首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary Each of the three genomes in hexaploid wheat controls the expression of a specific lectin in the embryo. The chromosomes which control their synthesis were determined using nullisomic-tetrasomic and inter-varietal chromosome substitution lines of Chinese Spring. All three wheat lectins were shown to be controlled by the homoeologous group 1 chromosomes. Using ditelosomic lines of Chinese Spring the lectin genes could be localized on the long arms of chromosomes 1A and 1D. Inter-specific addition and substitution lines of Aegilops umbellulata chromosomes to Chinese Spring indicated that chromosome 1U, which is homoeologous to the group 1 chromosomes of wheat, controls lectin synthesis.  相似文献   

2.
Summary A triple (1AL.1RS/1BL.1RS/1DL.1RS) and three double (1AL.1RS/1BL.1RS, 1AL.1RS/1DL.1RS, 1BL.1RS/1DL.1RS) wheat-rye 1RS translocation stocks were isolated from a segregating population using the Gli-1, Tri-1 and Sec-1 seed proteins as genetic markers. These stocks carried 42 chromosomes and formed the expected multivalents (frequency of 14–25%) at metaphase 1. They gave floret fertility ranging from 40–60%. These stocks were subsequently used to determine the genetic control of low-molecular-weight (LMW) glutenin subunits in Chinese Spring and Gabo by means of two-step one-dimensional SDS-PAGE. All of the B subunits and most of the C subunits of glutenin were shown to be controlled by genes on the short arms of group-1 chromosomes in these wheats. The other C subunits were not controlled by group-1 chromosomes. The triple translocation line served as a suitable third parent in producing test-cross seeds for studying the inheritance of the LMW glutenin subunits and gliadins in wheat cultivars, e.g. Chinese Spring and Orca. The segregation patterns of the LMW glutenin subunits in these cultivars revealed that the subunits were inherited in clusters and that their controlling genes (Glu-3) were tightly linked with those controlling gliadins (Gli-1). The LMW glutenin patterns d, d and e in Orca segregated as alternatives to the patterns a, a and a in Chinese Spring controlled by Glu-A3, Glu-B3 and Glu-D3 loci on chromosome arms 1AS, 1BS and 1DS, respectively, thus indicating that these patterns were controlled by allelic genes at these loci.  相似文献   

3.
Summary The electrophoretic mobilities of the high-molecular-weight (HMW) subunits of glutenin from 7 varieties were compared by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate (SDS). In total, 12 subunits were clearly resolved and they had nominal molecular weights of between 95,000 and 140,000. The chromosomes which control their synthesis were determined using monosomic lines and inter-varietal substitution lines. All subunits were shown to be controlled by the homoeologous group 1 chromosomes. Each variety contains between 3 and 5 HMW subunits; two are under the control of the 1D chromosome, 1 or 2 are controlled by chromosome 1B and 0 or 1 by chromosome 1A. The segregation of two 1D-controlled subunits of similar electrophoretic mobilities were analysed in the F2 progeny of crosses between Chinese Spring and Holdfast. The results suggest that the genes which code for the two proteins are allelic.  相似文献   

4.
Summary The C-banding pattern of nine meiotic chromosomes of common wheat (Triticum aestivum L.) as described. In F1s of crosses between monosomics of Chinese Spring and two Spanish wheat cultivars, univalent chromosomes were used to aid the recognition and analysis of the C-banding pattern for the individual chromosomes. The identification of one chromosome involved in one translocation in Chinese Spring x Pané 247 has been made through heterochromatin bands observed in the chromosomes involved in multivalents.  相似文献   

