首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rabbit brain cortical membranes, which have been extracted with 2 M KCl, hydrolyze exogenously added [3H]phosphatidylinositol [( 3H]PI) in a guanine nucleotide- and carbachol-dependent manner. Both oxotremorine-M and carbachol are full agonists with EC50 values of 8 and 73 microM, respectively. Pirenzepine and atropine inhibit carbachol-stimulated [3H]PI hydrolysis. The hydrolysis-resistant guanine nucleotide analog guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) is the most potent in supporting carbachol-stimulated hydrolysis of PI. There is no effect of carbachol in the absence of guanine nucleotides or in the presence of 100 microM adenosine 5'-O-(3-thiotriphosphate), adenosine-5'-(beta, gamma-imido)triphosphate, or sodium pyrophosphate. Guanylyl-5'-(beta,gamma-imido)triphosphate [Gpp(NH)p] in the presence of carbachol also stimulates PI hydrolysis although much less than that seen with GTP gamma S. GDP and Gpp(NH)p are potent antagonists of the GTP gamma S-dependent carbachol response. Optimal stimulation by carbachol and GTP gamma S was observed at 0.3-1 microM free Ca2+ and 6 mM MgCl2. Limited trypsinization resulted in loss of receptor-regulated PI breakdown and a slight decrease in basal activity. These results demonstrate that phospholipase C hydrolysis of exogenous PI by rabbit cortical membranes may be stimulated by carbachol in a guanine nucleotide-dependent manner.  相似文献   

2.
The guanine nucleotides guanosine 5'[beta, gamma-imido]triphosphate (Gpp[NH]p), guanosine 5'-[gamma-thio]-triphosphate (GTP gamma S), GMP, GDP and GTP stimulated the hydrolysis of inositol phospholipids by a phosphodiesterase in rat cerebral cortical membranes. Addition of 100 microM-Gpp[NH]p to prelabelled membranes caused a rapid accumulation of [3H )inositol phosphates (less than 30 s) for up to 2 min. GTP gamma S and Gpp [NH]p caused a concentration-dependent stimulation of phosphoinositide phosphodiesterase with a maximal stimulation of 2.5-3-fold over control at concentrations of 100 microM. GMP was as effective as the nonhydrolysable analogues, but much less potent (EC50 380 microM). GTP and GDP caused a 50% stimulation of the phospholipase C at 100 microM and at higher concentrations were inhibitory. The adenine nucleotides App[NH]p and ATP also caused small stimulatory effects (64% and 29%). The guanine nucleotide stimulation of inositide hydrolysis in cortical membranes was selective for inositol phospholipids over choline-containing phospholipids. Gpp[NH]p stimulated the production of inositol trisphosphate and inositol bisphosphate as well as inositol monophosphate, indicating that phosphoinositides are substrates for the phosphodiesterase. EGTA (33 microM) did not prevent the guanine nucleotide stimulation of inositide hydrolysis. Calcium addition by itself caused inositide phosphodiesterase activation from 3 to 100 microM which was additive with the Gpp[NH]p stimulation. These data suggest that guanine nucleotides may play a regulatory role in the modulation of the activity of phosphoinositide phosphodiesterase in rat cortical membranes.  相似文献   

