首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspergilli express fusion proteins of an animal haem peroxidase domain with fatty acid dioxygenase (DOX) activity (∼ 600 amino acids) and a functional or non-functional hydroperoxide isomerase/cytochrome P450 domain (∼ 500 amino acids with EXXR and GPHXCLG motifs). 5,8-Linoleate diol synthases (LDS; ppoA) and 10R-DOX (ppoC) of Aspergillusnidulans and A. fumigatus belong to this group. Our objective was to determine the oxylipins formed from linoleic acid by A. clavatus and their mechanism of biosynthesis. A. clavatus oxidized linoleic acid to (8R)-hydroperoxylinoleic acid (8R-HPODE), (10R)-hydroperoxy-8(E),12(Z)-octadecadienoic acid (10R-HPODE), and to (5S,8R)-dihydroxy- and (8R,11S)-dihydroxylinoleic acids (DiHODE) as major products. This occurred by abstraction of the pro-S hydrogen at C-8 and antarafacial dioxygenation at C-8 or at C-10 with double bond migration. 8R-HPODE was then isomerized to 5S,8R-DiHODE and to 8R,11S-DiHODE by abstraction of the pro-S hydrogens at C-5 and C-11 of 8R-HPODE, respectively, followed by suprafacial oxygenation. The genome of A. clavatus codes for two enzymes, which can be aligned with > 65% amino acid identity to 10R-DOX and 5,8-LDS, respectively. The 5,8-LDS homologue likely forms and isomerizes 8R-HPODE to 5S,8R-DiHODE. A third gene (ppoB) codes for a protein which carries a serine residue at the cysteine position of the P450 motif. This Cys to Ser replacement is known to abolish P450 2B4 catalysis and the hydroperoxide isomerase activity of 5,8-LDS, suggesting that ppoB of A. clavatus may not be involved in the biosynthesis of 8R,11S-DiHODE.  相似文献   

