首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein binding to DNA is a fundamental process in gene regulation. Methodologies such as ChIP-Seq and mapping of DNase I hypersensitive sites provide global information on this regulation in vivo. In vitro methodologies provide valuable complementary information on protein–DNA specificities. However, current methods still do not measure absolute binding affinities. There is a real need for large-scale quantitative protein–DNA affinity measurements. We developed QPID, a microfluidic application for measuring protein–DNA affinities. A single run is equivalent to 4096 gel-shift experiments. Using QPID, we characterized the different affinities of ATF1, c-Jun, c-Fos and AP-1 to the CRE consensus motif and CRE half-site in two different genomic sequences on a single device. We discovered that binding of ATF1, but not of AP-1, to the CRE half-site is highly affected by its genomic context. This effect was highly correlated with ATF1 ChIP-seq and PBM experiments. Next, we characterized the affinities of ATF1 and ATF3 to 128 genomic CRE and CRE half-site sequences. Our affinity measurements explained that in vivo binding differences between ATF1 and ATF3 to CRE and CRE half-sites are partially mediated by differences in the minor groove width. We believe that QPID would become a central tool for quantitative characterization of biophysical aspects affecting protein–DNA binding.  相似文献   

2.
3.
We use single-molecule techniques to characterize the dynamics of prokaryotic DNA repair by non-homologous end-joining (NHEJ), a system comprised only of the dimeric Ku and Ligase D (LigD). The Ku homodimer alone forms a ∼2 s synapsis between blunt DNA ends that is increased to ∼18 s upon addition of LigD, in a manner dependent on the C-terminal arms of Ku. The synapsis lifetime increases drastically for 4 nt complementary DNA overhangs, independently of the C-terminal arms of Ku. These observations are in contrast to human Ku, which is unable to bridge either of the two DNA substrates. We also demonstrate that bacterial Ku binds the DNA ends in a cooperative manner for synapsis initiation and remains stably bound at DNA junctions for several hours after ligation is completed, indicating that a system for removal of the proteins is active in vivo. Together these experiments shed light on the dynamics of bacterial NHEJ in DNA end recognition and processing. We speculate on the evolutionary similarities between bacterial and eukaryotic NHEJ and discuss how an increased understanding of bacterial NHEJ can open the door for future antibiotic therapies targeting this mechanism.  相似文献   

4.
A variety of methods are available to analyze protein–DNA interactions in vivo. Two of the most prominent of these methods are chromatin immunoprecipitation (ChIP) and in vivo footprinting. Both of these procedures have specific limitations. For example, the ChIP assay fails to document where exactly a protein binds in vivo. The precipitation of a specific segment of DNA with antibodies directed against DNA-binding proteins does not necessarily indicate that the protein directly interacts with a sequence in the precipitate but could rather reflect protein–protein interactions. Furthermore, the results of in vivo footprinting studies are inconclusive if a DNA sequence is analyzed that is bound by a specific protein in only a certain fraction of cells. Finally, in vivo footprinting does not indicate which protein is bound at a specific site. We have developed a new procedure that combines the ChIP assay and DMS footprinting techniques. Using this method we show here that antibodies specific for USF1 and NF-E2 precipitate the murine β-globin promoter in MEL cells. DMS footprinting analysis of the DNA precipitated with NF-E2 antibodies revealed a protection over a partial NF-E2-binding site in the β-globin downstream promoter region. We believe that this novel method will generally benefit investigators interested in analyzing protein–DNA interactions in vivo.  相似文献   

5.
6.
Recent work has demonstrated concentration-dependent unbinding rates of proteins from DNA, using fluorescence visualization of the bacterial nucleoid protein Fis [Graham et al. (2011) (Concentration-dependent exchange accelerates turnover of proteins bound to double-stranded DNA. Nucleic Acids Res., 39:2249)]. The physical origin of this concentration-dependence is unexplained. We use a combination of coarse-grained simulation and theory to demonstrate that this behavior can be explained by taking into account the dimeric nature of the protein, which permits partial dissociation and exchange with other proteins in solution. Concentration-dependent unbinding is generated by this simple model, quantitatively explaining experimental data. This effect is likely to play a major role in determining binding lifetimes of proteins in vivo where there are very high concentrations of solvated molecules.  相似文献   

7.
Proteins that can bring together separate DNA sites, either on the same or on different DNA molecules, are critical for a variety of DNA-based processes. However, there are no general and technically simple assays to detect proteins capable of DNA looping in vivo nor to quantitate their in vivo looping efficiency. Here, we develop a quantitative in vivo assay for DNA-looping proteins in Escherichia coli that requires only basic DNA cloning techniques and a LacZ assay. The assay is based on loop assistance, where two binding sites for the candidate looping protein are inserted internally to a pair of operators for the E. coli LacI repressor. DNA looping between the sites shortens the effective distance between the lac operators, increasing LacI looping and strengthening its repression of a lacZ reporter gene. Analysis based on a general model for loop assistance enables quantitation of the strength of looping conferred by the protein and its binding sites. We use this ‘loopometer’ assay to measure DNA looping for a variety of bacterial and phage proteins.  相似文献   

8.
The proliferation disrupter (prod) gene of Drosophila melanogaster encodes a novel protein associated with centromeric chromosomal regions that is required for chromatin condensation and cell viability. We have examined the binding of the Prod protein to DNA in vitro. Co-immunoprecipitation experiments demonstrate that Prod is a DNA-binding protein that specifically recognizes the 10 bp AGAATAACAT satellite repeat of D.melanogaster. Footprinting experiments show that the protein interacts with a 5–8 bp target sequence in each 10 bp repeat and suggest that it can mediate condensation of this satellite into a superhelix. Gel retardation experiments indicate that Prod does not have a well defined DNA-binding domain and it binds the satellite in a co-operative manner, probably forming Prod multimers. Since Prod localizes to both heterochromatin and euchromatin in vivo, we discuss the possibility that the ability of pre-existing euchromatic proteins to bind DNA in a co-operative manner, might be a prerequisite of satellite compaction and satellite amplification, thereby providing a basic factor in heterochromatin evolution.  相似文献   

9.
How do site-specific DNA-binding proteins find their targets?   总被引:17,自引:6,他引:11  
Essentially all the biological functions of DNA depend on site-specific DNA-binding proteins finding their targets, and therefore ‘searching’ through megabases of non-target DNA. In this article, we review current understanding of how this sequence searching is done. We review how simple diffusion through solution may be unable to account for the rapid rates of association observed in experiments on some model systems, primarily the Lac repressor. We then present a simplified version of the ‘facilitated diffusion’ model of Berg, Winter and von Hippel, showing how non-specific DNA–protein interactions may account for accelerated targeting, by permitting the protein to sample many binding sites per DNA encounter. We discuss the 1-dimensional ‘sliding’ motion of protein along non-specific DNA, often proposed to be the mechanism of this multiple site sampling, and we discuss the role of short-range diffusive ‘hopping’ motions. We then derive the optimal range of sliding for a few physical situations, including simple models of chromosomes in vivo, showing that a sliding range of ~100 bp before dissociation optimizes targeting in vivo. Going beyond first-order binding kinetics, we discuss how processivity, the interaction of a protein with two or more targets on the same DNA, can reveal the extent of sliding and we review recent experiments studying processivity using the restriction enzyme EcoRV. Finally, we discuss how single molecule techniques might be used to study the dynamics of DNA site-specific targeting of proteins.  相似文献   

10.
11.
We describe a simple and rapid method for the isolation of specific genomic DNA sequences recognized by DNA-binding proteins. This procedure consists of four steps: (1) restriction enzyme digestion and size fractionation of genomic DNA; (2) DNA--protein binding using the gel mobility-shift assay; (3) ligation of isolated DNA fragments followed by transformation of Escherichia coli; and (4) screening of recombinant clones for inserts containing specific DNA--protein binding sequences. We have used this protocol to isolate human DNA sequences, 100-200 bp in size, that are recognized by both partially purified and affinity purified proteins. Unlike other procedures designed to identify genomic target sequences, the method described does not require polymerase chain reaction or successive immunoprecipitations.  相似文献   

12.
A new procedure is described for the preparation of interphase chromatin from cultured mouse cells (line P815). The primary objective of this procedure was to eliminate exchanges of histones between deoxynucleoprotein molecules; this objective is shown experimentally to have been attained. The chromatin is released from cells by the non-ionic detergent Nonidet P40 in medium of low ionic strength (0.1 mM-KNa2PO4), and may then be sedimented as a structure which conserves the general form and ultrastructural characteristics of chromatin within the cell. The nuclear envelope cannot be detected in these structures by electron microscopy, and their content of choline-containing phospholipids is less than 10% of that of nuclei. The maintenance of form in this structure must thus depend on properties of the chromatin itself, and possibly on the more compact peripheral chromatin.Soluble DNP2 prepared by shearing these structures has the same relative contents of DNA, histones, non-histone proteins and RNA as DNP prepared by standard methods. Analyses by electrophoresis on polyacrylamide gels of the non-histone proteins reveals certain differences from the pattern of these proteins in DNP prepared by a salt precipitation method. The template activity for RNA synthesis, in the presence of Escherichia coli RNA polymerase of sheared, soluble DNP prepared by this procedure, is comparable to that of DNP prepared by other methods. However, in the absence of exogenous RNA polymerase the rate of RNA synthesis by structured (unsheared) chromatin is about ten times higher than the rate using sheared DNP.The rapid removal of the nuclear envelope in this lysis procedure allowed experimental examination of the origin of the histones and non-histone proteins of DNP. When DNP was prepared from a mixture of two populations of cells, one containing DNA distinguishable by a density label and the other containing radioactively labelled proteins, radioactive proteins were found exclusively in DNP of normal density, and not in dense DNP and vice versa. It is concluded that the proteins of DNP prepared in this way are not acquired during the preparation procedure but were already associated with DNA in vivo, and that other proteins are not bound non-specifically to DNA during the preparation of DNP. When a mixture of DNP molecules prepared, in this way is precipitated in 150 mm-NaCl and redissolved, some radioactively labelled histones migrate onto dense DNA molecules.This procedure is suitable for routine, quantitative isolation of chromosomal DNP from small numbers of cells; it is also applicable to cells of other cultured lines.  相似文献   

13.
Recent evidence points to homeotic proteins as actors in the crosstalk between development and DNA replication. The present work demonstrates that HOXC13, previously identified as a new member of human DNA replicative complexes, is a stable component of early replicating chromatin in living cells: it displays a slow nuclear dynamics due to its anchoring to the DNA minor groove via the arginine-5 residue of the homeodomain. HOXC13 binds in vivo to the lamin B2 origin in a cell-cycle-dependent manner consistent with origin function; the interaction maps with nucleotide precision within the replicative complex. HOXC13 displays in vitro affinity for other replicative complex proteins; it interacts also in vivo with the same proteins in a cell-cycle-dependent fashion. Chromatin-structure modifying treatments, disturbing origin function, reduce also HOXC13–origin interaction. The described interactions are not restricted to a single origin nor to a single homeotic protein (also HOXC10 binds the lamin B2 origin in vivo). Thus, HOX complexes probably contribute in a general, structure-dependent manner, to origin identification and assembly of replicative complexes thereon, in presence of specific chromatin configurations.  相似文献   

14.
We report a rapid experimental procedure based on high-density in vivo psoralen inter-strand DNA cross-linking coupled to spreading of naked purified DNA, positive staining, low-angle rotary shadowing, and transmission electron microscopy (TEM) that allows quick visualization of the dynamic of heavy strand (HS) and light strand (LS) human mitochondrial DNA replication. Replication maps built on linearized mitochondrial genomes and optimized rotary shadowing conditions enable clear visualization of the progression of the mitochondrial DNA synthesis and visualization of replication intermediates carrying long single-strand DNA stretches. One variant of this technique, called denaturing spreading, allowed the inspection of the fine chromatin structure of the mitochondrial genome and was applied to visualize the in vivo three-strand DNA structure of the human mitochondrial D-loop intermediate with unprecedented clarity.  相似文献   

15.

Background

Mathematical models provide abstract representations of the information gained from experimental observations on the structure and function of a particular biological system. Conferring a predictive character on a given mathematical formulation often relies on determining a number of non-measurable parameters that largely condition the model's response. These parameters can be identified by fitting the model to experimental data. However, this fit can only be accomplished when identifiability can be guaranteed.

Results

We propose a novel iterative identification procedure for detecting and dealing with the lack of identifiability. The procedure involves the following steps: 1) performing a structural identifiability analysis to detect identifiable parameters; 2) globally ranking the parameters to assist in the selection of the most relevant parameters; 3) calibrating the model using global optimization methods; 4) conducting a practical identifiability analysis consisting of two (a priori and a posteriori) phases aimed at evaluating the quality of given experimental designs and of the parameter estimates, respectively and 5) optimal experimental design so as to compute the scheme of experiments that maximizes the quality and quantity of information for fitting the model.

Conclusions

The presented procedure was used to iteratively identify a mathematical model that describes the NF-κB regulatory module involving several unknown parameters. We demonstrated the lack of identifiability of the model under typical experimental conditions and computed optimal dynamic experiments that largely improved identifiability properties.  相似文献   

16.
Apicomplexans, including the pathogens Plasmodium and Toxoplasma, carry a nonphotosynthetic plastid of secondary endosymbiotic origin called the apicoplast. The P. falciparum apicoplast contains a 35 kb, circular DNA genome with limited coding capacity that lacks genes encoding proteins for DNA organization and replication. We report identification of a nuclear-encoded bacterial histone-like protein (PfHU) involved in DNA compaction in the apicoplast. PfHU is associated with apicoplast DNA and is expressed throughout the parasite's intra-erythocytic cycle. The protein binds DNA in a sequence nonspecific manner with a minimum binding site length of ~27 bp and a Kd of ~63 nM and displays a preference for supercoiled DNA. PfHU is capable of condensing Escherichia coli nucleoids in vivo indicating its role in DNA compaction. The unique 42 aa C-terminal extension of PfHU influences its DNA condensation properties. In contrast to bacterial HUs that bend DNA, PfHU promotes concatenation of linear DNA and inhibits DNA circularization. Atomic Force Microscopic study of PfHU–DNA complexes shows protein concentration-dependent DNA stiffening, intermolecular bundling and formation of DNA bridges followed by assembly of condensed DNA networks. Our results provide the first functional characterization of an apicomplexan HU protein and provide additional evidence for red algal ancestry of the apicoplast.  相似文献   

17.
Human disease studies using DNA microarrays in both clinical/observational and experimental/controlled studies are having increasing impact on our understanding of the complexity of human diseases. A fundamental concept is the use of gene expression as a “common currency” that links the results of in vitro controlled experiments to in vivo observational human studies. Many studies – in cancer and other diseases – have shown promise in using in vitro cell manipulations to improve understanding of in vivo biology, but experiments often simply fail to reflect the enormous phenotypic variation seen in human diseases. We address this with a framework and methods to dissect, enhance and extend the in vivo utility of in vitro derived gene expression signatures. From an experimentally defined gene expression signature we use statistical factor analysis to generate multiple quantitative factors in human cancer gene expression data. These factors retain their relationship to the original, one-dimensional in vitro signature but better describe the diversity of in vivo biology. In a breast cancer analysis, we show that factors can reflect fundamentally different biological processes linked to molecular and clinical features of human cancers, and that in combination they can improve prediction of clinical outcomes.  相似文献   

18.
Viral-vector mediated gene transfer to cerebellar Purkinje neurons in vivo is a promising avenue for gene therapy of cerebellar ataxias and for genetic manipulation in functional studies of animal models of cerebellar disease. Here, we report the results of experiments designed to identify efficient methods for viral transduction of adult murine Purkinje neurons in vivo. For these analyses, several lentiviral and an adeno-associated virus (AAV), serotype 1, vector with various promoter combinations were generated and compared for in situ transduction efficiency, assayed by fluorescent reporter protein expression in Purkinje neurons. Additional experiments were also conducted to identify the optimal experimental strategy for co-expression of two proteins in individual Purkinje neurons. Of the viruses tested, AAV1 with a CAG promoter exhibited the highest specificity for Purkinje neurons. To deliver two proteins to the same Purkinje neuron, several methods were tested, including: an internal ribosome entry site (IRES), a 2A sequence, a dual promoter vector, and co-injection of two viruses. Efficient expression of both proteins in the same Purkinje neuron was only achieved by co-injecting two AAV1-CAG viruses. We found that use of an AAV1-CAG virus outperformed similar lentivirus vectors and that co-injection of two AAV1-CAG viruses could be used to efficiently deliver two proteins to the same Purkinje neuron in adult mice. AAV1 with a CAG promoter is highly efficient and selective at transducing adult cerebellar Purkinje neurons and two AAV-CAG viruses can be used to efficiently express two proteins in the same neuron in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号