3.
Calcium-sensitive inositide release in a purified rat liver plasma membrane preparation is increased by calcium-mobilizing hormones in the presence of guanine nucleotides. Vasopressin-stimulated inositide release is evident in the presence of GTP or its nonhydrolyzable analogs guanyl-5'-yl imidodiphosphate and guanosine 5'-(3-O-thio)triphosphate (GTP gamma S). The stimulation of inositide release by (-)-epinephrine (alpha 1), angiotensin II, or vasopressin in the presence of either 1 microM or 10 microM GTP gamma S correlates with the number of receptors present for each hormone. The guanine nucleotide and hormonal stimulation is evident on both inositol trisphosphate production and phosphatidylinositol bisphosphate degradation. Ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (1 mM) completely abolishes stimulation by guanine nucleotides and hormone. Prior treatment of plasma membranes with cholera toxin or islet activating protein or prior injection of animals with islet activating protein does not affect stimulation of inositide release by GTP gamma S or GTP gamma S plus vasopressin. Stimulation by GTP gamma S is dependent upon magnesium and is inhibitable by guanosine 5'-(2-O-thio) diphosphate. Inositide release from the plasma membrane exhibits half-maximal stimulation by calcium at approximately 100 nM free calcium in the presence of 1.5 mM MgCl2 and at approximately 10 microM free calcium in the presence of 10 mM MgCl2. Addition of guanine nucleotides decreases the requirement for calcium and also increases the activity at saturating calcium. The results presented suggest that calcium-mobilizing hormones stimulate polyphosphoinositide breakdown in rat liver plasma membranes through a novel guanine nucleotide binding protein.  相似文献   

4.
Isolated olfactory cilia from the channel catfish (Ictalurus punctatus) exhibited phosphatidylinositol-4,5-bisphosphate phosphodiesterase (E.C.3.1.4.11) activity. The phosphodiesterase activity was stimulated in the presence of an odorant for the catfish, namely the amino acid L-alanine. The enzyme activity was also stimulated in the presence of GTP and its nonhydrolyzable analogues. The activation of the phosphodiesterase by guanine nucleotides, in combination with the identification of guanine nucleotide-binding protein(s) in the isolated cilia, indicate the probable participation of a guanine nucleotide-binding protein in stimulation of phosphoinositide turnover in the olfactory receptor neuron.  相似文献   

5.
M A Oleshansky 《Life sciences》1980,27(12):1089-1095
Cyclic AMP phosphodiesterase activity in a particulate fraction of rat striatum is stimulated two fold by cyclic GMP. An investigation of the effects of various purine compounds on basal and cyclic GMP-stimulated cyclic AMP phosphodiesterase activity as measured at a low substrate concentration (3 uM) was carried out. Adenosine inhibits cyclic GMP-stimulated cyclic AMP phosphodiesterase activity with an IC50 of 400 uM while inhibiting basal cyclic AMP phosphodiesterase activity with an IC50 of 2.4 mM. Adenosine blocks cyclic GMP stimulation of cyclic AMP hydrolysis with an IC50 of 80 uM. Inosine and hypoxanthine have a similar profile of action but are less effective with IC50's of 200 and 400 uM respectively on cyclic GMP stimulation of phosphodiesterase activity and only 20–40% inhibition of basal enzyme activity up to 2.4 mM. Adenine, guanosine and guanine block cyclic GMP stimulation of cyclic AMP phosphodiesterase activity with IC50's of 100–200 uM. Classical phosphodiesterase inhibitors of the alkylxanthine type are also selective for the stimulated enzyme with IC50's of 200 and 25 uM for theophylline and IBMX on cyclic GMP-stimulated cyclic AMP hydrolysis and IC50's of 500 and 50 uM respectively on basal phosphodiesterase activity. Theophylline and IBMX are potent inhibitors of cyclic GMP stimulation of cyclic AMP phosphodiesterase activity with IC50's of 50 and 5 uM. These findings suggest a role for physiologically available purine compounds and alkylxanthines in the regulation of cyclic nucleotide metabolism through interaction with cyclic GMP stimulation of cyclic AMP phosphodiesterase activity.  相似文献   

