共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Kim HK Park KS Lee JS Kim JH Park DS Shin JW Yoon TR 《Journal of cellular biochemistry》2012,113(6):1833-1841
Osteoporosis is a reduction in skeletal mass due to an imbalance between bone formation and bone resorption. Therefore, the identification of specific stimulators of bone formation is of therapeutic significance in the treatment of osteoporosis. Salicylideneamino-2-thiophenol (Sal-2) consists of two benzene rings, has been reported to possess antioxidant activity, and is an effective remedy for fever and rheumatic diseases. However, until now the effects of osteoblastic bone formation by Sal-2 were unknown. In this study, we investigated the effects of Sal-2 on osteogenic differentiation of multipotent bone marrow stromal stem cells by alizarin red S staining for osteogenic differentiation, RT-PCR and western blot for alkaline phosphatase (ALP) activity and signaling pathways, FACS analysis and immunofluorescence staining for CD44 and CD51 expression, calcium assays, and immunofluorescence staining for signaling pathways. We found that Sal-2 enhanced the osteogenic differentiation of multipotent bone marrow stromal stem cells. Sal-2 treatment induced the expression and activity of ALP, and enhanced the levels of CD44 and CD51 expression as well as Ca2+ content, in multipotent bone marrow stromal stem cells. Moreover, we found that Sal-2-induced osteogenic differentiation and expression of osteogenesis-related molecules involve the activation of the MAPK and nuclear factor-κB pathways. Our findings provide insight into both the mechanism and effects of Sal-2 on osteogenic differentiation and demonstrate that Sal-2 may be a beneficial adjuvant in stimulating bone formation in osteoporotic diseases. 相似文献
4.
5.
Youjin Lee Jieun Jung Kyung Jin Cho Seoung‐Kwan Lee Jong‐Wan Park IL‐Hoan Oh Gi Jin Kim 《Journal of cellular biochemistry》2013,114(1):79-88
Hypoxia triggers physiological and pathological cellular processes, including proliferation, differentiation, and death, in several cell types. Mesenchymal stem cells (MSCs) derived from various tissues have self‐renewal activity and can differentiate towards multiple lineages. Recently, it has been reported that hypoxic conditions tip the balance between survival and death by hypoxia‐induced autophagy, although the underlying mechanism is not clear. The objectives of this study are to compare the effect of hypoxia on the self‐renewal of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) and placental chorionic plate‐derived mesenchymal stem cells (CP‐MSCs) and to investigate the regulatory mechanisms of self‐renewal in each MSC type during hypoxia. The expression of self‐renewal markers (e.g., Oct4, Nanog, Sox2) was assessed in both cell lines. PI3K and stem cell factor (SCF) expression gradually increased in CP‐MSCs but were markedly downregulated in BM‐MSCs by hypoxia. The phosphorylation of ERK and mTOR was augmented by hypoxia in CP‐MSCs compared to control. Also, the expression of LC3 II, a component of the autophagosome and the hoof‐shaped autophagosome was detected more rapidly in CP‐MSCs than in BM‐MSCs under hypoxia. Hypoxia induced the expression of SCF in CP‐MSCs and increased SCF/c‐kit pathway promotes the self‐renewal activities of CP‐MSCs via an autocrine/paracrine mechanism that balances cell survival and cell death events by autophagy. These activities occur to a greater extent in CP‐MSCs than in BM‐MSCs through regulating the phosphorylation of mTOR. These findings will provide useful guidelines for better understanding the function of SCF/c‐kit in the self‐renewal and autophagy‐regulated mechanisms that promote of MSC survival. J. Cell. Biochem. 114: 79–88, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
6.
Wnt5a suppresses osteoblastic differentiation of human periodontal ligament stem cell‐like cells via Ror2/JNK signaling 下载免费PDF全文
Daigaku Hasegawa Naohisa Wada Shinichiro Yoshida Hiromi Mitarai Mai Arima Atsushi Tomokiyo Sayuri Hamano Hideki Sugii Hidefumi Maeda 《Journal of cellular physiology》2018,233(2):1752-1762
7.
Jang WG Kim EJ Lee KN Son HJ Koh JT 《Biochemical and biophysical research communications》2011,(4):243-1009
This study examined the role of AMPK activation in osteoblast differentiation and the underlining mechanism. An AMPK activator (AICAR or metformin) stimulated osteoblast differentiation with increases in ALP and OC protein production as well as the induction of AMPK phosphorylation in MC3T3E1 cells. In addition, metformin induced the phosphorylation of Smad1/5/8 and expression of Dlx5 and Runx2, whereas compound C or dominant negative AMPK inhibited these effects. Transient transfection studies also showed that metformin increased the BRE-Luc and Runx2-Luc activities, which were inhibited by DN-AMPK or compound C. Down-regulation of Dlx5 expression by siRNA suppressed metformin-induced Runx2 expression. These results suggest that the activation of AMPK stimulates osteoblast differentiation via the regulation of Smad1/5/8-Dlx5-Runx2 signaling pathway. 相似文献
8.