2.
3.
The homothallic ascomycete Aspergillus nidulans serves as model organism for filamentous fungi because of its ability to propagate with both asexual and sexual life cycles, and fatty acid-derived substances regulate the balance between both cycles. These so-called psi (precocious sexual inducer) factors are produced by psi factor-producing oxygenases (Ppo enzymes). Bioinformatic analysis predicted the presence of two different heme domains in Ppo proteins: in the N-terminal region, a fatty acid heme dioxygenase/peroxidase domain is predicted, whereas in the C-terminal region, a P450 heme thiolate domain is predicted. To analyze the reaction catalyzed by Ppo enzymes, PpoA was expressed in Escherichia coli as an active enzyme. The protein was purified by 62-fold and identified as a homotetrameric ferric heme protein that metabolizes mono- as well as polyunsaturated C16 and C18 fatty acids at pH ∼7.25. The presence of thiolate-ligated heme was confirmed on the basis of sequence alignments and the appearance of a characteristic 450 nm CO-binding spectrum. Studies on its reaction mechanism revealed that PpoA uses different heme domains to catalyze two separate reactions. Within the heme peroxidase domain, linoleic acid is oxidized to (8R)-hydroperoxyoctadecadienoic acid by abstracting a H-atom from C-8 of the fatty acid, yielding a carbon-centered radical that reacts with molecular dioxygen. In the second reaction step, 8-hydroperoxyoctadecadienoic acid is isomerized within the P450 heme thiolate domain to 5,8-dihydroxyoctadecadienoic acid. We identify PpoA as a bifunctional P450 fusion protein that uses a previously unknown reaction mechanism for forming psi factors.The fungus Aspergillus nidulans (teleomorph Emericella nidulans) is a homothallic ascomycete that has a defined sexual and asexual developmental cycle. Therefore, it serves as a model system for the understanding of fungal development (1). Oxidized unsaturated fatty acids, so-called oxylipins, derived from endogenous fatty acids were found to influence the development of the asexual conidiophores and sexual cleistothecia (26). Moreover, they seem to regulate the secondary metabolism of the fungus (7). These substances were collectively named psi factors and are primarily a mixture of hydroxylated oleic (18:1Δ9Z; x:yΔz denotes a fatty acid with x carbons and y double bonds in position z counting from the carboxyl end), linoleic (18:2Δ9Z,12Z), and α-linolenic (18:3Δ9Z,12Z,15Z) acids. They are termed psiβ, psiα, and psiγ, respectively. Psi factors can be further classified by the number and positioning of hydroxy groups on the fatty acid backbone: psiB (OH at C-8, e.g. (8R)-HODE),2 psiA (OH at C-5 and C-8, e.g. (5S,8R)-DiHODE), and psiC (OH at C-8 and the δ-lactone ring) (8, 9).The psi factor (8R)-HODE was first discovered in the fungus Laetisaria arvalis (10, 11); it was later also found in Gaeumannomyces graminis (12, 13), where the first enzyme, which is responsible for production of (8R)-HPODE, 7,8-LDS, was detected (13). This heme-containing enzyme is bifunctional because it oxidizes 18:2Δ9Z,12Z in a first reaction step to (8R)-HPODE and subsequently isomerizes this intermediate compound to (7S,8S)-DiHODE (1315).After the genome of A. nidulans was available, Keller and co-workers (6, 16, 17) found three genes that share a high homology with the sequence of 7,8-LDS, namely ppoA, ppoB, and ppoC. They showed that the deletion of these genes had a significant effect (i) on the developmental ratio between the asexual conidiospores and sexual ascospores; (ii) on the production of psi factors; and (iii) on the production of secondary metabolites, the mycotoxins (6, 7, 16, 17). Furthermore, the encoded proteins showed remarkable sequence homology to both mammalian PGHS isoforms, enzymes that are responsible for the synthesis of prostaglandins (18). Using the NCBI conserved domain search analysis tool, it turned out that ppoA amino acid residues 210–580 contain a domain similar to mammalian heme peroxidases, whereas residues 650–1050 contain a CYPX domain, similar to P450 heme thiolate enzymes (16). However, for 7,8-LDS from G. graminis, only the mammalian heme peroxidase domain is predicted. The identity of conserved catalytic domains between Ppo enzymes and mammalian PGHS ranges from 25 to 29% for PGHS-2 and from 25 to 26% for PGHS-1 (19). PpoA and 7,8-LDS show 42% amino acid identity.Oliw and co-workers (20) observed that incubation of homogenates of mycelia of A. nidulans with 18:2Δ9Z,12Z converted the fatty acid to (8R)-HODE and (5S,8R)-DiHODE as the major products. (8R)-HPODE, (10R)-HODE, and (10R)-HPODE were detected as minor products. Incubation of mycelia of Aspergillus fumigatus with deuterium-labeled 18:2Δ9Z,12Z revealed that the synthesis of (8R)-HPODE is accomplished via pro-S-hydrogen abstraction at C-8 and antarafacial dioxygen insertion. (5S,8R)-DiHODE is generated via an additional pro-S-hydrogen abstraction at C-5 of the substrate (20, 21).Additional studies with fungal knock-out strains led to the hypothesis that PpoA may be responsible for the synthesis of (8R)-hydroperoxides, which are partially reduced to (8R)-hydroxides (20). It was suggested that, analogous with 7,8-LDS, (8R)-hydroperoxides are then converted to 5,8-dihydroxides by PpoA. Furthermore, it was concluded that ppoC may code for linoleate (10R)-DOX (20). Analysis of Ppo enzymes from A. nidulans in studies published so far has been performed either by using knock-out mutants to demonstrate the absence of a subset of psi factors or by using crude mycelial extracts; both experimental setups have the disadvantage of observing multiple enzymatic reactions in parallel.To characterize the biochemical properties of PpoA in more detail, we cloned and expressed recombinant PpoA in Escherichia coli. After purification of the enzyme by up to 62-fold, biochemical characterization was performed. The studies revealed mechanistic as well as structural similarities to and differences from 7,8-LDS from G. graminis. Both enzymes were found to be homotetrameric ferric heme proteins that catalyze the synthesis of (8R)-HPODE. Whereas G. graminis 7,8-LDS converts the intermediate formed to (7S,8S)-DiHODE, PpoA produces 5,8-DiHODE.Using site-directed mutagenesis, we provide evidence that there are striking differences between both enzymes regarding the catalytic reaction cycle. Thus, we found that PpoA uses different domains to catalyze the two reaction steps. We suggest that the DOX reaction, yielding 8-HPODE, takes place in the N-terminal heme peroxidase domain. The isomerization of this intermediate product to the end product, 5,8-DiHODE, is accomplished, however, independently by the C-terminal P450 heme thiolate domain in an 8-hydroperoxide isomerase reaction.In addition, we are able to provide evidence that, during the catalysis, PpoA generates a carbon-centered radical presumably at C-8, like G. graminis 7,8-LDS. Furthermore, we determined the kinetic parameters for the first reaction step.  相似文献   

4.
We have studied oxygenation of fatty acids by cell extract of Pseudomonas aeruginosa 42A2. Oleic acid ((9Z)-18:1) was transformed to (10S)-hydroperoxy-(8E)-octadecenoic acid ((10S)-HPOME) and to (7S,10S)-dihydroxy-(8E)-octadecenoic acid (7,10-DiHOME). Experiments under oxygen-18 showed that 7,10-DiHOME contained oxygen from air and was formed sequentially from (10S)-HPOME by isomerization. (10R)-HPOME was not isomerized. The (10S)-dioxygenase and hydroperoxide isomerase activities co-eluted on ion exchange chromatography and on gel filtration with an apparent molecular size of ∼50 kDa. 16:1n-7, 18:2n-6, and 20:1n-11 were also oxygenated to 7,10-dihydroxy fatty acids, and (8Z)-18:1 was oxygenated to 6,9-dihydroxy-(7E)-octadecenoic acid. A series of fatty acids with the double bond positioned closer to ((6Z)-18:1, (5Z,9Z)-18:2) or more distant from the carboxyl group ((11Z)-, (13Z)-, and (15Z)-18:1) were poor substrates. The oxygenation mechanism was studied with [7S-2H]18:1n-9, [7R-2H]18:2n-6, and [8R-2H]18:2n-6 as substrates. The pro-R hydrogen at C-8 was lost in the biosynthesis of (10S)-HPODE, whereas the pro-S hydrogen was lost and the pro-R hydrogen was retained at C-7 during biosynthesis of the 7,10-dihydroxy metabolites. Analysis of the fatty acid composition of P. aeruginosa revealed relatively large amounts of (9E/Z)-16:1 and (11E/Z)-18:1 and only traces of 18:1n-9. We found that (11Z)-18:1 (vaccenic acid) was transformed to (11S,14S)-dihydroxy-(12E)-octadecenoic acid and to a mixture of 11- and 12-HPOME, possibly due to reverse orientation of (11Z)-18:1 at the active site compared with oleic acid. The reaction mechanism of the hydroperoxide isomerase suggests catalytic similarities to cytochrome P450.  相似文献   