6.
The effects of various inhibitors on the activity of calcium-independent and calcium-dependent phosphodiesterases from rat cerebral cortex were examined. While the agents varied greatly in their relative potency, each was found to be approximately equipotent in inhibiting the calcium-dependent hydrolysis of either cyclic AMP or cyclic GMP. In contrast, the inhibitors displayed a marked substrate specificity for the calcium-independent enzyme with ratios of IC50 values for inhibition of cyclic GMP hydrolysis when compared to cyclic AMP hydrolysis in decreasing order being: ZK 62711 (? 100) > Ro 20–1724 (?>25) papaverine (13) > 7-benzyl IBMX (4) > quercetin and kaempferol (2). The differential selectivity of the inhibitors for the two enzymes was most pronounced for ZK 62711 and Ro 20–1724 which were at least 25–100-times more potent in inhibiting the calcium-independent hydrolysis of cyclic AMP when compared to the calcium-dependent hydrolysis of cyclic AMP. In contrast, 7-benzyl IBMX, kaempferol and quercetin were 8–100-times more effective as inhibitors of cycluc GMP hydrolysis by the calcium-dependent phosphodiesterase while 7-benzyl IBMX and trimazosin displayed a similar enzyme selectivity using cyclic AMP as substrate. With the exception of papaverine, all agents were competitive inhibitors of the calcium-dependent phosphodiesterase. The type of inhibition observed with the calcium-independent enzyme was dependent on the substrate employed. The specificity of potassium ions in inhibiting the activity of the calcium-dependent phosphodiesterase and deoxycyclic AMP in inhibiting the calcium-independent enzyme was found to provide a convenient means to assess the effects of agents on these activities in crude extracts of cerebral cortex.  相似文献   

7.
A calcium-dependent cyclic nucleotide phosphodiesterase from rat cerebrum was, in the absence of activator protein, inhibited by various monovalent cations. The inhibition was rapid, readily reversible, and concentration-dependent, with 100 mM cesium, rubidium, or potassium ion inhibiting essentially all basal enzyme activity, while 100 mM sodium or lithium ions produced only moderate inhibition. The potency of the cations in inhibiting the enzyme was Cs greater than or equal to Rb greater than K greater than Na greater than or equal to Li. Potassium ions increased the apparent Km for cyclic GMP and cyclic AMP by 3- and 5-fold, respectively. At 100 mM, the monovalent cations inhibited enzyme activated by the calcium-dependent activator by only 15 to 30%, while at 55 mM no inhibition pertained. Potassium and sodium ions at 55 mM had no effect on the calcium-independent phosphodiesterase from rat cerebrum. The results indicate that at normal intracellular concentrations of potassium ions the activity of the calcium-dependent phosphodiesterase is virtually completely dependent on the presence of calcium plus activator protein.  相似文献   

8.
Synaptosomes and plasma membranes obtained from rat brain display ectoenzymatic hydrolytic activity responsible for hydrolysis of the neurotransmitter/neuroregulatory nucleotides diadenosine polyphosphates. Intact synaptosomes and plasma and synaptic membranes isolated by sucrose-gradient ultracentrifugation from several brain regions (hypothalamus, hippocampus, temporal cortex, frontal cortex striatum and cerebellum) degraded the fluorogenic substrates diethenoadenosine polyphosphates up to ethenoadenosine as by-product. Purified ectoenzyme cleaved substrates always releasing the mononucleotide moieties ethenoadenosine 5'-monophosphate and the corresponding ethenoadenosine (n-1) 5'-phosphate. Ectoenzymatic hydrolysis reached maximal activity at pH 9.0 (pH range 6.5-9.0) and was activated by Ca(2+) and Mg(2+) ions, with maximal effects around 2.0 mM cation. EDTA drastically reduced activity and Zn(2+) was required for enzyme reactivation. Hydrolysis of substrates followed hyperbolic kinetics with K(m) values in the 3-10 microM range. Diadenosine polyphosphates and heparin behaved as competitive inhibitors in the enzymatic hydrolysis of diethenoadenosine polyphosphates and AMP, ATP, alpha,beta-methyleneADP, ADPbetaS ATPgammaS, beta,gamma-methyleneATP, suramin and diethyl pyrocarbonate were also inhibitors. Ectoenzymatic activity shared the typical characteristics of members of the ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) family and inhibition data suggest that NPP1 ectoenzyme is involved in the cleavage of extracellular diadenosine polyphosphates in brain. Synaptic membranes from cerebellum, hypothalamus and hippocampus presented the highest activities and no activity differences were observed between young and aged animals. However, plasma membranes showed a more homogeneous distribution of ectoenzymatic activity but a general increase was detected in aged animals. Enhancement of ectoenzymatic diadenosine polyphosphate cleaving activity found in plasma membranes from old animals could play a deleterious role in aged brain by limiting neuroprotective effects reported for extracellular diadenosine tetraphosphate.  相似文献   

9.
The effect of guanine nucleotides on platelet and calf brain cytosolic phospholipase C was examined in the absence of membranes or detergents in an assay using labeled lipid vesicles. Guanine nucleotides stimulate hydrolysis of [3H]phosphatidylinositol 4,5-bisphosphate [( 3H]PtdIns-4,5-P2) catalyzed both by enzyme from human platelets and by partially purified enzyme from calf brain. Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) was the most potent guanine nucleotide with a half-maximal stimulation at 1-10 microM, followed by guanosine 5'-(beta, gamma-imido)triphosphate greater than GTP greater than GDP = guanosine 5'-O-(2-thiodiphosphate). Guanosine 5'-O-(2-thiodiphosphate) was able to reverse the GTP gamma S-mediated stimulation. NaF also stimulated phospholipase C activity, further implying a role for a guanine nucleotide-binding protein. In the presence of GTP gamma S, the enzyme cleaved PtdIns-4,5-P2 at higher pH values, and the need for calcium ions was reduced 100-fold. The stimulation of PtdIns-4,5-P2 hydrolysis by GTP gamma S ranged from 2 to 25-fold under various conditions, whereas hydrolysis of [3H]phosphatidylinositol was only slightly affected by guanine nucleotides. We propose that a soluble guanine nucleotide-dependent protein activates phospholipase C to hydrolyze its initial substrate in the sequence of phosphoinositide-derived messenger generation.  相似文献   

10.
Opiate agonists inhibit adenylate cyclase in brain membranes, but under normal conditions the maximal inhibition is small (10-15%). When rat brain membranes were preincubated at pH 4.5, washed, and then assayed for adenylate cyclase at pH 7.4, stimulation of activity by agents (fluoride, guanylyl-5'-imidodiphosphate, cholera toxin) that act through the stimulatory GTP-binding coupling protein (Gs) protein was lost. At the same time, inhibition of basal adenylate cyclase by opiate agonists was increased to a maximum of 30-40%. Opiate inhibition was maximal at low magnesium concentrations (less than 5 mM), required guanine nucleotides, and decreased the Vmax, not Km, of the enzyme. Incubation of membranes with pertussis toxin lowered the apparent affinity for agonists in inhibiting activity. The delta opioid agonists were more potent than mu agonists, and the Ke values for naloxone in blocking agonist inhibition were similar for both mu and delta agonists (50-90 nM). These results suggest that inhibition of adenylate cyclase in brain is not mediated by mu opiate receptors, but whether classic high-affinity delta and kappa receptors are involved with this enzyme cannot be confirmed by these experiments.  相似文献   

11.
Thrombin inhibits adenylate cyclase and stimulates GTP hydrolysis by high-affinity GTPase(s) in membranes of human platelets at almost identical concentrations. Both of these thrombin actions are similar to those observed with agonist-activated alpha 2-adrenoceptors coupling to the inhibitory guanine nucleotide-binding protein N1. However, stimulation of GTP hydrolysis caused by adrenaline (alpha 2-adrenoceptor agonist) and by thrombin at maximally effective concentrations was partially additive, whereas with regard to adenylate cyclase inhibition no additive response was observed. Furthermore, treatment of platelet membranes with pertussis toxin, which inactivates Ni and largely abolishes thrombin- and adrenaline-induced adenylate cyclase inhibition and adrenaline-induced GTPase stimulation, decreased the thrombin-induced stimulation of GTP hydrolysis by only about 30%. Additionally, the thiol reagent N-ethylmalemide (NEM) at rather low concentrations abolished thrombin- and adrenaline-induced stimulation of GTP hydrolysis was decreased by only 30-40% by treatment of platelet membranes with even high concentrations of NEM. Treatment with cholera toxin, which inhibits GTPase activity of the Ns (stimulatory guanine nucleotide-binding) protein, has no effect on thrombin-stimulated GTP hydrolysis. The data suggest that thrombin interaction with its receptor sites in platelet membranes leads to stimulation of two GTP-hydrolysing enzymes. One of these enzymes is apparently Ni and is also activated by agonist-activated alpha 2-adrenoceptors and is inactivated by pertussis toxin and NEM treatment. The other GTP-hydrolysing enzyme activated by thrombin may represent a guanine nucleotide-binding protein apparently involved in the coupling of thrombin receptors to the phosphoinositide phosphodiesterase.  相似文献   

12.
Treatment of membranes with islet activating protein (IAP), a toxin from Bordetella pertussis, results in abolition of GTP-dependent, receptor-mediated inhibition of adenylate cyclase. This appears to result from IAP-catalyzed ADP-ribosylation of a 41,000-Da membrane-bound protein. A protein with 41,000- and 35,000-Da subunits has been purified from rabbit liver membranes as the predominant substrate for IAP. This protein has now been shown to be capable of regulating membrane-bound adenylate cyclase activity of human platelets under various conditions. The characteristics of the actions of the IAP substrate are as follows. 1) Purified 41,000/35,000-Da dimer is capable of restoring the inhibitory effects of guanine nucleotides and the alpha 2-adrenergic agonist, epinephrine, on the adenylate cyclase activity of IAP-treated membranes. 2) The subunits of the dimer dissociate in the presence of guanine nucleotide analogs or A1(3+), Mg2+, and F-. The 41,000-Da subunit has a high affinity binding site for guanine nucleotides. 3) The resolved 35,000-Da subunit of the dimer mimics guanine nucleotide- and epinephrine-induced inhibition of adenylate cyclase. 4) The resolved (unliganded) 41,000-Da subunit stimulates adenylate cyclase activity and relieves guanine nucleotide- +/- epinephrine-induced inhibition of the enzyme. In contrast, the GTP gamma S-bound form of the 41,000-Da subunit inhibits adenylate cyclase activity, although with lower apparent affinity than does the 35,000-Da subunit. 5) The 35,000-Da subunit increases the rate of deactivation of Gs, the stimulatory regulatory protein of adenylate cyclase. In contrast, the 41,000-Da subunit can interact with Gs and inhibit its deactivation. These data strongly suggest that the IAP substrate is another dimeric, guanine nucleotide-binding regulatory protein and that it is responsible for inhibitory modulation of adenylate cyclase activity.  相似文献   

13.
Apo-cellular retinol-binding protein (apoCRBP) activated the hydrolysis of endogenous retinyl esters in rat liver microsomes by a cholate independent retinyl ester hydrolase. A Michaelis-Menten relationship was observed between the apoCRBP concentration and the rate of retinol formation, with half-maximum stimulation at 2.6 +/- 0.6 microM (mean +/- S.D., n = 5). Two other retinol-binding proteins, bovine serum albumin and beta-lactoglobulin, acceptors for the rapid and spontaneous hydration of retinol from membranes, had no effect up to 90 microM. These data suggest activation of the hydrolase by apoCRBP directly, rather than by facilitating removal of retinol from membranes. The hydrolase responding was the cholate-independent/cholate-inhibited retinyl ester hydrolase as shown by: 60% inhibition of the apoCRBP effect by 3 mM cholate; apoCRBP enhancement of retinyl ester hydrolysis in liver microsomes that had no detectable cholate-enhanced activity; inhibition of cholate-dependent, but not apoCRBP-stimulated retinyl ester hydrolysis by rabbit anti-rat cholesteryl esterase. Compared to the rate (mean +/- S.D. of [n] different preparations) supported by 5 microM apoCRBP in liver microsomes of 6.7 +/- 3.7 pmol/min/mg protein [10], microsomes from rat lung, kidney, and testes had endogenous retinyl ester hydrolysis rates of 1.8 +/- 0.3 [5], 0.5 +/- 0.2 [3], and 0.3 +/- 0.2 [5] pmol/min/mg protein, respectively. N-Ethylmaleimide and N-tosyl-L-phenylalanine chloromethyl ketone were potent inhibitors of apoCRBP-stimulated hydrolysis with IC50 values of 0.25 and 0.15 mM, respectively, but phenylmethylsulfonyl fluoride and diisopropyl-fluorophosphate were less effective with IC50 values of 1 mM, indicating the importance of imidazole and sulfhydryl groups to the activity. These data provide evidence of a physiological role for the cholate-independent hydrolase in retinoid metabolism and suggest that apoCRBP is a signal for retinyl ester mobilization.  相似文献   