Yun-Peng Liao Wei-Min Du Ying Hu Fu-Shu Li Yan Ma Han Wang Jia-Hui Zhu Ya Zhou Qin Li Yu-Xi Su Bai-Cheng He 《Journal of cellular biochemistry》2019,120(6):9572-9587
Bone morphogenetic protein 9 (BMP9) is one of the most potent osteogenic factors, which may be a potential candidate for bone tissue engineering. However, the osteogenic capacity of BMP9 still need to be further enhanced. In this study, we determined the effect of Wnt10b on BMP9-induced osteogenic differentiation in mesenchymal stem cell (MSCs) and the possible mechanism underlying this process. We introduced the polymerase chain reaction (PCR), Western blot analysis, histochemical stain, ectopic bone formation, and microcomputed tomography analysis to evaluate the effect of Wnt10b on BMP9-induced osteogenic differentiation. Meanwhile, PCR, Western blot analysis, chromatin immunoprecipitation, and immunoprecipitation were used to analyze the possible relationship between BMP9 and Wnt10b. We found that BMP9 upregulates Wnt10b in C3H10T1/2 cells. Wnt10b increases the osteogenic markers and bone formation induced by BMP9 in C3H10T1/2 cells, and silencing Wnt10b decreases these effects of BMP9. Meanwhile, Wnt10b enhances the level of phosphorylated Smad1/5/8 (p-Smad1/5/8) induced by BMP9, which can be reduced by silencing Wnt10b. On the contrary, Wnt10b inhibits adipogenic markers induced by BMP9, which can be decreased by silencing Wnt10b. Further analysis indicated that BMP9 upregulates cyclooxygenase-2 (COX-2) and phosphorylation of cAMP-responsive element binding (p-CREB) simultaneously. COX-2 potentiates the effect of BMP9 on increasing p-CREB and Wnt10b, while silencing COX-2 decreases these effects. p-CREB interacts with p-Smad1/5/8 to bind the promoter of Wnt10b in C3H10T1/2 cells. Our findings suggested that Wnt10b can promote BMP9-induced osteogenic differentiation in MSCs, which may be mediated through enhancing BMP/Smad signal and reducing adipogenic differentiation; BMP9 may upregulate Wnt10b via the COX-2/p-CREB-dependent manner. 相似文献
9.
Depletion of HOXA5 inhibits the osteogenic differentiation and proliferation potential of stem cells from the apical papilla 下载免费PDF全文
Wenzhi Li Xiao Lin Haoqing Yang Yangyang Cao Chen Zhang Zhipeng Fan 《Cell biology international》2018,42(1):45-52
Mesenchymal stem cells (MSCs) are a prospective cell source for tissue regeneration due to their self‐renewal abilities and potential to differentiate into different cell lineages, but the molecular mechanisms of the directed differentiation and proliferation are still unknown. Recently, multiple studies have indicated the crucial role of HOX genes in MSC differentiation and proliferation. However, the role of HOXA5 in MSCs remains unknown. Here, we investigated HOXA5 function in stem cells from the apical papilla (SCAPs). After HOXA5 depletion, the results showed a significant decrease in ALP activity and a weakened mineralization ability of SCAPs. The real‐time RT‐PCR results showed prominently lessened expression of OPN and BSP. The CCK8 and CFSE results displayed inhibited proliferation of SCAPs, and flow cytometry assays revealed arrested cell cycle progression at the S phase. Furthermore, we found that depletion of HOXA5 upregulated p16INK4A and p18INK4C and downregulated the Cyclin A. Our research demonstrated that depletion of HOXA5 inhibited osteogenic differentiation and repressed cell proliferation by arresting cell cycle progression at the S phase via p16INK4A, p18INK4C, and Cyclin A in SCAPs, indicating that HOXA5 has a significant role in maintaining the proliferation and differentiation potential of dental‐tissue‐derived MSCs. 相似文献
10.