5.
The genome of the rice blast fungus Magnaporthe oryzae codes for two proteins with N-terminal dioxygenase (DOX) and C-terminal cytochrome P450 (CYP) domains, respectively. One of them, MGG_13239, was confirmed as 7,8-linoleate diol synthase by prokaryotic expression. The other recombinant protein (MGG_10859) possessed prominent 10R-DOX and epoxy alcohol synthase (EAS) activities. This enzyme, 10R-DOX-EAS, transformed 18:2n-6 sequentially to 10(R)-hydroperoxy-8(E),12(Z)-octadecadienoic acid (10R-HPODE) and to 12S(13R)-epoxy-10(R)-hydroxy-8(E)-octadecenoic acid as the end product. Oxygenation at C-10 occurred by retention of the pro-R hydrogen of C-8 of 18:2n-6, suggesting antarafacial hydrogen abstraction and oxygenation. Experiments with 18O2 and 16O2 gas confirmed that the epoxy alcohol was formed from 10R-HPODE, likely by heterolytic cleavage of the dioxygen bond with formation of P450 compound I, and subsequent intramolecular epoxidation of the 12(Z) double bond. Site-directed mutagenesis demonstrated that the cysteinyl heme ligand of the P450 domain was required for the EAS activity. Replacement of Asn965 with Val in the conserved AsnGlnXaaGln sequence revealed that Asn965 supported formation of the epoxy alcohol. 10R-DOX-EAS is the first member of a novel subfamily of DOX-CYP fusion proteins of devastating plant pathogens.  相似文献   