5.
Summary Electrophoretical analyses of the gliadin fraction extracted from seeds of the intervarietal substitution lines of T. aestivum ssp. spelta in the T. aestivum ssp. vulgare cv Chinese Spring for the homoeologous groups 1 and 6 and substitution lines of 6D chromosome of Chinese Spring in the durum wheat cv Langdon allowed the identification of seeds without gliadin proteins controlled by genes on chromosome 6A and 6B. A gliadin component of Chinese Spring, not previously assigned to any specific chromosome, is controlled by chromosome 6D in the 6D (6A) and 6D (6B) disomic substitution lines of Langdon. Additional genes controlling the synthesis of this component may be present on other chromosomes, very likely 6A and 6B, since the analysis of the Chinese Spring compensating nullisomic-tetrasomics involving the 6D chromosome does not show the loss of this component or any apparent change in staining intensity. Chromosomal location data and two-dimensional gliadin maps reveal close homologies between the two hexaploid wheats, Chinese Spring (T. aestivum ssp. vulgare) and T. aestivum ssp. spelta, belonging to different subspecies in the hexaploid group of genomic formula AABBDD. The comparison of gliadin electrophoretic patterns aiding in the identification of evolutionary pathways in wheat is stressed.  相似文献   

6.
As the first step in the transfer of barely yellow dwarf virus resistance and salt tolerance from decaploid tall wheatgrass (Thinopyrum ponticum) into hexaploid bread wheat (Triticum aestivum L.), octoploid intergeneric hybrids (2n = 8x = 56) were synthesized by crossing the tall wheatgrass cultivar Alkar with wheat cvs. Fukuhokomugi (Fuko) and Chinese Spring. (Fuko x Alkar) F1 hybrids were studied in detail. The F1 hybrids were perennial and generally resembled the male wheatgrass parent with regard to morphological features and gliadin profile. Most hybrids were euploid with 56 chromosomes and showed high chromosome pairing. On an average, in 6 hybrids 83.6% of the complement showed chiasmatic association, some between wheat and wheatgrass chromosomes. Such a high homoeologous pairing would be obtained if Ph1, the major homoeologous pairing suppressor in wheat, was somehow inactivated. Some of the Fuko x Alkar hybrids had high pollen fertility (18.5–42.0% with a mean of 31.5%) and high seed fertility (3–29 seeds wtih a mean of 12.3 seeds per spike), offering excellent opportunities for their direct backcrossing onto the wheat parent.  相似文献   

7.
Summary Calli were initiated from immature embryos of four lines of hexaploid wheat (Triticum aestivum L. em. Thell), the euplasmic nuclear donor Chinese Spring, Chinese Spring in which both 4B chromosomes were substituted by those of the variety Cappelle-Desprez and two alloplasmic lines in which these nuclei were substituted into the cytoplasm of Aegilops ovata. The calli were found to differ in their initia growth rates and their ability to organise shoot primordia and regenerate shoots. The Cappelle 4B chromosomes had a very significant effect on all these characters. The potential for modelling genotypes for improved tissue culture characteristics is discussed.  相似文献   

8.
Summary Total endosperm proteins extracted from both several common wheat cultivars and some intervarietal substitution lines derived from them were fractionated according to their molecular weight in a high resolution one-dimensional gel electrophoresis. The four donor cultivars and the recipient one — Chinese Spring, possessed differentially migrating protein bands in the fractions of high molecular weight (HMW) glutenins and gliadins. Several of these bands were identified for the first time in this study. By utilizing intervarietal substitution lines the control of the HMW glutenins and gliadins by chromosomes of homoeologous group 1 was either reaffirmed or, for the new bands, established. Several HMW gliadin subunits showed a considerable variation in their staining intensity in the intervarietal substitution lines indicating that their expression was dependent on the genetic background.This paper is based on a portion of a dissertation to be submitted by G. Galili in partial fulfilment of the Ph.D. requirements of the Feinberg Graduate School, The Weizmann Institute of Science, RehovotThe Marshall and Edith Korshak Professor of Plant Cytogenetics  相似文献   

