首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Targeted delivery of drug molecules to specific cells in mammalian systems demonstrates a great potential to enhance the efficacy of current pharmaceutical therapies. Conventional strategies for pharmaceutical delivery are often associated with poor therapeutic indices and high systemic cytotoxicity, and this result in poor disease suppression, low surviving rates, and potential contraindication of drug formulation. The emergence of aptamers has elicited new research interests into enhanced targeted drug delivery due to their unique characteristics as targeting elements. Aptamers can be engineered to bind to their cognate cellular targets with high affinity and specificity, and this is important to navigate active drug molecules and deliver sufficient dosage to targeted malignant cells. However, the targeting performance of aptamers can be impacted by several factors including endonuclease‐mediated degradation, rapid renal filtration, biochemical complexation, and cell membrane electrostatic repulsion. This has subsequently led to the development of smart aptamer‐immobilized biopolymer systems as delivery vehicles for controlled and sustained drug release to specific cells at effective therapeutic dosage and minimal systemic cytotoxicity. This article reports the synthesis and in vitro characterization of a novel multi‐layer co‐polymeric targeted drug delivery system based on drug‐loaded PLGA‐Aptamer‐PEI (DPAP) formulation with a stage‐wise delivery mechanism. A thrombin‐specific DNA aptamer was used to develop the DPAP system while Bovine Serum Albumin (BSA) was used as a biopharmaceutical drug in the synthesis process by ultrasonication. Biophysical characterization of the DPAP system showed a spherical shaped particulate formulation with a unimodal particle size distribution of average size ~0.685 µm and a zeta potential of +0.82 mV. The DPAP formulation showed a high encapsulation efficiency of 89.4 ± 3.6%, a loading capacity of 17.89 ± 0.72 mg BSA protein/100 mg PLGA polymeric particles, low cytotoxicity and a controlled drug release characteristics in 43 days. The results demonstrate a great promise in the development of DPAP formulation for enhanced in vivo cell targeting. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:249–261, 2018  相似文献   

2.
Polymer‐based nanoparticles (NPs) can be efficiently used for the delivery of bioactive molecules for both in vitro and in vivo applications affording high drug loading and controlled release profiles. Within this framework polylactic‐co‐glycolic acid (PLGA) NPs with a diameter of 290 ± 41 nm have been fabricated and loaded with dexamethasone (DXM) using a patented procedure. The aim of the project was to setup a controlled delivery system to promote the in vitro differentiation of Human Gingival Fibroblasts (HGFs). First the uptake of fluorescent PLGA NPs by HGFs cells was investigated; then experiments were also addressed to analyze the specific cell response to DXM, in order to evaluate its functional efficiency in comparison with its conventional addition to the culture medium. The results showed that cells treated with DXM‐loaded NPs acquired the osteoblast phenotype faster in comparison to those treated with the free drug. The slow and sustained release of DXM from PLGA NPs produced a constant and uniform concentration of drug inside cells with long‐term and enhanced biochemical effects. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1381–1387, 2015  相似文献   