6.
Linoleate (10R)-dioxygenase (10R-DOX) of Aspergillus fumigatus was cloned and expressed in insect cells. Recombinant 10R-DOX oxidized 18:2n-6 to (10R)-hydroperoxy-8(E),12(Z)-octadecadienoic acid (10R-HPODE; ∼90%), (8R)-hydroperoxylinoleic acid (8R-HPODE; ∼10%), and small amounts of 12S(13R)-epoxy-(10R)-hydroxy-(8E)-octadecenoic acid. We investigated the oxygenation of 18:2n-6 at C-10 and C-8 by site-directed mutagenesis of 10R-DOX and 7,8-linoleate diol synthase (7,8-LDS), which forms ∼98% 8R-HPODE and ∼2% 10R-HPODE. The 10R-DOX and 7,8-LDS sequences differ in homologous positions of the presumed dioxygenation sites (Leu-384/Val-330 and Val-388/Leu-334, respectively) and at the distal site of the heme (Leu-306/Val-256). Leu-384/Val-330 influenced oxygenation, as L384V and L384A of 10R-DOX elevated the biosynthesis of 8-HPODE to 22 and 54%, respectively, as measured by liquid chromatography-tandem mass spectrometry analysis. The stereospecificity was also decreased, as L384A formed the R and S isomers of 10-HPODE and 8-HPODE in a 3:2 ratio. Residues in this position also influenced oxygenation by 7,8-LDS, as its V330L mutant augmented the formation of 10R-HPODE 3-fold. Replacement of Val-388 in 10R-DOX with leucine and phenylalanine increased the formation of 8R-HPODE to 16 and 36%, respectively, whereas L334V of 7,8-LDS was inactive. Mutation of Leu-306 with valine or alanine had little influence on the epoxyalcohol synthase activity. Our results suggest that Leu-384 and Val-388 of 10R-DOX control oxygenation of 18:2n-6 at C-10 and C-8, respectively. The two homologous positions of prostaglandin H synthase-1, Val-349 and Ser-353, are also critical for the position and stereospecificity of the cyclooxygenase reaction.Linoleate diol synthases (LDS)2 and linoleate 10R-DOX are fungal fatty acid dioxygenases of the myeloperoxidase gene family (1-3). LDS have dual enzyme activities and transform 18:2n-6 sequentially to 8R-HPODE in an 8R-dioxygenase reaction and to 5,8-, 7,8-, or 8,11-DiHODE in hydroperoxide isomerase reactions. These oxylipins affect sporulation, development, and pathogenicity of Aspergilli (4-6). Fatty acid dioxygenases of the myeloperoxidase gene family also occur in vertebrates, plants, and algae (7-9). The most thoroughly investigated vertebrate enzymes are ovine PGHS-1 and mouse PGHS-2 with known crystal structures (10-12). PGHS transforms 20:4n-6 to PGG2 in a cyclooxygenase and PGG2 to PGH2 in a peroxidase reaction. Aspirin and other nonsteroidal anti-inflammatory drugs inhibit the cyclooxygenase reaction. This is of paramount medical importance (13, 14), and PGHS-1 and -2 are commonly known as COX-1 and -2 (15). α-DOX occur in plants and algae, and biosynthesis of α-DOX in plants is elicited by pathogens (7). α-DOX oxidizes fatty acids to unstable (2R)-hydroperoxides, which readily break down nonenzymatically to fatty acid aldehydes and CO2 (7).LDS, 10R-DOX, PGHS, and α-DOX oxygenate fatty acids to different products, but their oxygenation mechanisms have mechanistic similarities. Sequence alignment shows that many critical amino acid residues for the cyclooxygenase reaction are conserved in LDS, 10R-DOX, and α-DOX. These include the proximal histidine heme ligand, the distal histidine, and the catalytic important tyrosine (Tyr-385) of PGHS-1. The latter is oxidized to a tyrosyl radical, which initiates the cyclooxygenase reaction by abstraction of the pro-S hydrogen at C-13 of 20:4n-6 (16). In analogy, LDS and 10R-DOX catalyze stereospecific abstraction of the pro-S hydrogen at C-8 of 18:2n-6 (3), whereas α-DOX abstracts the pro-R hydrogen at C-2 of fatty acids (17). Site-directed mutagenesis of the conserved tyrosine homologues of Tyr-385 and proximal heme ligands abolishes the dioxygenase activities of 7,8-LDS and α-DOX (17, 18). The orientation of the substrate at the dioxygenation site differs. The carboxyl groups of fatty acids are positioned in a hydrophobic grove close to the tyrosine residue of α-DOX (19). In contrast, the ω ends of eicosanoic fatty acids are buried deep inside the cyclooxygenase channel so that C-13 lies in the vicinity of Tyr-385 (20). Several observations suggest that 18:2n-6 may also be positioned with its ω end embedded in the interior of 7,8-LDS of Gaeumannomyces graminis (18).7,8-LDS of G. graminis and Magnaporthe grisea and 5,8-LDS of Aspergillus nidulans have been sequenced (5, 8, 21). Gene targeting revealed the catalytic properties of 5,8-LDS, 8,11-LDS, and 10R-DOX in Aspergillus fumigatus and A. nidulans (3). Homologous genes can be found in other Aspergilli spp. Alignment of the two 7,8-LDS amino acid sequences with 5,8-LDS, 8,11-LDS, and 10R-DOX sequences of five Aspergilli revealed several conserved regions with single amino acid differences between the enzymes with 8R-DOX and 10R-DOX activities, as illustrated by the selected sequences in Fig. 1. Leu-306, Leu-384, and Val-388 of 10R-DOX are replaced in 5,8- and 7,8-LDS by valine, valine, and leucine residues, respectively. Whether these amino acids are important for the oxygenation mechanism is unknown, and this is one topic of the present investigation. The predicted secondary structure of 10R-DOX suggests that Leu-384 of 10R-DOX can be present in an α-helix with Val-388 close to its border. This α-helix is homologous to helix 6 of PGHS-1, which contains Val-349 and Ser-353 at the homologous positions of Leu-384 and Val-388 (Fig. 1).Open in a separate windowFIGURE 1.Alignments of partial amino acid sequences of five heme containing fatty acid dioxgenases and a comparison of the predicted secondary structure of 10R-DOX with ovine PGHS-1. A, top, amino acids residues at the presumed peroxidase and hydroperoxide isomerase sites. The last two residues, His and Asn, are conserved in all myeloperoxidases (1). Middle and bottom, amino acid residues of the presumed dioxygenation sites are shown. Conserved residues in all sequences are in boldface, and mutated residues of 10R-DOX and/or 7,8-LDS are marked by an asterisk. B, alignment of partial amino acid sequences of 10R-DOX with ovine PGHS-1, and a secondary structure prediction of the 10R-DOX sequence. The secondary structure of 10R-DOX was predicted by PSIPRED (43) and the secondary structure of ovine PGHS-1 from its crystal structure (Protein Data Bank code 1diy; cf. Ref 19). In short, our first strategy for site-directed mutagenesis was to switch hydrophobic residues between the enzymes with 10R- and 8R-DOX activities and to assess the effects on the DOX and hydroperoxide isomerase activities (10R-DOX/7,8-LDS: Leu-306/Val-256, Leu-384/Val-330, Val-388/Leu-334, and Ala-426/Ile-375) and to switch one hydrophobic/charged residue (Ala-435/Glu-384). Only catalytically active pairs would provide clear information on their importance for the position of dioxygenation (e.g. L384V of 10R-DOX and V330L of 7,8-LDS, both of which were active). Unfortunately, replacements of 7,8-LDS often led to inactivation or very low activity (e.g. V330A, V330M, I375A, E384A). Our second strategy was to study replacements in two homologous positions of ovine PGHS-1 (Val-349 and Ser-353) with smaller and larger hydrophobic residues, i.e. at Leu-384 and Val-388 of 10R-DOX. Abbreviations used are as follows: oCOX-1, ovine cyclooxygenase-1; Af, A. fumigatus; Gg, G. graminis. The GenBank™ protein sequences were derived from P05979, EAL89712, AAD49559, EAL84400, and ACL14177. The amino acid sequences were aligned with the ClustalW algorithm (DNAStar).The overall three-dimensional structures of myeloperoxidases are conserved. It is therefore conceivable that important residues for substrate binding in the cyclooxygenase channel of PGHS could be conserved in LDS and 10R-DOX. The three-dimensional structure of ovine PGHS-1 shows that Val-349 and Ser-353 are close to C-3 and C-4 of 20:4n-6, and residues in these positions can alter both position and stereospecificity of oxygenation (22-24). Replacement of Val-349 of PGHS-1 with alanine increased the biosynthesis of 11R-HETE, whereas V349L decreased the generation of 11R-H(P)ETE and increased formation of 15(R/S)-H(P)ETE (23, 25). V349I formed PGG2 with 15R configuration (22, 24). Replacement of Ser-353 with threonine reduced cyclooxygenase and peroxidase activities by over 50% and increased the biosynthesis of 11R-HPETE and 15S-HPETE 4-5 times (23).There is little information on the hydroperoxide isomerase and peroxidase sites of LDS (18, 26), but the latter could be structurally related to the peroxidase site of PGHS. PGG2 and presumably 8R-HPODE bind to the distal side of the heme group, which can be delineated by hydrophobic amino acid residues (27). Val-291 is one of these residues, which form a dome over the distal heme side of COX-1. The V291A mutant retained cyclooxygenase and peroxidase activities (27). 5,8- and 7,8-LDS also have valine residues in the homologous position, whereas 8,11-LDS and 10R-DOX have leucine residues (Fig. 1). Whether these hydrophobic residues are important for the peroxidase activities is unknown.In this study we decided to compare the two catalytic sites of 10R-DOX of A. fumigatus and 7,8-LDS (EC 1.13.11.44) of G. graminis (18). Our first aim was to find a robust expression system for 10R-DOX of A. fumigatus. The second objective was to determine whether C16 and C20 fatty acid substrates enter the oxygenation site of 10R-DOX “head” or “tail” first. Unexpectedly, we found that 10R-DOX oxygenated 20:4n-6 by hydrogen abstraction at both C-13 and C-10 with formation of two nonconjugated and four cis-trans-conjugated HPETEs. Our third objective was to investigate the structural differences between 10R-DOX and 7,8-LDS of G. graminis, which could explain that oxygenation of 18:2n-6 mainly occurred at C-10 and at C-8, respectively. The strategy for site-directed mutagenesis of 10R-DOX and 7,8-LDS is outlined in the legend to Fig. 1; an alignment of the amino acid sequences of 10R-DOX and 7,8-LDS is found in supplemental material.  相似文献   