9.
Summary The peroxidase (CPX, PER), -amylase (-AMY), acid and alkaline phosphatase (PHE, PHS) and esterase (EST) zymogram phenotypes of Chinese Spring wheat, Betzes barley and a number of presumptive Betzes chromosome additions to Chinese Spring were determined. It was found that five disomic chromosome addition lines could be distinguished from one another and from the other two possible lines on the basis of the zymogram phenotypes of these isozymes. The structural genes Cpxe-H1 and Cpxe-H2 were located in Betzes chromosome 1, the Perl-H5 and Perl-H6 in chromosome 2, the -Amy-H2 and -Amy-H3 in chromosome 7, the Phs-H5 and Phs-H4 in chromosomes 1 and 3 respectively, the Phe-H2, Phe-H3 and Phe-H4 in chromosome 1, the Phe-H1 in chromosome 3, the Ests-H4, Este-H2 and Ests-H6, Este-H8 in chromosomes 1 and 3 respectively and the Estl-H10 and Estl-H2 structural genes were related to chromosomes 3 and 6 respectively. These gene locations provide evidence of homoeology between Betzes chromosomes 1, 2, 3, 6 and 7 and the rye chromosomes 7, 2, 3, 6 and 5, respectively, and also between Betzes chromosomes 1, 2, 3, 6 and 7 and the Chinese Spring homoeologous groups 7, 2, 3, 6 and 5, respectively.  相似文献   

10.
Summary Using disomic chromosome substitution lines based on the susceptible wheat cultivar Chinese Spring, loose smut resistance of wheat cultivars Hope and Thatcher was shown to be conferred in each case by a single dominant major gene carried on chromosome 7 A (Hope) or 7 B (Thatcher). Partial resistance was determined by genes on an additional eight Hope or seven Thatcher chromosomes, and similarities were evident between the partial resistance genotypes ofHope and Thatcher. Chinese Spring exhibited a mean infection value of approximately 50%, indicating a significant level of partial resistance, which was found to be due, in part, to genes on the homoeologous chromosome arms 1 As, 1 Es and 1 Ds, and to cytoplasmic genes. Substitution of the Chinese Spring nucleus into the cytoplasm of Aegilops squarrosa, Ae. variabilis or Ae. mutica resulted in increased susceptibility to Ustilago tritici. Several alloplasmic lines of the resistant wheat cultivars Selkirk and Chris exhibited race-specific susceptibility to U. tritici.  相似文献   

11.
Summary The winter wheat varieties Starke and Cappelle Desprez and the spring wheat Chinese Spring were analysed for structural chromosome rearrangements that resulted in the formation of multivalents in F1 hybrids. The analyses were carried out using hybrids involving euploids, monosomic and ditelosomic stocks, and double-monotelodisomic constructs. The study confirmed that Cappelle Desprez differs from Chinese Spring in a reciprocal translocation between chromosomes 5B and 7B (Riley et al. 1967); a translocation involving chromosomes 3B and 3D could not be verified. Furthermore, the analysis showed that Starke differs from Chinese Spring in a reciprocal translocation between chromosomes 7A and 7D. Both translocations have a coefficient of multivalent realisation of about 0.84. Further multivalents in euploid Starke, in euploid and some aneuploid stocks of Cappelle Desprez, and in euploid as well as various types of aneuploid hybrids between all three varieties could nearly all be explained hypothesizing that chromosome 2B of both Starke and Cappelle Desprez is a duplication-deficiency chromosome. In the hypothesis a part of the long arm of 2B is missing and replaced by a duplicated part of the long arm of chromosome 2D. The multivalents of this rearrangement showed an average coefficient of realisation of about 0.09.Sven Ellerström died in December 1985  相似文献   

12.
Summary The Chinese Spring ph1b and ph2b mutants, as well as the nulli 5B tetra 5D stock were utilized in an attempt to effect homoeologous chromatin exchange between the Indis chromosome translocation [derived from Thinopyrum distichum (Thunb.) Löve] and chromosome arm 7DL of common wheat. A homoeoallele of Lr19 and linked genes for yellow flour-pigmentation were utilized as markers. Seven selections with recombinations involving the foreign, translocated segment were recovered. Four of these had white endosperms and were leaf-rust resistant. The remaining lines were leaf-rust resistant and had levels of endosperm pigmentation intermediate to those of Indis and Chinese Spring. The recombined translocation segments coding for white endosperm are no longer associated with chromosome 7D. The original translocated segment may, therefore, not be fully homoeologous to 7DL. The recombinants with white endosperm also lack the stem-rust resitance gene Sr25, but retained the segregation distorter locus, Sd-1. However, it seems as though an enhancer locus (or loci) of Sd-1 had been lost.  相似文献   