Expression pattern of Boule in dairy goat testis and its function in promoting the meiosis in male germline stem cells (mGSCs) 总被引:1,自引:0,他引:1
Mingzhao Li Chao Liu Haijing Zhu Junwei Sun Meng Yu Zhiwei Niu Weishuai Liu Sha Peng Dr. Jinlian Hua 《Journal of cellular biochemistry》2013,114(2):294-302
Boule is a conserved gene in meiosis, which encodes RNA binding protein required for spermatocyte meiosis. Deletion of Boule was found to block meiosis in spermatogenesis, which contributes to infertility. Up to date, the expression and function of Boule in the goat testis are not known. The objectives of this study were to investigate the expression pattern of Boule in dairy goat testis and their function in male germline stem cells (mGSCs). The results first revealed that the expression level of Boule in adult testes was significantly higher than younger and immature goats, and azoospermia and male intersex testis. Over‐expression of Boule promoted the expression of meiosis‐related genes in dairy goat mGSCs. The expression of Stra8 was up‐regulated by over‐expression of Boule analyzed by Western blotting and Luciferase reporter assay. While, Cdc25a, the downstream regulator of Boule, was found not to affect the expression of Stra8, and our data illustrated that Cdc25a did not regulate meiosis via Stra8. The expression of Stra8 and Boule was up‐regulated by RA induction. Taken together, results suggest the Boule plays an important role in dairy goat spermatogenesis and that over‐expression of Boule may promote spermatogenesis and meiosis in dairy goat. J. Cell. Biochem. 114: 294–302, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
11.
12.
MFN2 silencing promotes neural differentiation of embryonic stem cells via the Akt signaling pathway
Siqi Yi Chenghao Cui Xiaotian Huang Xiaohui Yin Yang Li Jinhua Wen Qingxian Luan 《Journal of cellular physiology》2020,235(2):1051-1064
Mitofusin 2 (MFN2) is a regulatory protein participating in mitochondria dynamics, cell proliferation, death, differentiation, and so on. This study aims at revealing the functional role of MFN2 in the pluripotency maintenance and primitive differetiation of embryonic stem cell (ESCs). A dox inducible silencing and routine overexpressing approach was used to downregulate and upregulate MFN2 expression, respectively. We have compared the morphology, cell proliferation, and expression level of pluripotent genes in various groups. We also used directed differentiation methods to test the differentiation capacity of various groups. The Akt signaling pathway was explored by the western blot assay. MFN2 upregulation in ESCs exhibited a typical cell morphology and similar cell proliferation, but decreased pluripotent gene markers. In addition, MFN2 overexpression inhibited ESCs differentiation into the mesendoderm, while MFN2 silencing ESCs exhibited a normal cell morphology, slower cell proliferation and elevated pluripotency markers. For differentiation, MFN2 silencing ESCs exhibited enhanced three germs' differentiation ability. Moreover, the protein levels of phosphorylated Akt308 and Akt473 decreased in MFN2 silenced ESCs, and recovered in the neural differentiation process. When treated with the Akt inhibitor, the neural differentiation capacity of the MFN2 silenced ESCs can reverse to a normal level. Taken together, the data indicated that the appropriate level of MFN2 expression is essential for pluripotency and differentiation capacity in ESCs. The increased neural differentiation ability by MFN2 silencing is strongly related to the Akt signaling pathway. 相似文献
13.
Wnt5a regulates the cell proliferation and adipogenesis via MAPK‐independent pathway in early stage of obesity 下载免费PDF全文
Qi Tang Chang Chen Yan Zhang Minjia Dai Yichen Jiang Hang Wang Mei Yu Wei Jing Weidong Tian 《Cell biology international》2018,42(1):63-74
The early stage of obesity is an important stage in the development of obesity. However, there are few studies which explored the property or changes in obesity at early stage especially involving Wnt5a. The associated gene expression of Wnt5a on cell regeneration and the effect of Wnt5a on rat adipose‐derived stem cell (rASC) proliferation and adipogenesis need additional study. Here, we investigated the changes in obesity at early stage and how Wnt5a regulates rASC regeneration, proliferation, and adipogenesis. Our data revealed that obesity at early stage measured by Lee index presented a state with impaired adipogenesis and more infiltrated inflammatory cells but without significant changes in adipocyte sizes and inflammatory factors. The process might be associated with anti‐canonical Wnt pathway and a reciprocal Wnt5a/JNK pathway. Besides the gene expression of Wnt5a decreased from cell passage 1 to passage 3. The cell proliferation was regulated by increasing dose of Wnt5a with the maximal effect at 50 ng/mL and 50 ng/mL Wnt5a suppressed adipogenic differentiation at middle‐late stage of adipogenesis via anti‐β‐catenin and a mitogen‐activated protein kinase (MAPK) signaling‐independent manner. Accordingly, the research helps to gain further insights into the early stage of obesity and its associated changes on a cellular and molecular level. 相似文献
14.
15.
Ting Yi Min Liu Xueyan Li Xueqing Liu Yubin Ding Junlin He Hanting Xu Rufei Gao Xinyi Mu Yanqing Geng Yingxiong Wang Xuemei Chen 《Journal of cellular physiology》2019,234(7):11119-11129
Benzo(a)pyrene (BaP) is an endocrine-disrupting pollutant present in various aspects of daily life, and studies have demonstrated that BaP exerts reproductive toxicity. We previously showed that BaP damages endometrial morphology and decreases the number of implantation sites in early pregnant mice, but the mechanisms underlying these effects remain unclear. The endometrial function is crucial for implantation, which is associated with endometrial cell apoptosis. In this study, we focused on the effect of BaP on endometrial cell apoptosis and the role of WNT signaling during this process. Pregnant mice were gavaged with corn oil (control group) or 0.2 mg·kg−1·day −1 BaP (treatment group) from Days 1 to 6 of pregnancy. BaP impaired endometrial function by decreasing the expression of HOXA10 and BMP2, two markers of receptivity and decidualization. WNT5A and β-catenin were activated in the BaP group. BaP affected the expression of apoptosis-related proteins and inhibited the apoptosis of endometrial stromal cells. In vitro, human endometrial stromal cells (HESCs) were treated with different concentrations of BaP (dimethyl sulfoxide (DMSO); 5, 10 µM). WNT5A and β-catenin were also upregulated in the BaP treatment group. HESC apoptosis was restrained by BaP. Inhibiting WNT5A by SFRP5 partially restored the effect of BaP on apoptosis. In summary, these results suggested that BaP exposure during early pregnancy activates WNT5A/β-catenin signaling pathway, which inhibits the endometrial cell apoptosis and potentially destroys endometrial function. 相似文献
16.
17.
Fatemeh Sadat Hosseini Fatemeh Soleimanifar Amir Aidun Seyedeh Elnaz Enderami Ehsan Saburi Hadi Zare Marzouni Mohammad-Mehdi Khani Arash Khojasteh Abdolreza Ardeshirylajimi 《Journal of cellular physiology》2019,234(7):11537-11544
Cocell polymers can be the best implants for replacing bone defects in patients. The pluripotent stem cells produced from the patient and the nanofibrous polymeric scaffold that can be completely degraded in the body and its produced monomers could be also usable are the best options for this implant. In this study, electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers were fabricated and characterized and then osteogenic differentiation of the human-induced pluripotent stem cells (iPSCs) was investigated while cultured on PHBV scaffold. MTT results showed that cultured iPSCs on PHBV proliferation were increased compared to those cultured on tissue culture polystyrene (TCPS) as the control. Alkaline phosphatase (ALP) activity and calcium content were also significantly increased in iPSCs cultured on PHBV compared to the cultured on TCPS under osteogenic medium. Gene expression evaluation demonstrated that Runx2, collagen type I, ALP, osteonectin, and osteocalcin were upregulated in iPSCs cultured on PHBV scaffold in comparison with those cultured on TCPS for 2 weeks. Western blot analysis have shown that osteocalcin and osteopontin expression as two major osteogenic markers were increased in iPSCs cultured on PHBV scaffold. According to the results, nanofiber-based PHBV has a promising potential to increase osteogenic differentiation of the stem cells and iPSCs-PHBV as a cell-co-polymer construct demonstrated that has a great efficiency for use as a bone tissue engineered bioimplant. 相似文献
18.
Bao-Liang Wang Zhi Wang Xi Nan Qing-Cai Zhang Wei Liu 《Journal of cellular physiology》2019,234(4):4840-4850
19.
20.
We previously reported that serotonin (5-HT) increased glial cell line-derived neurotrophic factor (GDNF) release in a 5-HT2 receptor (5-HT2 R) and mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK)-dependent manner in rat C6 glioma cells (C6 cells), a model of astrocytes. We herein found that 5-HT-induced rapid ERK phosphorylation was blocked by 5-HT2 R antagonists in C6 cells. We therefore examined 5-HT-induced ERK phosphorylation to reveal the mechanism of 5-HT-induced GDNF mRNA expression. As 5-HT-induced ERK phosphorylation was blocked by inhibitors for Gαq/11 and fibroblast growth factor receptor (FGFR), but not for second messengers downstream of Gαq/11 , 5-HT2 R-mediated FGFR transactivation was suggested to be involved in the ERK phosphorylation. Although FGFR1 and 2 were functionally expressed in C6 cells, 5-HT selectively phosphorylated FGFR2. Indeed, small interfering RNA for FGFR2, but not for FGFR1, blocked 5-HT-induced ERK phosphorylation. As Src family tyrosine kinase inhibitors and microtubule depolymerizing agents blocked 5-HT-induced FGFR2 phosphorylation, Src family tyrosine kinase and stabilized microtubules were suggested to act upstream of FGFR2. Finally, 5-HT-induced GDNF mRNA expression was also inhibited by the blockade of 5-HT2 R, FGFR, and Src family tyrosine kinase. In conclusion, our findings suggest that 5-HT induces GDNF mRNA expression via 5-HT2 R-mediated FGFR2 transactivation in C6 cells. 相似文献