7.
Aspergillus sp. contain ppoA, ppoB, and ppoC genes, which code for fatty acid oxygenases with homology to fungal linoleate 7,8-diol synthases (7,8-LDS) and cyclooxygenases. Our objective was to identify these enzymes, as ppo gene replacements show critical developmental aberrancies in sporulation and pathogenicity in the human pathogen Aspergillus fumigatus and the genetic model Aspergillus nidulans. The PpoAs of A. fumigatus and A. nidulans were identified as (8R)-dioxygenases with hydroperoxide isomerase activity, designated 5,8-LDS. 5,8-LDS transformed 18:2n-6 to (8R)-hydroperoxyoctadecadienoic acid ((8R)-HPODE) and (5S,8R)-dihydroxy-9Z,12Z-octadecadienoic acid ((5S,8R)-DiHODE). We also detected 8,11-LDS in A. fumigatus and (10R)-dioxygenases in both Aspergilli. The diol synthases oxidized [(8R)-(2)H]18:2n-6 to (8R)-HPODE with retention of the deuterium label, suggesting antarafacial hydrogen abstraction and insertion of molecular oxygen. Experiments with stereospecifically deuterated 18:2n-6 showed that (8R)-HPODE was isomerized by 5,8- and 8,11-LDS to (5S,8R)-DiHODE and to (8R,11S)-dihydroxy-9Z,12Z-octadecadienoic acid, respectively, by suprafacial hydrogen abstraction and oxygen insertion at C-5 and C-11. PpoCs were identified as (10R)-dioxygenases, which catalyzed abstraction of the pro-S hydrogen at C-8 of 18:2n-6, double bond migration, and antafacial insertion of molecular oxygen with formation of (10R)-hydroxy-8E,12Z-hydroperoxyoctadecadienoic acid ((10R)-HPODE). Deletion of ppoA led to prominent reduction of (8R)-H(P)ODE and complete loss of (5S,8R)-DiHODE biosynthesis, whereas biosynthesis of (10R)-HPODE was unaffected. Deletion of ppoC caused biosynthesis of traces of racemic 10-HODE but did not affect the biosynthesis of other oxylipins. We conclude that ppoA of Aspergillus sp. may code for 5,8-LDS with catalytic similarities to 7,8-LDS and ppoC for linoleate (10R)-dioxygenases. Identification of these oxygenases and their products will provide tools for analyzing the biological impact of oxylipin biosynthesis in Aspergilli.  相似文献   

