between strains 168 and 6633. Despite being a chimera, this proU locus was fully functional in its ability to confer osmotolerance when glycine betaine was available in the medium. Conversely, a mutant (LH45 deltaproU) in which most of the proU locus had been deleted grew poorly at high osmolarity in the presence of glycine betaine. We conclude that the proU-like locus in B. subtilis LH45 is a gram-positive counterpart of the proU locus in gram-negative bacteria and probably evolved prior to the evolutionary split of prokaryotes into gram-positive and gram-negative forms.  相似文献   

15.
Cassava tubers ( Manihot esculenta ) and maize grains ( Zea mays ) were steeped for 3 d for the preparation of fufu and ogi. The microflora of the fermenting fufu and ogi were characterized by phenotypic methods. The predominating micro-organisms isolated from fufu were Streptococcus faecalis , coliforms, Bacillus subtilis, B. polymyxa, Lactobacillus fermentum, Lact. brevis and Saccharomyces cerevisiae . In the fermentation of ogi, B. subtilis, Klebsiella oxytoca, Staphylococcus aureus and Sacch. cerevisiae were isolated.  相似文献   

16.
Lipoic acid is an essential cofactor for a variety of mitochondrial enzymes. We have characterised a gene from Saccharomyces cerevisiae which appears to encode a protein involved in the attachment of lipoic acid groups to the pyruvate dehydrogenase and glycine decarboxylase complexes. The predicted protein product of this gene has significant identity to the lipoyl ligase B of both Escherichia coli and Kluyveromyces lactis. A strain harbouring a null allele of this S. cerevisiae gene is respiratory deficient due to inactive pyruvate dehydrogenase, and is unable to utilise glycine as a sole nitrogen source.  相似文献   

17.
18.
Atmospheric-pressure cold plasma (APCP) using helium/oxygen was developed and tested as a suitable sterilization method in a clinical environment. The sterilizing effect of this method is not due to UV light, which is known to be the major sterilization factor of APCP, but instead results from the action of reactive oxygen radicals. Escherichia coli, Staphylococcus aureus, and Saccharomyces cerevisiae deposited on a nitrocellulose filter membrane or Bacillus subtilis spores deposited on polypropylene plates were exposed to helium/oxygen plasma generated with AC input power at 10 kHz, 6 kV. After plasma treatment, nitrocellulose filter membranes were overlaid on fresh solid media and CFUs were counted after incubation overnight. D-values were 18 sec for E. coli, 19 sec for S. aureus, 1 min 55 sec for S. cerevisiae, and 14 min for B. subtilis spores. D-values of bacteria and yeast were dependent on the initial inoculation concentration, while the D-value of B. subtilis spores showed no correlation. When treated cells were observed with a scanning electron microscope, E. coli was more heavily damaged than S. aureus, S. cerevisiae exhibited peeling, and B. subtilis spores exhibited shrunken morphology. Results showed that APCP using helium/oxygen has many advantages as a sterilization method, especially in a clinical environment with conditions such as stable temperature, unlimited sample size, and no harmful gas production.  相似文献   

19.
Accumulation of compatible solutes is a strategy widely employed by bacteria to achieve cellular protection against high osmolarity. These compounds are also used in some microorganisms as thermostress protectants. We found that Bacillus subtilis uses the compatible solute glycine betaine as an effective cold stress protectant. Glycine betaine strongly stimulated growth at 15°C and permitted cell proliferation at the growth-inhibiting temperature of 13°C. Initial uptake of glycine betaine at 15°C was low but led eventually to the buildup of an intracellular pool whose size was double that found in cells grown at 35°C. Each of the three glycine betaine transporters (OpuA, OpuC, and OpuD) contributed to glycine betaine accumulation in the cold. Protection against cold stress was also accomplished when glycine betaine was synthesized from its precursor choline. Growth of a mutant defective in the osmoadaptive biosynthesis for the compatible solute proline was not impaired at low temperature (15°C). In addition to glycine betaine, the compatible solutes and osmoprotectants l-carnitine, crotonobetaine, butyrobetaine, homobetaine, dimethylsulfonioactetate, and proline betaine all served as cold stress protectants as well and were accumulated via known Opu transport systems. In contrast, the compatible solutes and osmoprotectants choline-O-sulfate, ectoine, proline, and glutamate were not cold protective. Our data highlight an underappreciated facet of the acclimatization of B. subtilis to cold environments and allow a comparison of the characteristics of compatible solutes with respect to their osmotic, heat, and cold stress-protective properties for B. subtilis cells.  相似文献   

20.
Markedly unbiased codon usage in Bacillus subtilis   总被引:21,自引:0,他引:21  
N Ogasawara 《Gene》1985,40(1):145-150
Codon usage for 21 Bacillus subtilis chromosomal genes was analyzed and found to be unusual compared with that of Escherichia coli or Saccharomyces cerevisiae. All codons are used more or less equally. The unusual codon usage in B. subtilis may be related to the unique organization of its tRNA genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号