14.
We previously demonstrated that the hydrolysis of GTP by canine cardiac sarcoplasmic reticulum is not sensitive to calcium and does not support the translocation of calcium and oxalate into the vesicular space. In response to GTP, however, calcium is accumulated into a compartment which is sensitive to pH and ionophore. In the present paper, we further explored the relationship between GTP hydrolysis and GTP-induced calcium accumulation. Both ATP- and GTP-induced calcium accumulation were prevented by the sulfhydryl reagent, N-ethylmaleimide (NEM; I50 = 0.2 mM). In contrast, the sensitivity of NTP hydrolysis to NEM differed markedly; GTPase activity was not affected by NEM, whereas ATPase activity was markedly inhibited. Conversely, although the GTPase was noncompetitively inhibited by the ATP analogue, adenylyl imidodiphosphate (Ki = 8 microM), and was competitively inhibited by the GTP analogue, guanylyl imidodiphosphate (Ki = 60 microM), GTP-induced calcium accumulation was not affected by the NTP analogues at any concentration. Therefore, the GTP-dependent accumulation of calcium into the pH- and ionophore-sensitive compartment of cardiac SR may not require GTP hydrolysis but may be dependent on GTP binding. The previously reported noncompetitive inhibition of the GTPase by ATP was also observed when the calcium-dependent hydrolysis of ATP was prevented by NEM (Ki = 1.2 microM). Along with the noncompetitive inhibition of the GTPase by adenylyl imidodiphosphate, the inhibition of the GTP by ATP in the presence of NEM suggests that ATP binding may be involved in the observed inhibition. The Ki for the noncompetitive inhibition of GTPase activity is compatible with ATP binding to the high affinity catalytic site of the ATPase. Thus, although GTP-induced calcium accumulation differs somewhat from ATP-dependent calcium translocation, the similarities between the two processes (i.e. similar time courses and sensitivity to pH, ionophore, and sulfhydryl modification) suggest that they may be related in some manner.  相似文献   

15.
The effect of GTP on the hydrolysis of [3H]phosphatidyinositol (PI), [3H]phosphatidylinositol-4-phosphate (PIP) and [3H]phosphatidylinositol-4,5-bisphosphate (PIP2) by phospholipase C of rat brain plasma membrane, microsomes and cytosol was determined. Moreover the regulation of PI and PIP phosphorylation by GTP in brain plasma membrane was investigated.In the presence of EGTA PIP2 was actively degradted, opposite to PI and PIP which require Ca2+ for their hydrolysis. Addition of calcium ions in each case caused stimulation of inositide phosphodiesterase(s). GTP independently of calcium ions activates by about 3 times phospholipase C acting on PIP and PIP2 exclusively in the plasma membrane. PI degradation was unaffected by GTP. In the presence of Ca2+ guanine nucleotides have synergistic stimulatory effect on plasma membrane bound phospholipase C acting on PIP2. PIP kinase of brain plasma membrane was stimulated by GTP by about 20–100% in the presence of exogenous and endogenous substrate respectively. PI kinase was negligible activated by about 20% exclusively in the presence of endogenous substrate. These results indicated that guanine nucleotide modulates the level of second messengers as diacylglycerol and IP3 through the activation of phospholipase C acting on PIP2 exclusively in brain plasma membrane. The stimulation of phospholipase C by GTP may occur directly or through the enhancement of substrate level PIP2 due to stimulation of PIP kinase.  相似文献   