8.
Linoleate diol synthases (LDS) are homologous 8(R)-dioxygenases with hydroperoxide isomerase activities, expressed in fungal pathogens of humanitarian importance. We report for the first time expression and site-directed mutagenesis of LDS. 7,8-LDS of the take-all fungus, expressed in Pichia pastoris, oxygenated 18:2n − 6 to 8(R)-hydroperoxylinoleic acid, which was unexpectedly isomerized to 5,8(R)-dihydroxylinoleic acid (60% 5S) and to 8(R),13-dihydroxyoctadeca-9(E),11(E)-dienoic acid. The latter was likely formed via hydrolysis of an unstable intermediate, 8(R),9(S)-epoxyoctadeca-10(E),12(Z)-dienoic acid. A tyrosyl radical is formed during 7,8-LDS catalysis, and Tyr376 is the sequence homolog to Tyr385 of cyclooxygenase-1. Tyr376Phe retained hydroperoxide isomerase activity but lacked 8(R)-dioxygenase activity. The putative proximal heme ligand His379 and the N-glycosylation site at Asn216 appeared to be critical for 8(R)-dioxygenase activity, as His379Gln and Asn216Gln were inactive. Treatment with α-mannosidase to shorten N- and O-linked mannosides inhibited the hydroperoxide isomerase but not the 8(R)-dioxygenase. Our results suggest that post-translational modifications may influence the oxidation mechanism of 7,8-LDS.  相似文献   

9.
The configurations of (6′R)-β,ε-carotene, (3′R,6′R)-β,ε-caroten-3′-ol (α-cryptoxanthin), (3R,3′R,6′R)-β,ε-carotene-3,3′-diol (lutein), (3R)-β,β-caroten-3-ol (β-cryptoxanthin), (3R,3′R)-β,β-carotene-3,3′-diol (zeaxanthin) and all-trans (3S,5R,6S,3′R)-5,6-epoxy-5,6-dihydro-β,β-carotene-3,3′-diol (antheraxanthin) were established by CD and 1H NMR studies. The red algal carotenoids consequently possessed chiralities at each chiral center (C-3, C-5, C-6, C-3′, C-6′), corresponding to the chiralities established for the same carotenoids in higher plants. Two post mortem artifacts from Erythrotrichia carnea were assigned the chiral structures (3S,5R,8R,3′R)-5,8-epoxy-5,8-dihydro-β,β-carotene-3,3′-diol [(8R)-mutatoxanthin] and (3S,5R,8S,3′R)-5,8-epoxy-5,8-dihydro-β,β-carotene-3,3′-diol [(8S)-mutatoxanthin]. This is the first well documented report of a naturally occurring β,ε-caroten-3′-ol (1H NMR, CD, chemical derivatization).  相似文献   

10.
The fungal linoleate diol synthase (LDS) family contains over twenty characterized 8-, 9-, and 10-dioxygenases (DOX), usually fused to catalytically competent cytochromes P450. Crystal structures are not available, but indirect evidence suggests that linoleic acid enters the active site of 8R-DOX-LDS headfirst and enters 9S-DOX-allene oxide synthase (AOS) with the ω-end (tail) first. Fatty acids derivatized with amino acids can conceivably be used to study oxidation in tail first position by enzymes, which bind natural fatty acids headfirst. The results might reveal catalytic similarities of homologous enzymes. 8R-DOX-5,8-LDS oxidize 18:2n-6-Ile and 18:2n-6-Gly in tail first position to 9S-hydroperoxy metabolites, albeit with less position and stereo specificity than 9S-DOX-AOS. The oxygenation mechanism of 9S-DOX-AOS with antarafacial hydrogen abstraction at C-11 and oxygen insertion at C-9 was also retained. Two homologues, 8R-DOX-7,8-LDS and 8R-DOX-AOS, oxidized 18:2n-6-Ile and 18:2n-6-Gly at C-9, suggesting a conserved feature of 8R-DOX domains. 9R-DOX-AOS, with 54% sequence identity to 9S-DOX-AOS, did not oxidize the derivatized C18 fatty acids. 9Z,12Z-16:2, two carbon shorter than 18:n-6 from the ω-end, was rapidly metabolized to an α-ketol, but 7Z,10Z-16:2 was not a substrate. An unsaturated carbon chain from C-1 to C-8 was apparently more important than the configuration at the ω-end. 8R-DOX-LDS and 9R-DOX-AOS may thus bind 18:2n-6 in the same orientation. The oxidation of 18:2n-6 in straight or reverse head-to-tail positions illustrates evolutionary traits between 8- and 9-DOX domains. Fatty acids derivatized with amino acids provide a complementary tool for the analysis of evolution of enzymes.  相似文献   