13.
Summary Meiotic pairing in Triticum turgidum cv. Ma (4x) with a mean chiasmata frequency of 27.16 per cell was compared with chiasmata frequencies in its hybrids with several triticale strains, Chinese Spring wheat and its addition lines for Imperial rye chromosomes 4R and 6R. In hybrids between Ma and x Triticosecale cv. Rosner the chiasmata frequency was marginally reduced by an average of 1.25%, by 8.8% in hybrids with x Triticosecale cv. DRIRA HH and by 6.7% with DRIRA EE (lacking 90% telomeric heterochromatin from chromosome arm 7RL). In pentaploid hybrids between Ma and T. aestivum cv. Chinese Spring the reduction was an average of 10.30%, while addition lines with rye chromosome 6R reduced chiasmata frequencies by an average of 7.4% and rye addition line for 4R showed the greatest depression in chiasmata frequency in hybrids by a 25.04% reduction. An interchange difference involving long chromosome segments was observed between Ma and Rosner.Contribution No. 819 Ottawa Research Station  相似文献   

14.
Summary The storage proteins of the endosperm of wheat grain which are known to be controlled by genes on the short arms of the homoeologous group 1 chromosomes are (1) the -gliadins, (2) most of the -gliadins, (3) a few -gliadins and (4) the major lowmolecular-weight subunits of glutenin. Several crosses were made between varieties or genetic lines which had contrasting allelic variants for some of these proteins and which were coded by genes on chromosomes 1A or 1B. The progeny were analysed by one or more of several electrophoretic procedures. The results of all the analyses are consistent with the hypothesis that chromosomes 1A and 1B each contain just one, complex locus, named Gli-A 1 and Gli-B 1 respectively, which contain the genes for the -, - and -gliadins and the low-molecular-weight subunits of glutenin.  相似文献   

15.
Four bread wheat (Triticum aestivum L.) cultivars, Aobakomugi, Chinese Spring, Norin 61 and Shinchunaga, were pollinated with five barley lines/cultivars consisting of three cultivated barley (Hordeum vulgare L.) lines, Betzes, Kinai 5 and OHL089, and two wild barley (Hordeum spontaneum C. Koch) lines, OUH602 and OUH324. Crossability, expressed as the percentage of embryo formation, varied from 0 to 55.4% among the cross combinations. The two wild barley lines generally had a higher crossability than the previously reported best pollinator, Betzes, and some Japanese wheat cultivars were better as the female parent than Chinese Spring. Ninety four hybrid plants were obtained from 250 embryos cultured, and their somatic chromosome numbers ranged from 21 to 36. Eighteen plants were mosaic in chromosome number. Twenty one-chromosome plants appeared most frequently (45.7%) followed by 28-chromosome plants (14.9%). C-banding analysis revealed that elimination of barley chromosomes was mainly responsible for the occurrence of aneuploid plants. In hypoploids derived from Betzes-crosses, chromosome 5 was preferentially eliminated as previously reported, while in hypoploids derived from OUH602-crosses, chromosome 4 was preferentially eliminated. The wild barley line OUH602 may be a useful parent for producing a new wheat-barley addition set because of its high crossability with wheat and a different pattern of chromosome elimination.  相似文献   

16.
Summary The effect of various chromosomes ofAegilops longissima when added to the common wheat cultivar Chinese Spring was evaluated at two levels of nitrogen fertilization for absolute and relative amount of protein in the grain. All the added chromosomes ofAe. longissima increased protein percentage: protein increase by chromosomes D, C and A averaged 3.8% while that by chromosomes F, E, G and B averaged 1.7%. Addition lines F, D and C had a significantly higher protein weight per grain. On the other hand, lines A, E and G had reduced grain protein weight per grain as compared with that of Chinese Spring. Line C carries the HMW glutenin and some of the gliadin subunits ofAe. longissima. The effect of this line, however, and obviously that of the other lines on protein content was through genes controlling the level of storage protein rather than through genes that code directly for these proteins. Nitrogen fertilization affected protein content and the relative amount of the various protein fractions in a similar manner in every addition line. When high levels of nitrogen fertilization were compared to low ones, the relative amount of the HMW glutenins remained constant while that of HMW gliadins increased and that of the LMW subunits decreased. In contrast to the nitrogen effect, increase in protein content by the addition oflongissima chromosomes did not change the relative amounts of the various protein fractions.The paper is based on a portion of a dissertation to be submitted by A.A.L. in partial fulfillment of the PhD requirements in the Feinberg Graduate School, The Weizmann Institute of Science, RehovotThe Marshall and Edith Korshak Professor of Plant Cytogenetics  相似文献   

17.
Summary Psathyrostachys juncea (synonymous to Elymus junceus; 2n=2x=14, NN) has unique biotic and abiotic attributes that could contribute towards wheat improvement. The effectiveness of such an intergeneric hybridization program depends greatly on being able to establish diagnostic markers of the alien chromosomes. Isoelectric focusing (IEF) analyses of six enzyme systems have identified five biochemical markers — malate dehydrogenase (MDH), esterase (EST), shikimate dehydrogenase (SKDH), phosphoglucomutase (PGM), and -amylase (-AMY) — to be of positive diagnostic value; glucosephosphate isomerase (GPI) banding profiles were of no definite value in the background of Triticum aestivum cvs Chinese Spring and Seri-82, the potential recipients of Ps. juncea chromosomes. The Giemsa C-banding karyotype distinctively separates the Ps. Juncea chromosomes from each other and from those of T. aestivum with little banding site polymorphisms prevalent among its accessions analyzed, indicating the usefulness of C-bands as cytological markers.  相似文献   

18.
Summary In the progeny of a hybrid between monotelosomic line 3B of Chinese Spring wheat and Chinese Spring — Aegilops longissima ditelosomic addition line G a cytologically stable strain was selected consisting of 20 wheat chromosome pairs, one pair of telosomic chromosome 3BL and one pair of telosomic longissima chromosome G. Inoculating Chinese Spring — Aegilops longissima addition and substitution lines with ten different powdery mildew isolates, partial resistance was observed. The infection grade as well as the number of spores/cm2 leaf area were significantly reduced.  相似文献   

19.
Summary The zymogram phenotypes that Chinese Spring-Imperial, Holdfast-King II and Kharkov-Dakold wheat-rye addition lines presented for esterase isozymes were determined using polyacrylamide gel ectrophoresis. The analyses were carried out with different parts of the dry kernel, namely embryo plus scutellum and endosperm, leaves and roots. In all cases, embryo plus scutellum, endosperm and leaf presented different patterns of esterases. The patterns of leaves and roots were the same. Results indicate that rye esterases exist as monomers and dimers. Dimeric esterases are controlled by one locus located on the 3R chromosomes of Imperial, King II and Dakold rye cultivars. Five loci involved in the production of monomeric esterases have been located on the 6R chromosomes of these cultivars, specifically on the long arm of the King II 6R chromosome. On the basis of these results, considerations concerning chromosome homoeology and homology are made.  相似文献   

20.
Summary The 6-phosphogluconate dehydrogenase (6-PGD) zymogram phenotypes of wheat, rye and their aneuploid derivatives were determined. Two genes involved in the production of 6-PGD isozymes were located on chromosome arms CRL (4 RL) and FRL (6 RL) of Imperial rye. On the basis of differential interactions between wheat and rye chromosomes, evidence was obtained that genes located on chromosomes 6 A, 6 BL and 7 BL control 6-PGD isozyme activities in Chinese Spring wheat. The wheat and rye 6-PGD zymogram phenotypes were indicative of homoeologous relationships between rye chromosome 6 RL to wheat chromosomes of group 6, and rye chromosome 4 RL to wheat chromosomes of group 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号