16.
Isolated male germ cells of the mouse possess a heat-stable stimulatory activity of Ca2+-dependent, calmodulin-free phosphodiesterase. Ionic exchange chromatography allowed partial purification of the activator and the isolation of multiple forms of phosphodiesterase stimulation inhibitor. The activator has been identified as calmodulin on the basis of chromatographic behaviour and electrophoretic mobility. Quantitative analysis showed variations of calmodulin levels at different stages of spermatogenesis. Quantitative analysis of cyclic nucleotide hydrolysis in germ cell cytosol showed that the activity of Ca2+-dependent phosphodiesterase is different in meiotic and post-meiotic mouse male germ cells. These data suggest that calcium-dependent pathway and a Ca2+-dependent regulation of cyclic nucleotides are present in developing germ cells.  相似文献   

17.
1. The effect of dimethyl sulfoxide (Me2SO) and ethylene glycol on two different preparations of the sarcoplasmic reticulum, i.e. native membranes and membranes whose phospholipids were hydrolyzed by phospholipase A, were investigated using ATP and p-nitrophenylphosphate as substrates. 2. Me2SO and ethylene glycol inhibit both calcium-dependent ATP hydrolysis and ATP-supported calcium transport by native vesicles. 3. In contrast, calcium-dependent p-nitrophenylphosphatase activity as well as p-nitrophenyl-phosphate-supported calcium transport are activated by both agents at concentrations lower than 30% (v/v). 4. Me2SO strongly stimulates p-nitrophenylphosphate activity of vesicles treated with phospholipase A, but has relatively little effect on p-nitrophenylphosphatase activity of native vesicles. 5. Up to a concentration of approximately 40% Me2SO (v/v) the inhibiting effect on the calcium-dependent ATPase is fully reversible, but only partially reversible on calcium transport. 6. In the concentration range where Me2SO inhibits ATP hydrolysis and calcium transport, it does not affect ATP binding to the membranes nor calcium-dependent formation of phospho-protein. 7. The rate of dephosphorylation as well as the rate of Pi exchange between ATP and ADP are markedly reduced by the presence of 30% Me2SO (v/v). 8. While Me2SO inhibits passive calcium efflux, ethylene glycol produces a considerable activation. 9. ADP-dependent calcium efflux and ATP synthesis are activated by 15% Me2SO (v/v). Ethylene glycol reduces both activities. 10. The results suggest that the respective substrate-enzyme complexes are differently affected by the agents, resulting either in inhibition or stimulation  相似文献   

18.
Cyclic nucleotide phosphodiesterase activity in brush border membranes, isolated from proximal tubule cells of the rabbit renal cortex, was investigated. Brush border cAMP phosphodiesterase activity was tightly bound to the membrane and was distinguished from the soluble phosphodiesterase activity of the renal cortex cytosol. Multiple forms of the brush border membrane cAMP phosphodiesterase activity, dependent on the concentration of substrate, were found. When assayed with 1 μm or 1 mm cAMP, activities differed in pH optimum, effects of various divalent cations, inhibition by metal ion chelators and reactivation by metals, thermolability, sensitivity to inhibitors and specificity.Renal brush border membranes also possessed cGMP phosphodiesterase activity. cAMP was a relatively poor inhibitor of the hydrolysis of 1 μm cGMP and the hydrolysis of 1 μm cAMP was virtually insensitive to cGMP. These findings suggest that the low substrate concentration-dependent cAMP phosphodiesterase was distinct from the low substrate concentration-dependent cGMP phosphodiesterase.Heat-stable effectors of phosphodiesterase activity were found in the renal cortex. One effector activated soluble cAMP phosphodiesterase. Activation was decreased by EGTA, enhanced by Ca2+ and diminished by preincubating the effector with proteolytic enzymes. The other heat-stable effector inhibited brush border membrane phosphodiesterase activity. Inhibition was unaffected by metal ions, unaffected by preincubating the effector with proteolytic enzymes, but diminished by preincubation with phospholipase C and neuraminidase.It is suggested that changes in the activity of the enzyme (or enzymes), which in turn controls, in part, the effective concentration of cAMP at its site (or sites) of action in the renal cell, may be significant in regulating hormonal-dependent transport in the proximal tubule.  相似文献   

19.
Pertussis toxin-catalyzed ADP-ribosylation of the guanine nucleotide-binding proteins Gi and Go is shown to proceed in Mg2+-digitonin extracts from rat brain; the Mr 41,000 and Mr 39,000 peptides are labelled there as in the membranes. The ADP-ribosylation in detergent solution retains the differential sensitivity to guanine nucleotide analogues. This reaction also removes the partial inhibition by the guanine nucleotides of the binding of opioid agonists, as does the same treatment in the membranes. The partial inhibition of agonist binding by Na+, however, is left unchanged. The binding of the antagonist naloxone is little affected by Na+ or by guanine nucleotides in the treated membranes, but the treated soluble receptors show an enhanced binding in high-Na+ medium, although still guanine nucleotide insensitive. The data suggest that the toxin reaction in the absence of guanine nucleotides and agonist stabilizes the opioid receptor in a receptor-G-protein coupled state which is no longer sensitive to guanine nucleotides but retains its sensitivity to the Na+ ions.  相似文献   

20.
The influence of detergents on fluoride- and vanadate-stimulated adenylate cyclases was investigated with enzyme from liver and adipocyte plasma membranes. Stimulation of the adipocyte cyclase by Na3VO4 was maximal (sixfold) at 3 mM, was not additive with fluoride stimulation, and was readily reversed by washing of the membranes. Vanadate stimulation of the hepatic cyclase was specifically blocked by catechol, which had no effect on basal activity or on fluoride- or glucagon-stimulated activities. The hepatic enzyme, stimulated by fluoride ion, guanyl-5'-yl-(beta,gamma-imino)diphosphate (GPP(NH)P), or GPP(NH)P and glucagon, was inhibited by vanadate with 50% inhibition seen with 2 to 6 mM vanadate. The fluoride-activated adipocyte adenylate cyclase was inhibited by guanosine 5'-O-(3-thio-triphosphate) (GTP gamma S) more potently than by GPP(NH)P, with 50% inhibition being seen with 10 nM GTP gamma S or 100 nM GPP(NH)P. These nucleotides also inhibited the vanadate-stimulated enzyme, but with one-third the potency seen with the fluoride-activated cyclase. Dispersion of the adipocyte cyclase by Lubrol-PX into a 30,000g supernatant fraction caused no change in activation of the enzyme by fluoride, but reduced vanadate-stimulated activity 80%. By comparison, this treatment enhanced stimulation by GPP(NH)P twofold and by GTP gamma S threefold. More importantly, perhaps, the treatment with detergent blocked inhibition of the basal enzyme by GTP, blocked inhibition of fluoride- and vanadate-stimulated cyclases by GTP, GPP(NH)P, or GTP gamma S, and rendered vanadate-stimulated activity sensitive to enhancement by guanine nucleotides. The data indicate differences in the actions of vanadate and fluoride, made evident by the influence of guanine nucleotides and detergent treatment. The observations would be consistent with the idea that the effects of vandate may be due to the formation of GDP X V on the enzyme. The data strongly suggest that treatment of adenylate cyclase with Lubrol-PX causes a functional blockade in the guanine nucleotide-dependent inhibitory regulation (mediated by Ni), thereby allowing activation by the stimulatory guanine nucleotide-dependent regulatory component (Ns).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号