11.
Diol synthase-derived metabolites are involved in the sexual and asexual life cycles of fungi. A putative diol synthase from Penicillium oxalicum was found to convert palmitoleic acid (16:1n-7), oleic acid (18:1n-9), linoleic acid (18:2n-6), and α-linolenic acid (18:3n-3) to 6S,8R-dihydroxy-9(Z)-hexadecenoic acid, 6R,8R-dihydroxy-9(Z)-octadecenoic acid, 6R,8R-dihydroxy-9,12(Z,Z)-octadecadienoic acid, and 6S,8R-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid, respectively, which were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy analyses. The specific activity and catalytic efficiency of P. oxalicum 6,8-diol synthase were the highest for 18:2n-6, indicating that the enzyme is a 6R,8R-linoleate diol synthase (6R,8R-LDS) with new regiospecificity. This is the first report of a 6R,8R-LDS. LDS is a fusion protein consisting of a dioxygenase domain at the N-terminus and a cytochrome P450/hydroperoxide isomerase (P450/HPI) domain at the C-terminus. The putative active-site residues in the C-terminal domain of P. oxalicum 6R,8R-LDS were proposed based on a substrate-docking homology model. The results of the site-directed mutagenesis within C-terminal P450 domain suggested that Asn886, Arg707, and Arg934, are catalytic importance and belong to the catalytic groove. Phe794 and Gln889 were found to be involved in the regiospecific rearrangement of hydroperoxide, while the F794E and Q889A variants of P. oxalicum 6,8-LDS acted as 7,8- and 8,11-LDSs, respectively. All these mutations critically affected the HPI activity of P. oxalicum 6R,8R-LDS.  相似文献   

12.
Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that exhibits a remarkable lack of chiral discrimination with respect to the configuration of hydroxyl groups at both C3 and C4 positions. The enzyme catalyzes the reversible cleavage of four diastereoisomers (fructose 1,6-bisphosphate (FBP), psicose 1,6-bisphosphate, sorbose 1,6-bisphosphate, and tagatose 1,6-bisphosphate) to dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate with high catalytic efficiency. To investigate its enzymatic mechanism, high resolution crystal structures were determined of both native enzyme and native enzyme in complex with dihydroxyacetone-P. The electron density map revealed a (α/β)8 fold in each dimeric subunit. Flash-cooled crystals of native enzyme soaked with dihydroxyacetone phosphate trapped a covalent intermediate with carbanionic character at Lys205, different from the enamine mesomer bound in stereospecific class I FBP aldolase. Structural analysis indicates extensive active site conservation with respect to class I FBP aldolases, including conserved conformational responses to DHAP binding and conserved stereospecific proton transfer at the DHAP C3 carbon mediated by a proximal water molecule. Exchange reactions with tritiated water and tritium-labeled DHAP at C3 hydrogen were carried out in both solution and crystalline state to assess stereochemical control at C3. The kinetic studies show labeling at both pro-R and pro-S C3 positions of DHAP yet detritiation only at the C3 pro-S-labeled position. Detritiation of the C3 pro-R label was not detected and is consistent with preferential cis-trans isomerism about the C2–C3 bond in the carbanion as the mechanism responsible for C3 epimerization in tagatose-1,6-bisphosphate aldolase.  相似文献   

13.
The biosynthesis of jasmonates in plants is initiated by 13S-lipoxygenase (LOX), but details of jasmonate biosynthesis by fungi, including Fusarium oxysporum, are unknown. The genome of F. oxysporum codes for linoleate 13S-LOX (FoxLOX) and for F. oxysporum manganese LOX (Fo-MnLOX), an uncharacterized homolog of 13R-MnLOX of Gaeumannomyces graminis. We expressed Fo-MnLOX and compared its properties to Cg-MnLOX from Colletotrichum gloeosporioides. Electron paramagnetic resonance and metal analysis showed that Fo-MnLOX contained catalytic Mn. Fo-MnLOX oxidized 18:2n-6 mainly to 11R-hydroperoxyoctadecadienoic acid (HPODE), 13S-HPODE, and 9(S/R)-HPODE, whereas Cg-MnLOX produced 9S-, 11S-, and 13R-HPODE with high stereoselectivity. The 11-hydroperoxides did not undergo the rapid β-fragmentation earlier observed with 13R-MnLOX. Oxidation of [11S-2H]18:2n-6 by Cg-MnLOX was accompanied by loss of deuterium and a large kinetic isotope effect (>30). The Fo-MnLOX-catalyzed oxidation occurred with retention of the 2H-label. Fo-MnLOX also oxidized 1-lineoyl-2-hydroxy-glycero-3-phosphatidylcholine. The predicted active site of all MnLOXs contains Phe except for Ser348 in this position of Fo-MnLOX. The Ser348Phe mutant of Fo-MnLOX oxidized 18:2n-6 to the same major products as Cg-MnLOX. Our results suggest that Fo-MnLOX, with support of Ser348, binds 18:2n-6 so that the proR rather than the proS hydrogen at C-11 interacts with the metal center, but retains the suprafacial oxygenation mechanism observed in other MnLOXs.  相似文献   

14.
Abstract

Biotransformation of (+)-menthol with Macrophomina phaseolina led to hydroxylations at C-1, C-2, C-6, C-7, C-8 and C-9, with the C-8 position being preferentially oxidized. The resulting metabolites were identified as 8-hydroxymenthol (2), 6R-hydroxymenthol (3), 1R-hydroxymenthol (4), 9-hydroxymenthol (5), 2R,8-dihydroxymenthol (6), 8S,9-dihydroxymenthol (7), 6R,8-dihydroxymenthol (8), 1R,8-dihydroxymenthol (9) and 7,8-dihydroxymenthol (10). Metabolites 610 are described here for the first time. Their structures were characterized by spectroscopic analysis.  相似文献   

15.
Magnaporthe oryzae, which causes the devastating rice-blast disease, invades its host plants via a specialized infection structure called the appressorium. Previously, we showed that the ATP-Binding Cassette 3 transporter is necessary for appressorial function (host penetration) in M. oryzae. However, thus far, the molecular basis underlying impaired appressorial function in the abc3Δ remains elusive. We hypothesized that the abc3Δ appressoria accumulate excessive amounts of specific efflux substrate(s) of the Abc3 transporter in M. oryzae. We devised an innovative yeast-based strategy and identified Abc3 Transporter efflux Substrate (ATS) to be a digoxin-like endogenous steroidal glycoside that accumulates to inhibitory levels in M. oryzae abc3Δ appressoria. Exogenous ATS altered cell wall biogenesis and viability in wild-type Schizosaccharomyces pombe, but not in S. pombe expressing M. oryzae Abc3. We show that ATS associates with the Translation Elongation factor Tef2 in M. oryzae, and propose that ATS regulates ion homeostasis during pathogenesis. Excessive ATS accumulation, either intracellularly due to impaired efflux in the abc3Δ or when added exogenously to the wild type, renders M. oryzae nonpathogenic. Furthermore, we demonstrate that the host penetration defects in the abc3Δ are due to aberrant F-actin dynamics as a result of altered Tef2 function and/or ion homeostasis defects caused by excess accumulation of ATS therein. Rather surprisingly, excessive exogenous ATS or digoxin elicited the hypersensitive response in rice, even in the absence of the blast fungus. Lastly, reduced disease symptoms in the inoculated host plants in the presence of excessive digoxin suggest a potential use for such related steroidal glycosides in controlling rice-blast disease.  相似文献   

16.
The scope and limitation of circular dichroism (CD) correlations of several C-2′ substituted monocyclic monochiral, homodichiral and heterodichiral carotenoids have been investigated, aiming at the assignment of absolute configuration at C-2′ by using the diester and 2′-β-d-tetraacetylglucosyl derivative of (2′R)-plectaniaxanthin and a synthetic chiral C45-carotene as key references. The correlations are based on the additivity hypothesis, the conformational rule and a comparison of CD spectra, preferably conservative ones. Quantitative aspects of the conformational rule are considered. Substituent effects at C-2′ and C-1′ have been studied. Absolute configurations are suggested for (2′)-phleixanthophyll (3S,2′S)-2′-hydroxyflexixanthin, (3R,2′S)-myxoxanthophyll, (3S,2′S-4-ketomyxoxanthophyll (3R,2′S)-myxol-2′-O-methyl methylpentoside and (2R,2′S)-Cp. 473 from relevant CD correlations. The chiralities of (2′S)-4-ketophleixanthophyll and (2R,6R,2′S)-A.g. 471 are suggested from biogenetic considerations. A chemosystematic consideration of chirality and source is included.  相似文献   

17.
In GPIIb/IIIa mediated arterial thrombosis platelet activation plays a central role. To discover platelet activation inhibitor the pharmacophores of GPIIb/IIIa receptor inhibitors and anti-thrombotic agents were analyzed. This led to the design of (1R,3S)- and (1S,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acids as GPIIb/IIIa inhibitors. Comparing to (1S,3S)-isomer (1R,3S)-isomer had lower cdocker interaction energy. AFM image showed that the minimal effective concentration of (1S,3S)-isomer and (1R,3S)-isomer inhibiting platelet activation were 10?5?M and 10?6?M, respectively. In vivo 1?μmol/kg of oral (1S,3S)-isomer effectively inhibited the rats to form arterial thrombus and down regulated GPIIb/IIIa expression, but the activities were significantly lower than those of 1?μmol/kg of oral (1R,3S)-isomer. