首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of satellite cells and DNA unit size in determining muscle size was examined by inhibiting postnatal skeletal muscle development by using hindlimb suspension. Satellite cell mitotic activity and DNA unit size were determined in the soleus muscles from hindlimb-suspended and age-matched weight-bearing rats before the initiation of hindlimb suspension, at the conclusion of a 28-day hindlimb-suspension period, 2 wk after reloading, and 9 wk after reloading. The body weights of hindlimb-suspended rats were significantly (P < 0.05) less than those of weight-bearing rats at the conclusion of hindlimb suspension, but they were the same (P > 0. 05) as those of weight-bearing rats 9 wk after reloading. The soleus muscle weight, soleus muscle weight-to-body weight ratio, myofiber diameter, nuclei per millimeter, and DNA unit size for the hindlimb-suspended rats were significantly (P < 0.05) smaller than for the weight-bearing rats at all recovery times. Satellite cell mitotic activity was significantly (P < 0.05) higher in the soleus muscles from hindlimb-suspended rats 2 wk after reloading, but it was the same (P > 0.05) as in weight-bearing rats 9 wk after reloading. Juvenile soleus muscles failed to achieve normal muscle size 9 wk after reloading because there was incomplete compensation for the hindlimb-suspension-induced interruptions in myonuclear accretion and DNA unit size expansion.  相似文献   

2.
The aim of this study was to quantify the degenerative and regenerative changes in rat soleus muscle resulting from 3-week hindlimb suspension at 45° tilt (HS group, n = 8) and 4-week normal cage recovery (HS-R group, n = 7). Degenerative changes were quantified by microscope examination of muscle cross sections, and the myosin heavy chain (MHC) composition of soleus muscles was studied by sodium dodecyl sulphate polyacrylamide gel electrophoresis. At the end of 3-week hindlimb suspension, histological signs of muscle degenerative changes were detected in soleus muscles. There was a significant variability in the percentage of fibres referred to as degenerating (%dg) in individual animals in the HS group [%dg = 8.41 (SEM 0.5)%, range 4.66%–14.08%]. Moreover, %dg varied significantly along the length of the soleus muscle. The percentage of fibres with internal nuclei was less than %dg in HS-soleus muscles [4.12 (SEM 0.3)%, range 1.24%–8.86%]. In 4-week recovery rats, the greater part of the fibres that were not referred to as normal, retained central nuclei [15.8 (SEM 2.2)%, range 6.2%–21.1%]. A significant increase in the slow isoform of MHC was recorded in the HS-R rats, compared to muscles from age-matched rats (P < 0.01). These results would suggest that a cycle of myofibre degeneration-regeneration occurred during HS and passive recovery, and that the increased accumulation of slow MHC observed in soleus muscles after recovery from HS could be related to the prevalence of newly formed fibres. Accepted: 14 October 1996  相似文献   

3.
肌卫星细胞在失重肌萎缩中的可塑性变化及机制   总被引:1,自引:0,他引:1  
肌卫星细胞在骨骼肌生长发育和出生后骨骼肌损伤修复中起着重要的作用,但是有关肌萎缩中肌卫星细胞的可塑性变化、作用及其机制尚不清楚.本研究采用小鼠尾悬吊模拟失重效应诱导失重肌萎缩,动态分析了失重肌萎缩发生过程中不同类型肌纤维的肌卫星细胞数量和增殖、分化潜能可塑性的改变,发现在失重肌萎缩过程中,处于安静状态的肌卫星细胞显著增多、激活增殖的肌卫星细胞显著减少,而具有成肌分化潜能的肌卫星细胞有持续减少趋势.此外,在失重肌萎缩比目鱼肌单根肌纤维移出的体外培养中,证明了失重肌萎缩肌纤维肌卫星细胞可塑性降低的特征性变化.进一步,通过对比分析Smad3基因敲除及其同窝野生型小鼠,在失重肌萎缩中肌卫星细胞可塑性的差异性变化,揭示了Smad3在调控失重肌萎缩肌卫星细胞可塑性变化中的关键作用.  相似文献   

