首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overexpression and enhanced activation of the epidermal growth factor (EGF) receptor are frequent events in human cancers that correlate with poor prognosis. Anti-phosphotyrosine and anti-EGFr affinity chromatography, isotope-coded muLC-MS/MS, and immunoblot methods were combined to describe and measure signaling networks associated with EGF receptor activation and pharmacological inhibition. The squamous carcinoma cell line HN5, which overexpresses EGF receptor and displays sustained receptor kinase activation, was used as a model system, where pharmacological inhibition of EGF receptor kinase by erlotinib markedly reduced auto and substrate phosphorylation, Src family phosphorylation at EGFR Y845, while increasing total EGF receptor protein. Diverse sets of known and poorly described functional protein classes were unequivocally identified by affinity selection, comprising either proteins tyrosine phosphorylated or complexed therewith, predominantly through EGF receptor and Src family kinases, principally 1) immediate EGF receptor signaling complexes (18%); 2) complexes involved in adhesion and cell-cell contacts (34%); and 3) receptor internalization and degradation signals. Novel and known phosphorylation sites could be located despite the complexity of the peptide mixtures. In addition to interactions with multiple signaling adaptors Grb2, SHC, SCK, and NSP2, EGF receptors in HN5 cells were shown to form direct or indirect physical interactions with additional kinases including ACK1, focal adhesion kinase (FAK), Pyk2, Yes, EphA2, and EphB4. Pharmacological inhibition of EGF receptor kinase activity by erlotinib resulted in reduced phosphorylation of downstream signaling, for example through Cbl/Cbl-B, phospholipase Cgamma (PLCgamma), Erk1/2, PI-3 kinase, and STAT3/5. Focal adhesion proteins, FAK, Pyk2, paxillin, ARF/GIT1, and plakophillin were down-regulated by transient EGF stimulation suggesting a complex balance between growth factor induced kinase and phosphatase activities in the control of cell adhesion complexes. The functional interactions between IGF-1 receptor, lysophosphatidic acid (LPA) signaling, and EGF receptor were observed, both direct and/or indirectly on phospho-Akt, phospho-Erk1/2, and phospho-ribosomal S6.  相似文献   

2.
Sprouty, an intracellular inhibitor of Ras signaling   总被引:21,自引:0,他引:21  
Casci T  Vinós J  Freeman M 《Cell》1999,96(5):655-665
Sprouty was identified in a genetic screen as an inhibitor of Drosophila EGF receptor signaling. The Egfr triggers cell recruitment in the eye, and sprouty- eyes have excess photoreceptors, cone cells, and pigment cells. Sprouty's function is, however, more widespread. We show that it also interacts genetically with the receptor tyrosine kinases Torso and Sevenless, and it was first discovered through its effect on FGF receptor signaling. In contrast to an earlier proposal that Sprouty is extracellular, we show by biochemical analysis that Sprouty is an intracellular protein, associated with the inner surface of the plasma membrane. Sprouty binds to two intracellular components of the Ras pathway, Drk and Gap1. Our results indicate that Sprouty is a widespread inhibitor of Ras pathway signal transduction.  相似文献   

3.
The tyrosine kinase ACK1 phosphorylates and activates the guanine nucleotide exchange factor Dbl, which in turn directs the Rho family GTP-binding proteins. However, the regulatory mechanism of ACK1/Dbl signaling in response to extracellular stimuli remains poorly understood. Here we describe that epidermal growth factor stimulates the ACK1/Dbl pathway, leading to actin cytoskeletal rearrangements. The role of the two ACK1-binding proteins Cdc42 and Grb2 was assessed by overexpression of the Cdc42/Rac interactive binding domain and a dominant-negative Grb2 mutant, respectively. Specific inhibition of the interaction of ACK1 with Cdc42 or Grb2 by the use of these constructs diminished tyrosine phosphorylation of both ACK1 and Dbl in response to EGF. Therefore, the activation of ACK1 and subsequent downstream signaling require both Cdc42-dependent and Grb2-dependent processes within the cell. In addition, we show that EGF transiently induces formation of the focal complex and stress fibers when ACK1 was ectopically expressed. The induction of these structures was totally sensitive to the action of botulinum toxin C from Clostridium botulinum, suggesting a pivotal role of Rho. These results provide evidence that ACK1 acts as a mediator of EGF signals to Rho family GTP-binding proteins through phosphorylation and activation of GEFs such as Dbl.  相似文献   

4.
5.
The non-RTK (receptor tyrosine kinase) ACK1 [activated Cdc42 (cell division cycle 42)-associated kinase 1] binds a number of RTKs and is associated with their endocytosis and turnover. Its mode of activation is not well established, but models have suggested that this is an autoinhibited kinase. Point mutations in its SH3 (Src homology 3)- or EGF (epidermal growth factor)-binding domains have been reported to activate ACK1, but we find neither of the corresponding W424K or F820A mutations do so. Indeed, deletion of the various ACK1 domains C-terminal to the catalytic domain are not associated with increased activity. A previous report identified only one major tyrosine phosphorylated protein of 60 kDa co-purified with ACK1. In a screen for new SH3 partners for ACK1 we found multiple Src family kinases; of these c-Src itself binds best. The SH2 and SH3 domains of Src interact with ACK1 Tyr518 and residues 623-652 respectively. Src targets the ACK1 activation loop Tyr284, a poor autophosphorylation site. We propose that ACK1 fails to undergo significant autophosphorylation on Tyr284 in vivo because it is basophilic (whereas Src is acidophilic). Subsequent ACK1 activation downstream of receptors such as EGFR (EGF receptor) (and Src) promotes turnover of ACK1 in vivo, which is blocked by Src inhibitors, and is compromised in the Src-deficient SYF cell line. The results of the present study can explain why ACK1 is responsive to so many external stimuli including RTKs and integrin ligation, since Src kinases are commonly recruited by multiple receptor systems.  相似文献   

6.
ACK1 is a nonreceptor tyrosine kinase that associates specifically with Cdc42. Relatively few ACK1 substrates and interacting proteins have been identified. In this study, we demonstrated that ACK1 phosphorylates the Wiskott-Aldrich syndrome protein (WASP), a Cdc42 effector that plays an important role in the formation of new actin filaments. ACK1 and WASP interact in intact cells, and overexpression of ACK1 promotes WASP phosphorylation. Phosphorylation of WASP in vitro was enhanced by the addition of Cdc42 or phosphatidylinositol 4,5-biphosphate, presumably due to release of the autoinhibitory interactions in WASP. Surprisingly, when we mapped the sites of WASP phosphorylation, we found that ACK1 possesses significant serine kinase activity toward WASP (directed at Ser-242), as well as tyrosine kinase activity directed at Tyr-256. A serine peptide derived from the Ser-242 WASP phosphorylation site is also a substrate for ACK1. ACK1 expressed in bacteria retained its serine kinase activity, eliminating the possibility of contamination with a copurifying kinase. Serine phosphorylation of WASP enhanced the ability of WASP to stimulate actin polymerization in mammalian cell lysates. Thus, the tyrosine kinase ACK1 acts as a dual specificity kinase toward this substrate. In contrast to other dual specificity kinases that more closely resemble Ser/Thr kinases, ACK1 is a tyrosine kinase with an active site that can accommodate both types of hydroxyamino acids in substrates.  相似文献   

7.
Phosphoinositide 3-kinases (PI3Ks) can be divided into three distinct classes (I, II, and III) on the basis of their domain structures and the lipid signals that they generate. Functions have been assigned to the class I and class III enzymes but have not been established for the class II PI3Ks. We have obtained the first evidence for a biological function for a class II PI3K by expressing this enzyme during Drosophila melanogaster development and by using deficiencies that remove the endogenous gene. Wild-type and catalytically inactive PI3K_68D transgenes have opposite effects on the number of sensory bristles and on wing venation phenotypes induced by modified epidermal growth factor (EGF) receptor signaling. These results indicate that the endogenous PI3K_68D may act antagonistically to the EGF receptor-stimulated Ras-mitogen-activated protein kinase pathway and downstream of, or parallel to, the Notch receptor. A class II polyproline motif in PI3K_68D can bind the Drk adaptor protein in vitro, primarily via the N-terminal SH3 domain of Drk. Drk may thus be important for the localization of PI3K_68D, allowing it to modify signaling pathways downstream of cell surface receptors. The phenotypes obtained are markedly distinct from those generated by expression of the Drosophila class I PI3K, which affects growth but not pattern formation.  相似文献   

8.
Ras-GRF1 is a brain-specific guanine nucleotide exchange factor (GEF) for Ras, whose activity is regulated in response to Ca(2+) influx and G protein-coupled receptor signals. In addition, Ras-GRF1 acts as a GEF for Rac when tyrosine-phosphorylated following G protein-coupled receptor stimulation. However, the mechanisms underlying the regulation of Ras-GRF1 functions remain incompletely understood. We show here that activated ACK1, a nonreceptor tyrosine kinase that belongs to the focal adhesion kinase family, causes tyrosine phosphorylation of Ras-GRF1. On the other hand, kinase-deficient ACK1 exerted no effect. GEF activity of Ras-GRF1 toward Ha-Ras, as defined by in vitro GDP binding and release assays, was augmented after tyrosine phosphorylation by ACK1. In contrast, GEF activity toward Rac1 remained latent, implying that ACK1 does not represent a tyrosine kinase that acts downstream of G protein-coupled receptors. Consistent with enhanced Ras-GEF activity, accumulation of the GTP-bound form of Ras within the cell was shown through the use of Ras-binding domain pull-down assays. Furthermore, Ras-dependent activation of ERK2 by Ras-GRF1 was enhanced following co-expression of activated ACK1. These results implicate ACK1 as an upstream modulator of Ras-GRF1 and suggest a signaling cascade consisting of Cdc42, ACK1, Ras-GRF1, and Ras in neuronal cells.  相似文献   

9.
10.
The human proto-oncogene product c-Cbl and a similar protein in Caenorhabditis elegans (Sli-1) contain a proline-rich COOH-terminal region that binds Src homology 3 (SH3) domains of proteins such as the adapter Grb2. Cb1-Grb2 complexes can be recruited to tyrosine-phosphorylated epidermal growth factor (EGF) receptors through the SH2 domain of Grb2. Here we identify by molecular cloning a Drosophila cDNA encoding a protein (Drosophila Cbl [D-Cbl]) that shows high sequence similarity to the N-terminal region of human c-Cbl but lacks proline-rich sequences and fails to bind Grb2. Nonetheless, in COS-1 cells, expression of hemagglutinin epitope-tagged D-Cbl results in its coimmunoprecipitation with EGF receptors in response to EGF. EGF also caused tyrosine phosphorylation of D-Cbl in such cells, but no association of phosphatidylinositol 3-kinase was detected in assays using anti-p85 antibody. A point mutation in D-Cbl (G305E) that suppresses the negative regulation of LET-23 by the Cbl homolog Sli-1 in C. elegans prevented tyrosine phosphorylation of D-Cbl as well as binding to the liganded EGF receptor in COS-1 cells. Colocalization of EGF receptors with both endogenous c-Cbl or expressed D-Cbl in endosomes of EGF-treated COS-1 cells is also demonstrated by immunofluorescence microscopy. In lysates of adult transgenic Drosophila melanogaster, GST-DCbl binds to the tyrosine-phosphorylated 150-kDa torso-DER chimeric receptor. Expression of D-Cbl directed by the sevenless enhancer in intact Drosophila compromises severely the development of the R7 photoreceptor neuron. These data suggest that despite the lack of Grb2 binding sites, D-Cbl functions as a negative regulator of receptor tyrosine kinase signaling in the Drosophila eye by a mechanism that involves its association with EGF receptors or other tyrosine kinases.  相似文献   

11.
ACK1 (activated Cdc42-associated kinase 1), a cytoplsmic tyrosine kinase, is implicated in metastatic behavior, cell spreading and migration, and epidermal growth factor receptor (EGFR) signaling. The function of ACK1 in the regulation of receptor tyrosine kinases requires a C-terminal region that demonstrates a significant homology to the EGFR binding domain of MIG6. In this study, we have identified additional receptor tyrosine kinases, including Axl, leukocyte tyrosine kinase, and anaplastic lymphoma kinase, that can bind to the ACK1/MIG6 homology region. Unlike the interaction between MIG6 and EGFR, our data suggest that these receptor tyrosine kinases require the adaptor protein Grb2 for efficient binding, which interacts with highly conserved proline-rich regions that are conserved between ACK1 and MIG6. We have focused on Axl and compared how ACK1/Axl differs from the ACK1/EGFR axis by investigating effects of knockdown of endogenous ACK1. Although EGFR activation promotes ACK1 turnover, Axl activation by GAS6 does not; interestingly, the reciprocal down-regulation of GAS6-stimulated Axl is blocked by removing ACK1. Thus, ACK1 functions in part to control Axl receptor levels. Silencing of ACK1 also leads to diminished ruffling and migration in DU145 and COS7 cells upon GAS6-Axl signaling. The ability of ACK1 to modulate Axl and perhaps anaplastic lymphoma kinase (altered in anaplastic large cell lymphomas) might explain why ACK1 can promote metastatic and transformed behavior in a number of cancers.  相似文献   

12.
Grb2-associated binder-1 (Gab1) is an adapter protein related to the insulin receptor substrate family. It is a substrate for the insulin receptor as well as the epidermal growth factor (EGF) receptor and other receptor-tyrosine kinases. To investigate the role of Gab1 in signaling pathways downstream of growth factor receptors, we stimulated rat aortic vascular smooth muscle cells (VSMC) with EGF and platelet-derived growth factor (PDGF). Gab1 was tyrosine-phosphorylated by EGF and PDGF within 1 min. AG1478 (an EGF receptor kinase-specific inhibitor) failed to block PDGF-induced Gab1 tyrosine phosphorylation, suggesting that transactivated EGF receptor is not responsible for this signaling event. Because Gab1 associates with phospholipase Cgamma (PLCgamma), we studied the role of the PLCgamma pathway in Gab1 tyrosine phosphorylation. Gab1 tyrosine phosphorylation by PDGF was impaired in Chinese hamster ovary cells expressing mutant PDGFbeta receptor (Y977F/Y989F: lacking the binding site for PLCgamma). Pretreatment of VSMC with (a specific PLCgamma inhibitor) inhibited Gab1 tyrosine phosphorylation as well, indicating the importance of the PLCgamma pathway. Gab1 was tyrosine-phosphorylated by phorbol ester to the same extent as PDGF stimulation. Studies using antisense protein kinase C (PKC) oligonucleotides and specific inhibitors showed that PKCalpha and PKCepsilon are required for Gab1 tyrosine phosphorylation. Binding of Gab1 to the protein-tyrosine phosphatase SHP2 and phosphatidylinositol 3-kinase was significantly decreased by PLCgamma and/or PKC inhibition, suggesting the importance of the PLCgamma/PKC-dependent Gab1 tyrosine phosphorylation for the interaction with other signaling molecules. Because PDGF-mediated ERK activation is enhanced in Chinese hamster ovary cells that overexpress Gab1, Gab1 serves as an important link between PKC and ERK activation by PDGFbeta receptors in VSMC.  相似文献   

13.
LC Kelley  SA Weed 《PloS one》2012,7(8):e44363

Background

Epidermal growth factor receptor (EGFR) internalization following ligand binding controls EGFR downstream pathway signaling activity. Internalized EGFR is poly-ubiquitinated by Cbl to promote lysosome-mediated degradation and signal downregulation. ACK1 is a non-receptor tyrosine kinase that interacts with ubiquitinated EGFR to facilitate EGFR degradation. Dynamic reorganization of the cortical actin cytoskeleton controlled by the actin related protein (Arp)2/3 complex is important in regulating EGFR endocytosis and vesicle trafficking. How ACK1-mediated EGFR internalization cooperates with Arp2/3-based actin dynamics during EGFR downregulation is unclear.

Methodology/Principal Findings

Here we show that ACK1 directly binds and phosphorylates the Arp2/3 regulatory protein cortactin, potentially providing a direct link to Arp2/3-based actin dynamics during EGFR degradation. Co-immunoprecipitation analysis indicates that the cortactin SH3 domain is responsible for binding to ACK1. In vitro kinase assays demonstrate that ACK1 phosphorylates cortactin on key tyrosine residues that create docking sites for adaptor proteins responsible for enhancing Arp2/3 nucleation. Analysis with phosphorylation-specific antibodies determined that EGFR-induced cortactin tyrosine phosphorylation is diminished coincident with EGFR degradation, whereas ERK1/2 cortactin phosphorylation utilized in promoting activation of the Arp2/3 regulator N-WASp is sustained during EGFR downregulation. Cortactin and ACK1 localize to internalized vesicles containing EGF bound to EGFR visualized by confocal microscopy. RNA interference and rescue studies indicate that ACK1 and the cortactin SH3 domain are essential for ligand-mediated EGFR internalization.

Conclusions/Significance

Cortactin is a direct binding partner and novel substrate of ACK1. Tyrosine phosphorylation of cortactin by ACK1 creates an additional means to amplify Arp2/3 dynamics through N-WASp activation, potentially contributing to the overall necessary tensile and/or propulsive forces utilized during EGFR endocytic internalization and trafficking involved in receptor degradation.  相似文献   

14.
15.
Many G protein-coupled receptors (GPCRs) activate MAP kinases by stimulating tyrosine kinase signaling cascades. In some systems, GPCRs stimulate tyrosine phosphorylation by inducing the "transactivation" of a receptor tyrosine kinase (RTK). The mechanisms underlying GPCR-induced RTK transactivation have not been clearly defined. Here we report that GPCR activation mimics growth factor-mediated stimulation of the epidermal growth factor receptor (EGFR) with respect to many facets of RTK function. beta(2)-Adrenergic receptor (beta(2)AR) stimulation of COS-7 cells induces EGFR dimerization, tyrosine autophosphorylation, and EGFR internalization. Coincident with EGFR transactivation, isoproterenol exposure induces the formation of a multireceptor complex containing both the beta(2)AR and the "transactivated" EGFR. beta(2)AR-mediated EGFR phosphorylation and subsequent beta(2)AR stimulation of extracellular signal-regulated kinase (ERK) 1/2 are sensitive to selective inhibitors of both EGFR and Src kinases, indicating that both kinases are required for EGFR transactivation. beta(2)AR-dependent signaling to ERK1/2, like direct EGF stimulation of ERK1/2 activity, is sensitive to inhibitors of clathrin-mediated endocytosis, suggesting that signaling downstream of both the EGF-activated and the GPCR-transactivated EGFRs requires a productive engagement of the complex with the cellular endocytic machinery. Thus, RTK transactivation is revealed to be a process involving both association of receptors of distinct classes and the interaction of the transactivated RTK with the cells endocytic machinery.  相似文献   

16.
ACK1 (activated Cdc42-associated kinase 1) is a nonreceptor tyrosine kinase and the only tyrosine kinase known to interact with Cdc42. To characterize the enzymatic properties of ACK, we have expressed and purified active ACK using the baculovirus/Sf9 cell system. This ACK1 construct contains (from N to C terminus) the kinase catalytic domain, SH3 domain, and Cdc42-binding Cdc42/Rac interactive binding (CRIB) domain. We characterized the substrate specificity of ACK1 using synthetic peptides, and we show that the specificity of the ACK1 catalytic domain most closely resembles that of Abl. Purified ACK1 undergoes autophosphorylation, and autophosphorylation enhances kinase activity. We identified Tyr284 in the activation loop of ACK1 as the primary autophosphorylation site using mass spectrometry. When expressed in COS-7 cells, the Y284F mutant ACK1 showed dramatically reduced levels of tyrosine phosphorylation. Although the SH3 and CRIB domains of purified ACK1 are able to bind ligands (a polyproline peptide and Cdc42, respectively), the addition of ligands did not stimulate tyrosine kinase activity. To characterize potential interacting partners for ACK1, we screened several SH2 and SH3 domains for their ability to bind to full-length ACK1 or to the catalytic-SH3-CRIB construct. ACK1 interacts most strongly with the SH3 domains of Src family kinases (Src or Hck) via its C-terminal proline-rich domain. Co-expression of Hck with kinase-inactive ACK1(K158R) in mammalian cells resulted in tyrosine phosphorylation of ACK1, suggesting that ACK1 is a substrate for Hck. Our data suggest that Hck is a novel binding partner for ACK1 that can regulate ACK1 activity by phosphorylation.  相似文献   

17.
Activated Cdc42-associated kinase-2 (ACK2) is a non-receptor tyrosine kinase that serves as a specific effector for Cdc42, a Rho family small G-protein. Recently, we have found that ACK2 directly interacts with clathrin heavy chain through a clathrin-binding motif that is conserved in all endocytic adaptor proteins and regulates clathrin assembly, suggesting that ACK2 plays a role in clathrin-coated vesicle endocytosis (Yang, W., Lo, C. G., Dispenza, T., and Cerione, R. A. (2001) J. Biol. Chem. 276, 17468-17473). Here we report the identification of another binding partner for ACK2 that has previously been implicated in endocytosis, namely the sorting nexin protein SH3PX1 (sorting nexin 9). The interaction occurs between a proline-rich domain of ACK2 and the Src homology 3 domain (SH3) of SH3PX1. Co-immunoprecipitation studies indicate that ACK2, clathrin, and SH3PX1 form a complex in cells. Epidermal growth factor (EGF) stimulated the tyrosine phosphorylation of SH3PX1, whereas co-transfection of ACK2 with SH3PX1 resulted in the constitutive phosphorylation of SH3PX1. However, co-transfection of the kinase-dead mutant ACK2(K158R) with SH3PX1 blocked EGF-induced tyrosine phosphorylation of SH3PX1, indicating that the EGF-stimulated phosphorylation of SH3PX1 is mediated by ACK2. EGF receptor levels were significantly decreased following EGF stimulation of cells co-expressing ACK2 and SH3PX1, thus highlighting a novel role for ACK2, working together with SH3PX1 to promote the degradation of the EGF receptor.  相似文献   

18.
19.
Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo.  相似文献   

20.
Insulin receptor substrate-1 (IRS-1) is a key protein in the insulin-like growth factor (IGF) signaling whose tyrosine phosphorylation by the type 1 IGF receptor is necessary for the recruitment and activation of the downstream effectors. Through the analysis of cross-talks occurring between different tyrosine kinase receptor-dependent signaling pathways, we investigated how two growth factors [epidermal growth factor (EGF) and fibroblast growth factor (FGF)] could modulate the IGF-I-induced IRS-1 tyrosine phosphorylation and its downstream signaling. EGF and FGF inhibited IGF-I-stimulated tyrosine phosphorylation of IRS-1 and the subsequent IGF-I-induced phosphatidylinositol 3-kinase (PI 3-kinase) activity. These EGF- and FGF-inhibitory effects were dependent on both PI 3-kinase and protein kinase D1 (PKD1) signaling pathways but independent on the extracellular signal-regulated kinase (ERK) pathway. PKD1, which was activated independently of the PI 3-kinase pathway, associated with IRS-1 in response to EGF or FGF. Unlike PI 3-kinase, PKD1 did not mediate the EGF- or FGF-induced-IRS-1 serine 307 phosphorylation which was described to inhibit IRS-1. Interestingly, specific inhibition of either PI 3-kinase or PKD1 totally impaired EGF- or FGF-induced inhibition of IGF-I-stimulated IRS-1 tyrosine phosphorylation. This indicated that serine 307 phosphorylation of IRS-1 is not sufficient per se to inhibit the IGF signaling pathway and demonstrated for the first time that the negative regulation of IRS-1 requires the coordinated action of PI 3-kinase and PKD1. This further suggests that PKD1 may be an attractive target for innovative strategies that target the IGF signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号