3.
ObjectivesThe nano‐hydroxyapatite (nHAp) is widely used to develop imaging probes and drug carriers due to its excellent bioactivity and biocompatibility. However, traditional methods usually need cumbersome and stringent conditions such as high temperature and post‐modification to prepare the functionalized nHAp, which do not benefit the particles to enter cells due to the increased particle size. Herein, a biomimetic synthesis strategy was explored to achieve the AS1411‐targeted tumour dual‐model bioimaging using DNA aptamer AS1411 as a template. Then, the imaging properties and the biocompatibility of the synthesized AS‐nFAp:Gd/Tb were further investigated.Materials and methodsThe AS‐nFAp:Gd/Tb was prepared under mild conditions through a one‐pot procedure with AS1411 as a template. Besides, the anticancer drug DOX was loaded to AS‐nFAp:Gd/Tb so as to achieve the establishment of a multifunctional nano‐probe that integrated the tumour diagnosis and treatment. The AS‐nFAp:Gd/Tb was characterized by transmission electron microscopy (TEM), energy disperse X‐ray Spectroscopy (EDS) mapping, X‐ray photoelectron spectroscopy (XPS) spectrum, X‐ray diffraction (XRD), fourier‐transformed infrared (FTIR) spectroscopy, capillary electrophoresis analyses, zeta potential and particle sizes. The in vitro magnetic resonance imaging (MRI) and fluorescence imaging were performed on an MRI system and a confocal laser scanning microscope, respectively. The potential of the prepared multifunctional nHAp for a targeted tumour therapy was investigated by a CCK‐8 kit. And the animal experiments were conducted on the basis of the guidelines approved by the Animal Care and Use Committee of Sichuan University, China.ResultsIn the presence of AS1411, the as‐prepared AS‐nFAp:Gd/Tb presented a needle‐like morphology with good monodispersity and improved imaging performance. Furthermore, due to the specific binding between AS1411 and nucleolin up‐expressed in cancer cells, the AS‐nFAp:Gd/Tb possessed excellent AS1411‐targeted fluorescence and MRI imaging properties. Moreover, after loading chemotherapy drug DOX, in vitro and in vivo studies showed that DOX@AS‐nFAp:Gd/Tb could effectively deliver DOX to tumour tissues and exert a highly effective tumour inhibition without systemic toxicity compared with pure DOX.ConclusionsThe results indicated that the prepared multifunctional nHAp synthesized by a novel biomimetic strategy had outstanding capabilities of recognition and treatment for the tumour and had good biocompatibility; hence, it might have a potential clinical application in the future.  相似文献   

4.
In the current study, gefitinib loaded PLGA nanoparticles (GFT-PLGA-NPs) and chitosan coated PLGA nanoparticles (GFT-CS-PLGA-NPs) were synthesized to investigate the role of surface charge of NPs for developing drug delivery system for non-small-cell lung cancer (NSCLC). The developed NPs were evaluated for their size, PDI, zeta potential (ZP), drug entrapment, drug loading, DSC, FTIR, XRD, in vitro release profile, and morphology. The anti-cancer activity of GFT loaded PLGA NPs and GFT loaded CS-PLGA-NPs were examined in human A549 lung cancer cell lines. In vitro release studies of GFT-CS-PLGA-NPs showed more sustained release in comparison to GFT-PLGA-NPs due surface charge attraction of chitosan. In addition, viability of A549 cells decreases significantly with the increasing concentration of GFT-PLGA NPs and GFT-CS-PLGA-NPs when compared to that of pure GFT and blank PLGA NPs. In addition, the microscopic analysis and counting of viable cells also validate the cytotoxicity of the developed NPs. This investigation proved that the developed NPs would be efficient carriers to deliver GFT with improved efficacy against NSCLC.  相似文献   

5.
AS1411 (previously known as AGRO100) is a 26 nucleotide guanine-rich DNA aptamer which forms a guanine quadruplex structure. AS1411 has shown promising utility as a treatment for cancers in Phase I and Phase II clinical trials without causing major side-effects. AS1411 inhibits tumor cell growth by binding to nucleolin which is aberrantly expressed on the cell membrane of many tumors. In this study, we utilized a simple technique to conjugate a widely-used chemotherapeutic agent, doxorubicin (Dox), to AS1411 to form a synthetic Drug-DNA Adduct (DDA), termed as AS1411-Dox. We demonstrate the utility of AS1411-Dox in the treatment of hepatocellular carcinoma (HCC) by evaluating the targeted delivery of Dox to Huh7 cells in vitro and in a murine xenograft model of HCC.  相似文献   

6.
RNAi-based gene therapy has been recently considered as a promising approach against cancer. Targeted delivery of drug, gene or therapeutic RNAi-based systems to tumor cells is one of the important issues in order to reduce side effects on normal cells. Several strategies have been developed to improve the safety and selectivity of cancer treatments including antibodies, peptides and recently aptamers with various attractive characteristics including higher target specificity, affinity and reduced toxicity. Here we described a novel targeted delivery platform comprising modified PAMAM with 10-bromodecanoic acid (10C) and 10C-PEG for improvement of transfection efficiency, AS1411 aptamer for targeting nucleolin ligand on target cancer cells and shRNA plasmid for specific knockdown of Bcl-xL protein. Modified vector could significantly improve the transfection efficiency even after covalent or non-covalent aptamer binding compared to the non-targeted vector in A549 cells. The results of gene silencing and apoptosis assay indicated that our targeted shRNA delivery system could efficiently down-regulate the Bcl-xL expression up to 25% and induce 14% late apoptosis in target cancer cells with strong cell selectivity. This study proposed a novel targeted non-viral system for shRNA-mediated gene-silencing in cancer cells.  相似文献   

7.
Adenovirus has shown increasing promise in the gene-viral therapy for glioblastoma, a treatment strategy that relies on the delivery of viruses or transgenes into tumor cells. However, targeting of adenovirus to human glioblastoma remains a challenge due to the low expression level of coxsackie and adenovirus receptor (CAR) in glioma cells. Aptamers are small and highly structured single-stranded oligonucleotides that bind at high affinity to a target molecule, and are good candidates for targeted imaging and therapy. In this study, to construct an aptamer-modified Ad5, we first genetically modified the HVR5 of Ad hexon by biotin acceptor peptide (BAP), which would be metabolically biotinylated during production in HEK293 cells, and then attached the biotin labeled aptamer to the modified Ad through avidin–biotin binding. The aptamers used in this study includes AS1411 and GBI-10. The former is a DNA aptamer that can bind to nucleolin, a nuclear matrix protein found on the surface of cancer cells. The latter is a DNA aptamer that can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. To examine if aptamer-modification of the hexon protein could improve the adenoviral transduction efficiency, a glioblastoma cell line, U251, was transduced with aptamer-modified Ads. The transduction efficiency of AS1411- or GBI-10-modified Ad was approximately 4.1-fold or 5.2-fold higher than that of the control. The data indicated that aptamer modified adenovirus would be a useful tool for cancer gene therapy.  相似文献   

8.
ObjectivesIt is imperative to develop efficient strategies on the treatment of prostate cancer. Here, we constructed multifunctional nanoparticles, namely AS1411@MPDA‐DTX (AMD) for targeted and synergistic chemotherapy/photothermal therapy of prostate cancer.Materials and MethodsMesoporous polydopamine (MPDA) nanoparticles were prepared by a one‐pot synthesis method, DTX was loaded through incubation, and AS1411 aptamer was modified onto MPDA by the covalent reaction. The prepared nanoparticles were characterized by ultra‐micro spectrophotometer, Fourier transform infrared spectra, transmission electron microscope, and so on. The targeting ability was detected by selective uptake and cell killing. The mechanism of AMD‐mediated synergistic therapy was detected by Western blot and immunofluorescence.ResultsThe prepared nanoparticles can be easily synthesized and possessed excellent water solubility, stability, and controlled drug release ability, preferentially in acidic context. Based on in vitro and in vivo results, the nanoparticles can efficiently target prostate cancer cells, promote DTX internalization, and enhance the antitumor effects of chemo‐photothermal therapy strategies under the NIR laser irradiation.ConclusionsAs a multifunctional nanoplatform, AS1411@MPDA‐DTX could efficiently target prostate cancer cells, promote DTX internalization, and synergistically enhance the antiprostate cancer efficiency by combining with NIR irradiation.  相似文献   

9.
The effective controlled release of small hydrophilic drugs from poly(d ,l ‐lactic‐co‐glycolic acid) (PLGA) microspheres has remained a challenge, largely due to the difficulty of loading a large amount of the drug inside the microspheres, owing to the hydrophilicity of the drugs. This study provides a new strategy for increasing encapsulation of small hydrophilic drugs inside PLGA microspheres by utilizing noncovalent, physical adsorption between hydrophilic drugs and emulsifying polymers of poly(vinyl alcohol) and pluronic. An order of magnitude increase in drug loading efficiency from 2.7 to 18.6% for dopamine, a model small hydrophilic drug, was achieved. The large amount of dopamine‐loaded PLGA formulation herein could be useful for the treatment of Parkinson's disease. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:215–223, 2014  相似文献   

10.
目的:优化骨组织工程研究中生长因子微包囊的制作参数,观察其释放规律,为更有效的利用生长因子的生物活性提供依据。方法:通过正交实验设计方法设计27组试验,采用不同组合因变量为制作参数,制作PLGA微包囊,检测相应情况下微包囊的包封率和粒径大小,制作多元回归方程。将包裹有BSA的PLGA微包囊置于恒温震荡培养箱震荡进行体外缓释试验研究。结果:各优化变量对微包囊的粒径及其包封率均有影响,包囊表面光滑,成球较好。体外能够在11天内缓慢释放。结论:正交试验设计优化PLGA微包囊制备的各项参数,回归方程对试验结果可较好的进行预测,PLGOA微包囊在体外能够长时间缓释。  相似文献   

11.
Abstract

The current study aimed to develop PEGylated trimethyl chitosan (TMC) coated emulsomes (EMs) conjugated with octreotide for targeted delivery of sorafenib to hepatocellular carcinoma cells (HCC) of HepG2. Sorafenib loaded TMC coated EMs were prepared by the emulsion evaporation method and characterized concerning particle size, zeta potential, drug encapsulation efficiency, and in vitro drug release. Synthesized EMs were then conjugated to octreotide. The cytotoxicity of the targeted and non-targeted EMs was determined by cellular uptake and MTT assay on HepG2 cell. Cell cycle assay was also studied using flow cytometry. The results showed the optimized EMs had the particle size of 127?nm, zeta potential of ?5.41?mV, loading efficiency of 95%, and drug release efficiency of 62% within 52?h. Octreotide was attached efficiently to the surface of EMs as much as 71%. MTT assay and cellular uptake studies showed that targeted EMs had more cytotoxicity than free sorafenib and non-targeted EMs. Cell cycle analyses revealed that there was a significant more accumulation of targeted EMs treated HepG2 cells in the G1 phase than free sorafenib and non-targeted EMs. The results indicate that designed EMs may be promising for the treatment of hepatocellular carcinoma.  相似文献   

12.
Yu C  Hu Y  Duan J  Yuan W  Wang C  Xu H  Yang XD 《PloS one》2011,6(9):e24077
MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs) are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1(+) cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01). The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors.  相似文献   

13.
The presence of blood‐brain barrier (BBB) greatly limits the availability of drugs and their efficacy against glioma. Focused ultrasound (FUS) can induce transient and local BBB opening for enhanced drug delivery. Here, we developed polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles (PS‐80‐PTX‐NPs, PPNP) and examined the enhanced local delivery into the brain for glioma treatment by combining with FUS. Our result showed PPNP had good stability, fast drug release rate and significant toxicity to glioma cells. Combined with FUS, PPNP showed a stronger BBB permeation efficiency both in the in vitro and in vivo BBB models. Mechanism studies revealed the disrupted tight junction, reduced P‐glycoprotein expression and ApoE‐dependent PS‐80 permeation collectively contribute to the enhanced drug delivery, resulting in significantly stronger antitumour efficacy and longer survival time in the tumour‐bearing mice. Our study provided a new strategy to efficiently and locally deliver drugs into the brain to treat glioma.  相似文献   

14.
Polymer nanoparticles (NPs) are promising systems for the delivery of protein drugs, as they enhance circulation half‐life, reduce degradation, and increase selectivity of the encapsulated agent. Among the different methods for the preparation of protein‐loaded NPs, ionotropic gelation—which exploits cross‐linking between charged groups in the polymer and counterions in the protein solution—has been extensively investigated for chitosan NPs. The present study aims at exploring the possibility to apply the method to prepare BSA‐loaded polyurethane NPs. A poly(ε‐caprolactone)/poly(ethyleneglicol)‐based polyurethane bearing tert‐butyloxycarbonyl‐protected amino groups was synthesized by a two‐step synthesis procedure. Amino functionalities were exposed under acidic conditions, as confirmed by ninhydrin assay, and then exploited to obtain ionic cross‐linking with sodium tripolyphosphate counterions. The effect of polymer and sodium tripolyphosphate concentration on particles size and BSA encapsulation has been investigated, showing that the PUR concentration plays a major role. Small particles, at 300 nm, with high BSA loading (90%) have been obtained. Sustained BSA release and low burst effect (20%) have been observed, indicating good interaction between the protein and the polymer matrix. The study highlights the possibility of introducing alternative polymers to improve loading and release of proteins from NPs obtained through the ionotropic gelation method.  相似文献   

15.
Reactive oxygen species (ROS), encompassing all oxygen radical or non‐radical oxidizing agents, play key roles in disease progression. Controlled delivery of antioxidants is therapeutically relevant in such oxidant‐stressed environments. Encapsulating small hydrophilic molecules into hydrophobic polymer microparticles via traditional emulsion methods has long been a challenge due to rapid mass transport of small molecules out of particle pores. We have developed a simple alteration to the existing water‐in‐oil‐in‐water (W/O/W) drug encapsulation method that dramatically improves loading efficiency: doping external water phases with drug to mitigate drug diffusion out of the particle during fabrication. PLGA microparticles with diameters ranging from 0.6 to 0.9 micrometers were fabricated, encapsulating high loads of 0.6–0.9 µm diameter PLGA microparticles were fabricated, encapsulating high loads of the antioxidant N‐acetylcysteine (NAC), and released active, ROS‐scavenging NAC for up to 5 weeks. Encapsulation efficiencies, normalized to the theoretical load of traditional encapsulation without doping, ranged from 96% to 400%, indicating that NAC‐loaded external water phases not only prevented drug loss due to diffusion, but also doped the particles with additional drug. Antioxidant‐doped particles positively affected the metabolism of oligodendrocyte progenitor cells (OPCs) under H2O2‐mediated oxidative stress when administered both before (protection) or after (rescue) injury. Antioxidant doped particles improved outcomes of OPCs experiencing multiple doses of H2O2 by increasing the intracellular glutathione content and preserving cellular viability relative to the injury control. Furthermore, antioxidant‐doped particles preserve cell number, number of process extensions, cytoskeletal morphology, and nuclear size of H2O2‐stressed OPCs relative to the injury control. These NAC‐doped particles have the potential to provide temporally‐controlled antioxidant therapy in neurodegenerative disorders such as multiple sclerosis (MS) that are characterized by continuous oxidative stress.  相似文献   

16.

Zika virus has recently evolved from an obscure mosquito-borne pathogen to an international public health concern. People with Zika virus disease can have indications including mild fever, skin rash, conjunctivitis, muscle pain, malaise or headache. Effective vaccines are needed for controlling and preventing the disease. In the current study, we aim to design the substructure for vaccine against Zika virus by forming antigenic peptide epitope of the disease. Zika peptide loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles have been fabricated in the present work as a potential artificial vaccine. UV and FT-IR Spectrophotometers and ZetaSizer were used for studying the nanoparticles, and Scanning Electron Microscope was used for morphological examination. The nanoparticles (NPs) yield, encapsulation efficiency, the peptide loading capacity were determined and in vitro release of the peptide was studied. Cytotoxic effects of the various concentrations of Zika peptide, blank PLGA nanoparticles and Zika peptide loaded PLGA nanoparticles on ECV304 human epithelial cells were determined via MTT assay. The present paper could be considered as one of the important steps in the use of nanoparticles for constructing the new generation of vaccination systems.

  相似文献   

17.
Rivastigmine hydrogen tartrate (RHT) is a pseudo-irreversible inhibitor of cholinesterase and is used for the treatment of Alzheimer's. However, RHT delivery to the brain is limited by the blood–brain barrier (BBB). The purpose of this study was to improve the brain-targeting delivery of RHT by producing and optimizing rivastigmine hydrogen tartrate-loaded tocopherol succinate-based solid lipid nanoparticles (RHT-SLNs). RHT-SLNs were prepared using the microemulsion technique. The impact of significant variables, such as surfactant concentration and drug/lipid ratio, on the size of RHT-SLNs and their drug loading and encapsulation efficiency was analysed using a five-level central composite design (CCD). The minimum size of particles and the maximum efficiency of loading and encapsulation were defined according to models derived from a statistical analysis performed under optimal predicted conditions. The experimental results of optimized RHT-SLNs showed an appropriate particle size of 15.6?nm, 72.4% drug encapsulation efficiency and 6.8% loading efficiency, which revealed a good correlation between the experimental and predicted values. Furthermore, in vitro release studies showed a sustained release of RHT from RHT-SLNs.  相似文献   

18.
In this study, 5-methylmellein (5-MM) loaded bovine serum albumin nanoparticles (BSA NPs) were developed using desolvation technique. The developed nanoparticles were characterized for their mean particle size, polydispersity, zeta potential, loading efficiency, X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and release profile. The developed nanoparticles were spherical in shape under transmission electron microscopy (TEM) and atomic force microscopy (AFM). The developed 5-MM loaded BSA NPs demonstrated a mean particle size with a diameter of 154.95?±?4.44?nm. The results from XRD and DSC studies demonstrated that the crystal state of the 5-MM was converted to an amorphous state in polymeric matrix. The encapsulation and loading efficiency was found to be 73.26?±?4.48% and 7.09?±?0.43%. The in vitro cytotoxicity in human prostate cancer cell line (PC-3), human colon cancer cells (HCT-116) and human breast adenocarcinoma cell line (MCF-7) cells demonstrated enhanced cytotoxicity of 5-MM BSA NPs as compared to native 5-MM after 72-h treatment. The enhancement in cytotoxicity of 5-MM BSA NPs was also supported by increase in cellular apoptosis, mitochondrial membrane potential loss and generation of high reactive oxygen species (ROS). In conclusion, these findings collectively indicated that BSA nanoparticles may serve as promising drug delivery system for improving the efficacy of 5-methylmellein.  相似文献   

19.
We have developed a new methodology to attain treatment-actuated modifications in a tumor microenvironment by utilizing synergistic activity between two potential anticancer drugs. Dual drug delivery of curcumin (CUR) and 7-ethyl-10-hydroxycamptothecin (SN38) exhibits a great anti-cancer potential, as CUR enhances the effect of SN38 treatment of human cervical cells by providing microenvironment stability. However, encapsulation of CUR and SN38 obsessed by polyethylene glycol (PEG) and poly (lactic-co-glycolic acid (PLGA)-based nanoparticles (NPs) is incompetent owing to unsuitability between the binary free CUR and SN38 moieties and the polymeric system. Now, we display that SN38 can be prepared by hydrophobic covering of the drug centers with dioleoylphosphatidic acid (DOPA). The DOPA-covered SN38 can be co-encapsulated in PEG-PLGA NPs alongside CUR to stimulate excellent anticancer property. The occurrence of the SN38 suggestively enhanced the encapsulations of CUR into PEG-PLGA NPs (CUR-SN38 NPs). Formation of the nanocomposite (CUR-SN38 NPs) was confirmed by FTIR and X-ray spectroscopic techniques. Further, the morphology of CUR NPs, SN39 NPs, and CUR-SN38 NPs and nanoparticle size was examined by transmission microscopy (TEM), respectively. Furthermore CUR-SN38 NPs induced significant apoptosis in human cervical HeLa cancer cells in vitro. The morphological observation and apoptosis were confirmed by the various biochemical assayes such as acridine orange-ethidium bromide (AO-EB), Nuclear Staining and Annexin V-FITC). The results suggest that CUR-SN38 NPs are one of the promising nursing cares for human cervical cancer therapeutic candidates worthy of further investigations.  相似文献   

20.
The effect of the co-lyophilization of bovine serum albumin (BSA) with poly(ethylene glycol) (PEG) on the BSA encapsulation efficiency and formation of soluble BSA aggregates upon solid-in-oil-in-oil (s/o/o) encapsulation in poly(lactic-co-glycolic) acid (PLGA) microspheres was investigated. Suspension of the lyophilized BSA-PEG formulations in methylene chloride produced small protein powder particles of less than 1 m diam. and this afforded high encapsulation efficiencies of typically 90% ameliorating one of the problems in s/o/o encapsulation. Formation of soluble BSA aggregates upon s/o/o encapsulation followed by 24 h in vitro release was between 5% and 22%, much lower than values of 59% reported for BSA without stabilizing excipients. Therefore, PEG also afforded BSA stabilization during s/o/o encapsulation. Sustained release occurred over ca. 2 months and was complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号