4.
The effects of long-term hindlimb unweighting by tail suspension on postnatal growth of 20-day rat extensor digitorum longus (EDL) and soleus muscles were studied. Morphological assay indicated that radial growth of soleus myofibers was completely inhibited between 3 and 10 days of suspension and reduced thereafter, leading to a severe attenuation (-76% from control) over the total experimental period. Longitudinal growth rate, however, was accelerated 40% over weight-bearing controls. In addition, myofibers were arranged parallel to the long axis of the muscle, an orientation associated with chronologically younger muscles, suggesting morphological maturation of the soleus muscle had been delayed by suspension. In contrast, radial and longitudinal growth of EDL myofibers were minimally affected under similar conditions and remained within approximately 5% of control at all times. Suspension also influenced the normal changes that occur in satellite cell and myonuclear populations during postnatal growth. Both the number and proliferative activity of satellite cells were severely reduced in individual myofibers after only 3 days in both soleus and EDL muscles. The reduced number of satellite cells within 3 days of initiating hindlimb suspension appeared to be the result of their incorporation into myofibers while the long-lasting reduction appeared to be the added effects of decreased proliferative activity. In the soleus, this reduction in number and proliferation of satellite cells persisted throughout the experimental period and resulted in an overall 43% fewer myonuclei and 45% fewer satellite cells than control at 50 days of age. In contrast, both the total number and mitotic activity of satellite cells in the EDL rapidly returned to weight-bearing control levels by day 10 of suspension, resulting in no overall reduction in myonuclear accretion.  相似文献   

5.
The hindlimb-unloading model was used to study the ability of muscle injured in a weightless environment to recover after reloading. Satellite cell mitotic activity and DNA unit size were determined in injured and intact soleus muscles from hindlimb-unloaded and age-matched weight-bearing rats at the conclusion of 28 days of hindlimb unloading, 2 wk after reloading, and 9 wk after reloading. The body weights of hindlimb-unloaded rats were significantly (P < 0.05) less than those of weight-bearing rats at the conclusion of hindlimb unloading, but they were the same (P > 0.05) as those of weight-bearing rats 2 and 9 wk after reloading. The soleus muscle weight, soleus muscle weight-to-body weight ratio, myofiber diameter, number of nuclei per millimeter, and DNA unit size were significantly (P < 0.05) smaller for the injured soleus muscles from hindlimb-unloaded rats than for the soleus muscles from weight-bearing rats at each recovery time. Satellite cell mitotic activity was significantly (P < 0.05) higher in the injured soleus muscles from hindlimb-unloaded rats than from weight-bearing rats 2 wk after reloading, but it was the same (P > 0.05) as in the injured soleus muscles from weight-bearing rats 9 wk after reloading. The injured soleus muscles from hindlimb-unloaded rats failed to achieve weight-bearing muscle size 9 wk after reloading, because incomplete compensation for the decrease in myonuclear accretion and DNA unit size expansion occurred during the unloading period.  相似文献   

6.
Muscle mass is decreased with advancing age, likely due to altered regulation of muscle fiber size. This study was designed to investigate cellular mechanisms contributing to this process. Analysis of male Fischer 344 X Brown Norway rats at 6, 20, and 32 mo of age demonstrated that, even though significant atrophy had occurred in soleus muscle by old age, myofiber nuclear number did not change, resulting in a decreased myonuclear domain. Also, the number of centrally located nuclei was significantly elevated in soleus muscle of 32-mo-old rats, correlating with an increase in gene expression of MyoD and myogenin. Whereas total 5'-bromo-2'deoxyuridine (BrdU)-positive nuclei were decreased at older ages, BrdU-positive myofiber nuclei were increased. These results suggest that, with age, loss of muscle mass is accompanied by increased myofiber nuclear density that involves fusion of proliferative satellite cells, resembling ongoing regeneration. Interestingly, centrally located myofiber nuclei were not BrdU labeled. Rats were subjected to hindlimb suspension (HS) for 7 or 14 days and intermittent reloading during HS for 1 h each day (IR) to investigate how aging affects the response of soleus muscle to disuse and an atrophy-reducing intervention. After 14 days of HS, soleus muscle size was decreased to a similar extent at all three ages. However, myofiber nuclear number and the total number of BrdU-positive nuclei decreased with HS only in the young rats. IR was associated with an attenuation of atrophy in soleus muscles of 6- and 20- but not 32-mo-old rats. Furthermore, IR was associated with an increase in BrdU-positive myofiber nuclei only in young rats. These data indicate that altered satellite cell function with age contributes to the impaired response of soleus muscle to an intervention that attenuates muscle atrophy in young animals during imposed disuse.  相似文献   

7.
Atrophy of skeletal muscle leads to decreases in myofiber size and nuclear number; however, the effects of atrophic conditions on muscle precursor cells (MPC) are largely unknown. MPC lie outside myofibers and represent the main source of additional myonuclei necessary for muscle growth and repair. In the present study, we examined the properties of MPC after hindlimb suspension (HS)-induced atrophy and subsequent recovery of the mouse hindlimb muscles. We demonstrated that the number of MPC in atrophied muscles was decreased. RT-PCR analysis of cells isolated from atrophied muscles indicated that several mRNA characteristic of the myogenic program in MPC were absent. Cells isolated from atrophied muscles failed to properly proliferate and undergo differentiation into multinucleated myotubes. Thus atrophy led to a decrease in MPC and caused dysfunction in those MPC that remained. Upon regrowth of the atrophied muscles, these deleterious effects were reversed. Our data suggest that preventing loss or dysfunction of MPC may be a new pharmacological target during muscle atrophy. satellite cells; hindlimb suspension; proliferation; differentiation; myotubes  相似文献   

8.
Loss of muscle mass occurs with disease, injury, aging, and inactivity. Restoration of normal muscle mass depends on myofiber growth, the regulation of which is incompletely understood. Cyclooxygenase (COX)-2 is one of two isoforms of COX that catalyzes the synthesis of prostaglandins, paracrine hormones that regulate diverse physiological and pathophysiological processes. Previously, we demonstrated that the COX-2 pathway regulates early stages of myofiber growth during muscle regeneration. However, whether the COX-2 pathway plays a common role in adult myofiber growth or functions specifically during muscle regeneration is unknown. Therefore, we examined the role of COX-2 during myofiber growth following atrophy in mice. Muscle atrophy was induced by hindlimb suspension (HS) for 2 wk, followed by a reloading period, during which mice were treated with either the COX-2-selective inhibitor SC-236 (6 mg·kg–1·day–1) or vehicle. COX-2 protein was expressed and SC-236 attenuated myofiber growth during reloading in both soleus and plantaris muscles. Attenuated myofiber growth in the soleus was associated with both decreased myonuclear addition and decreased inflammation, whereas neither of these processes mediated the effects of SC-236 on plantaris growth. In addition, COX-2–/– satellite cells exhibited impaired activation/proliferation in vitro, suggesting direct regulation of muscle cell activity by COX-2. Together, these data suggest that the COX-2 pathway plays a common regulatory role during various types of muscle growth via multiple mechanisms. cyclooxygenase-2; prostaglandins; myonuclear number; satellite cells; inflammation  相似文献   

9.
This study examined hypertrophy after head extension resistance training to assess which muscles of the complicated cervical neuromuscular system were used in this activity. We also determined if conventional resistance exercises, which are likely to evoke isometric action of the neck, induce generalized hypertrophy of the cervical muscle. Twenty-two active college students were studied. [mean (SE) age, weight and height: 21 (1) years, 71 (4) kg and 173 (3) cm, respectively]. Subjects were assigned to one of three groups: RESX (head extension exercise and other resistance exercises), RES (resistance exercises without specific neck exercise), or CON (no training). Groups RESX (n = 8) and RES (n = 6) trained 3 days/week for 12 weeks with large-muscle mass exercises (squat, deadlift, push press, bent row and mid-thigh pull). Group RESX also performed three sets of ten repetitions of a head extension exercise 3 days/week with a load equal to the 3 × 10 repetition maximum (RM). Group CON (n = 8) was a control group. The cross-sectional area (CSA) of nine individual muscles or muscle groups was determined by magnetic resonance imaging (MRI) of the cervical region. The CSA data were averaged over four contiguous transaxial slices in which all muscles of interest were visible. The 3 × 10 RM for the head extension exercise increased for RESX after training [from 17.9 (1.0) to 23.9 (1.4) kg, P < 0.05] but not for RES [from 17.6 (1.4) to 17.7 (1.9)␣kg] or CON [from 10.1 (2.2) to 10.3 (2.1) kg]. RESX showed an increase in total neck muscle CSA after training [from 19.5 (3.0) to 22.0 (3.6) cm2, P < 0.05], but RES and CON did not [from 19.6 (2.9) to 19.7 (2.9)␣cm2 and 17.0 (2.5) to 17.0 (2.4) cm2, respectively]. This hypertrophy for RESX was due mainly to increases in CSA of 23.9 (3.2), 24.0 (5.8), and 24.9 (5.3)% for the splenius capitis, and semispinalis capitis and cervicis muscles, respectively. The lack of generalized neck muscle hypertrophy in RES was not due to insufficient training. For example, the CSA of their quadriceps femoris muscle group, as assessed by MRI, increased by 7 (1)% after this short-term training (P < 0.05). The results suggest that: (1) the splenius capitis, and semispinalis capitis and cervicis muscles are mainly responsible for head extension; (2) short-term resistance training does not provide a sufficient stimulus to evoke neck muscle hypertrophy unless specific neck exercises are performed; and (3) the postural role of head extensors provides modest loading in bipeds. Accepted: 15 October 1996  相似文献   

10.
Satellite cells are myogenic progenitors that reside on the myofiber surface and support skeletal muscle repair. We used mice in which satellite cells were detected by GFP expression driven by nestin gene regulatory elements to define age-related changes in both numbers of satellite cells that occupy hindlimb myofibers and their individual performance. We demonstrate a reduction in satellite cells per myofiber with age that is more prominent in females compared to males. Satellite cell loss also persists with age in myostatin-null mice regardless of increased muscle mass. Immunofluorescent analysis of isolated myofibers from nestin-GFP/Myf5nLacZ/+ mice reveals a decline with age in the number of satellite cells that express detectable levels of βgal. Nestin-GFP expression typically diminishes in primary cultures of satellite cells as myogenic progeny proliferate and differentiate, but GFP subsequently reappears in the Pax7+ reserve population. Clonal analysis of sorted GFP+ satellite cells from hindlimb muscles shows heterogeneity in the extent of cell density and myotube formation among colonies. Reserve cells emerge primarily within high-density colonies, and the number of clones that produce reserve cells is reduced with age. Thus, satellite cell depletion with age could be attributed to a reduced capacity to generate a reserve population.  相似文献   

11.
The purpose of this study was to ascertain the time course of changes, whilst suspending the hindlimb and physical exercise training, of myosin light chain (LC) isoform expression in rat soleus and vastus lateralis muscles. Two groups of six rats were suspended by their tails for 1 or 2 weeks, two other groups of ten rats each were subjected to exercise training on a treadmill for 9 weeks, one to an endurance training programme (1-h running at 20 m.min-1 5 days.week-1), and the other to a sprint programme (30-s bouts of running at 60 m.min-1 with rest periods of 5 min). At the end of these experimental procedures, soleus and vastus lateralis superficialis muscles were removed for myosin LC isoform determination by two-dimensional gel electrophoresis. Hindlimb suspension for 2 weeks significantly increased the proportion of fast myosin LC and decreased slow myosin LC expression in the soleus muscle. The pattern of myosin LC was unchanged in the vastus lateralis muscle. Sprint training or endurance training for 9 weeks increased the percentage of slow myosin LC in vastus lateralis muscle, whereas soleus muscle myosin LC was not modified. These data indicate that hindlimb suspension influences myosin LC expression in postural muscle, whereas physical training acts essentially on phasic muscle. There were no differences in myosin LC observed under the influence of sprint- or endurance-training programme.  相似文献   

12.
We have shown thatcycling exercise combined with fetal spinal cord transplantationrestored muscle mass reduced as a result of complete transection of thespinal cord. In this study, mechanisms whereby this combinedintervention increased the size of atrophied soleus and plantarismuscles were investigated. Rats were divided into five groups(n = 4, per group): control, nontransected; spinal cordtransected at T10 for 8 wk (Tx); spinal cord transected for 8 wk andexercised for the last 4 wk (TxEx); spinal cord transected for 8 wkwith transplantation of fetal spinal cord tissue into the lesion site 4 wk prior to death (TxTp); and spinal cord transected for 8 wk,exercised for the last 4 wk combined with transplantation 4 wk prior todeath (TxExTp). Tx soleus and plantaris muscles were decreased in sizecompared with control. Exercise and transplantation alone did notrestore muscle size in soleus, but exercise alone minimized atrophy inplantaris. However, the combination of exercise and transplantationresulted in a significant increase in muscle size in soleus andplantaris compared with transection alone. Furthermore, myofibernuclear number of soleus was decreased by 40% in Tx and was notaffected in TxEx or TxTp but was restored in TxExTp. A strongcorrelation (r = 0.85) between myofiber cross-sectional area and myofiber nuclear number was observed in soleus, but not inplantaris muscle, in which myonuclear number did not change with any ofthe experimental manipulations. 5'-Bromo-2'-deoxyuridine-positive nuclei inside the myofiber membrane were observed in TxExTp soleus muscles, indicating that satellite cells had divided and subsequently fused into myofibers, contributing to the increase in myonuclear number. The increase in satellite cell activity did not appear to becontrolled by the insulin-like growth factors (IGF), as IGF-I andIGF-II mRNA abundance was decreased in Tx soleus and plantaris, and wasnot restored with the interventions. These results indicate that,following a relatively long postinjury interval, exercise andtransplantation combined restore muscle size. Satellite cell fusion andrestoration of myofiber nuclear number contributed to increased musclesize in the soleus, but not in plantaris, suggesting that cellularmechanisms regulating muscle size differ between muscles with differentfiber type composition.

  相似文献   

13.
Early post-hatch fasting induces satellite cell self-renewal   总被引:3,自引:0,他引:3  
Early post-hatch satellite cell kinetics are an important aspect of muscle development, and understanding the interplay between fasting and muscle development will lead to improvements in muscle mass following an illness, and optimal meat production. The objective of this experiment was to test the influence of immediate post-hatch fasting on satellite cells in the poult. Male Nicholas poults (Meleagris gallopavo) were placed into two treatments: a fed treatment with immediate access to feed and water upon placement and a fasted treatment without access to feed and water for the first three days post-hatch. 5-bromo-2'-deoxyuridine (BrdU) was injected intra-abdominally in all poults to label mitotically active satellite cells. The pectoralis thoracicus muscle was harvested two hours following the BrdU injection. Immunohistochemistry for BrdU, Pax7, Bcl-2, Pax7 with BrdU, and determining myofiber cross-sectional area along with computer-based image analysis was used to study muscle development. Fed poults had higher body masses throughout the experiment (P< or =0.01), and they had higher pectoralis thoracicus muscle mass (P< or =0.01) at ten days of age than the fasted poults. Fed poults had higher satellite cell mitotic activity at three days and four days of age (P< or =0.01) compared to the fasted poults. However, Pax7 labeling index was higher in the fasted poults (P< or =0.01) at three days, four days, and five days post-hatch than the fed group. Similarly Bcl-2 labeling was higher in the fasted than in the fed group at three days post-hatch. Therefore, fasting depleted proliferating satellite cells indicated by the lower BrdU labeling in the fasted poults compared to the fed poults, and conserved the satellite cell proliferative reserve indicated by the higher level of Pax7 labeling for the fasted poults compared to the fed poults.  相似文献   

14.
Muscle atrophy is associated with a loss of muscle fiber nuclei, most likely through apoptosis. We investigated age-related differences in the extent of apoptosis in soleus muscle of young (6 mo) and old (32 mo) male Fischer 344 x Brown Norway rats subjected to acute disuse atrophy induced by 14 days of hindlimb suspension (HS). HS-induced atrophy (reduction in muscle weight and cross-sectional area) was associated with loss of myofiber nuclei in soleus muscle of young, but not old, rats. This resulted in a significant decrease in the myonuclear domain (cross-sectional area per nucleus) in young and old rats, with changes being more pronounced in old animals. Levels of apoptosis (TdT-mediated dUTP nick end labeling and DNA fragmentation) were higher in soleus muscles of old control rats than young animals. Levels were significantly increased with HS in young and old rats, with the greatest changes in old animals. Caspase-3 activity in soleus muscle tended to be increased with age, but changes were not statistically significant (P=0.052). However, with HS, caspase-3 activity significantly increased in young, but not old, rats. Immunohistochemistry showed that the proapoptotic endonuclease G (EndoG, a mitochondrion-specific nuclease) was localized in the subsarcolemmal mitochondria in control muscles, and translocation to the nucleus occurred in old, but not young, control animals. There was no difference between EndoG total protein content in young and old control rats, but EndoG increased almost fivefold in soleus muscle of old, but not young, rats after HS. These results show that deregulation of myonuclear number occurs in old skeletal muscle and that the pathways involved in apoptosis are distinct in young and old muscles. Apoptosis in skeletal muscle is partly mediated by the subsarcolemmal mitochondria through EndoG translocation to the nucleus in response to HS.  相似文献   

15.
Insulin resistance accompanies atrophy in slow-twitch skeletal muscles such as the soleus. Using a rat hindlimb suspension model of atrophy, we have previously shown that an upregulation of JNK occurs in atrophic muscles and correlates with the degradation of insulin receptor substrate-1 (IRS-1) (Hilder TL, Tou JC, Grindeland RF, Wade CE, and Graves LM. FEBS Lett 553: 63-67, 2003), suggesting that insulin-dependent glucose uptake may be impaired. However, during atrophy, these muscles preferentially use carbohydrates as a fuel source. To investigate this apparent dichotomy, we examined insulin-independent pathways involved in glucose uptake following a 2- to 13-wk hindlimb suspension regimen. JNK activity was elevated throughout the time course, and IRS-1 was degraded as early as 2 wk. AMP-activated protein kinase (AMPK) activity was significantly higher in atrophic soleus muscle, as were the activities of the ERK1/2 and p38 MAPKs. As a comparison, we examined the kinase activity in solei of rats exposed to hypergravity conditions (2 G). IRS-1 phosphorylation, protein, and AMPK activity were not affected by 2 G, demonstrating that these changes were only observed in soleus muscle from hindlimb-suspended animals. To further examine the effect of AMPK activation on glucose uptake, C2C12 myotubes were treated with the AMPK activator metformin and then challenged with the JNK activator anisomycin. While anisomycin reduced insulin-stimulated glucose uptake to control levels, metformin significantly increased glucose uptake in the presence of anisomycin and was independent of insulin. Taken together, these results suggest that AMPK may be an important mediator of insulin-independent glucose uptake in soleus during skeletal muscle atrophy.  相似文献   

16.
The purpose of this study was to determine the walking speed which has the greatest influence on neural relaxation in healthy elderly women as determined by electromyogram (EMG) and electroencephalogram (EEG) analyses. Seven elderly female volunteers [mean age 68.5 (SD 3.95) years] served as subjects for this study. The EMG signals were recorded from the gastrocnemius (MG), soleus (SL) and tibialis anterior (TA) muscles while walking on a treadmill, starting at 40␣m · min−1 and increasing 6 m · min−1 incrementally for 10␣min. The turning point of muscle activities (by integrated EMG, iEMGtp) was determined as the walking speed at the point at which the mean rate of change of iEMG (MG + SL + TA) abruptly increased. After the determination of iEMGtp, the treadmill was set at three constant speeds, one corresponding to the speed for the iEMGtp and two others 20% higher or lower than that for the iEMGtp. The subjects then walked for 20 min at each of these speeds on 3 separate days and their EEG power spectrum data were obtained for frequencies from the 8 to 13 Hz (α-wave component, AWC). The mean of iEMGtp for our subjects was at a mean walking speed of 64.7 (SD 7.9) m · min−1. Considering the subjects' age and height, iEMGtp was somewhat faster than their expected self-paced normal walking speed. There were no differences between the mean AWC values of the subjects prior to exercising at each of the three speeds. The mean AWC values after exercise were significantly (P < 0.01) greater than before. The extent of the increase in AWC at iEMGtp was greater than those at slower speeds. Our data would suggest that walking exercise at the speed which corresponds with EMG evidence of iEMGtp may induce the most significant relaxing effects in elderly women. Accepted: 11 September 1996  相似文献   

17.
Skeletal muscle regeneration is a powerful, naturally occurring process of tissue reconstruction that follows myofiber damage secondary to myotoxic injury that does not normally affect the tissue circulation and scaffold. The ablated tissue, in traumatology and free muscle grafts, is frequently replaced by scars. The final outcome is poor even after in situ myoblast seeding of the harvested muscle. The goal of this study was to identify protocols to reconstruct muscle tissue, even in such adverse environments. The authors applied a step-by-step approach to identify factors favoring the survival of autologous satellite cells and, thus, muscle regeneration. In a rat model of full-thickness rectus abdominis muscle ablation, autologous myoblasts were isolated from the explanted rectus abdominis and seeded in a homologous acellular matrix immediately after wall reconstruction (group 1, five animals). In group 2 (five animals), the ablated rectus abdominis was autografted in situ. In a third group of five rats, Marcaine was injected into both the autograft and the surrounding abdominal wall muscle. Three weeks after surgery, serial cross-sections of the reconstructed abdominal wall were stained with hematoxylin and eosin or embryonic myosin antibody, a well-characterized molecular marker of early myogenesis in development and regeneration. Percentages of the patch area covered by regenerated myofibers were determined by morphometry. When autologous myoblasts were seeded in a homologous acellular matrix, the only myofibers observed to regenerate were those along the border of the patch. Autografting of the middle third of the rectus abdominis muscle similarly resulted in scar formation. The few muscle cells in the graft core were scanty myoblasts that could be detected only by monoclonal embryonic myosin antibody. Although negative for myofiber regeneration, the results in both cases confirmed the mechanical patency of the patches with regard to abdominal organ support. Myofibers were successfully regenerated in the graft by injecting Marcaine into both the autograft and the surrounding muscles. Three weeks after surgery, the patch was paved with young, centrally nucleated myofibers intermixed with young myofibers and myotubes expressing embryonic myosin. The difference in percentage of patch area covered by regenerated myofibers in group 3 (Marcaine injection around the patch, 81.6 +/- 3.0 percent) (mean +/- SD) versus either group 1 (Myoblast-seeded acellular patch, 18.0 +/- 3.0 percent) or group 2 (Autograft, 25.8 +/- 7.0 percent) was statistically significant on independent t test analysis (p < 0.0001). Even an acellular matrix showed some myofiber regeneration after surrounding muscles had been injected with Marcaine. This is the first successful evidence of muscle reconstruction after full-thickness ablation of the middle third of the rectus abdominis. Muscle regeneration seems to be the result of successive waves of migration of angioblasts and then satellite cell-derived myoblasts from the muscles surrounding the patch. The results strongly suggest that vascularization of the scaffold and successive coordinate proliferation of the seeded cells are required for myoblasts to be able to migrate into the patch and differentiate up to myofiber stage.  相似文献   

18.
Dystrophin-deficient skeletal muscles of mdx mice undergo their first rounds of degeneration-regeneration at the age of 14-28 days. This feature is thought to result from an increase in motor activity at weaning. In this study, we hypothesize that if the muscle is prevented from contracting, it will avoid the degenerative changes that normally occur. For this purpose, we developed a procedure of mechanical hindlimb immobilization in 3-wk-old mice to restrain soleus (Sol) and extensor digitorum longus (EDL) muscles in the stretched or shortened position. After a 14-day period of immobilization, the striking feature was the low percentage of regenerated (centronucleated) myofibers in Sol and EDL muscles, regardless of the length at which they were fixed, compared with those on the contralateral side (stretched Sol: 8.4 +/- 6.5 vs. 46.6 +/- 10.3%, P = 0.0008; shortened Sol: 1.2 +/- 1.6 vs. 50.4 +/- 16.4%, P = 0.0008; stretched EDL: 05 +/- 0.5 vs. 32.9 +/- 17.5%, P = 0. 002; shortened EDL: 3.3 +/- 3.1 vs. 34.7 +/- 11.1%, P = 0.002). Total numbers of myofibers did not change with immobilization. This study shows that limb immobilization prevents the occurrence of the first round of myofiber necrosis in mdx mice and suggests that muscle contractions play a role in the skeletal muscle degeneration of dystrophin-deficient mdx mouse muscles.  相似文献   

19.
Hindlimb unloading of rats results in a diminished ability of skeletal muscle arterioles to constrict in vitro and elevate vascular resistance in vivo. The purpose of the present study was to determine whether alterations in the mechanical environment (i.e., reduced fluid pressure and blood flow) of the vasculature in hindlimb skeletal muscles from 2-wk hindlimb-unloaded (HU) rats induces a structural remodeling of arterial microvessels that may account for these observations. Transverse cross sections were used to determine media cross-sectional area (CSA), wall thickness, outer perimeter, number of media nuclei, and vessel luminal diameter of feed arteries and first-order (1A) arterioles from soleus and the superficial portion of gastrocnemius muscles. Endothelium-dependent dilation (ACh) was also determined. Media CSA of resistance arteries was diminished by hindlimb unloading as a result of decreased media thickness (gastrocnemius muscle) or reduced vessel diameter (soleus muscle). ACh-induced dilation was diminished by 2 wk of hindlimb unloading in soleus 1A arterioles, but not in gastrocnemius 1A arterioles. These results indicate that structural remodeling and functional adaptations of the arterial microvasculature occur in skeletal muscles of the HU rat; the data suggest that these alterations may be induced by reductions in transmural pressure (gastrocnemius muscle) and wall shear stress (soleus muscle).  相似文献   

20.
Gravitational unloading causes atrophy of muscle fibers and can lead to destruction of cytoskeletal and contractile proteins. Along with the atrophic changes, unloaded muscle frequently demonstrates significant shifts in the ratio of muscle fibers expressing fast and slow myosin heavy chain isoforms. Stretching of the m. soleus during hindlimb suspension prevents its atrophy. We supposed that neuronal NO-synthase (NOS) (which is attached to membrane dystrophin-sarcoglycan complex) can contribute to maintenance of protein metabolism in the muscle and prevent its atrophy when m. soleus is stretched. To test this hypothesis, we used Wistar rats (56 animals) in experiments with hindlimb suspension during 14 days. The group of hindlimb suspended rats with stretched m. soleus was injected with L-NAME to block NOS activity. We found that m. soleus mass and its protein content in hindlimb-suspended rats with stretched m. soleus were preserved due to prevention of protein degradation. NOS is involved in maintenance of expression of some muscle proteins. Proliferation of satellite cells in stretched m. soleus may be due to nNOS activity, but maintenance of muscle mass upon stretching is regulated not by NOS alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号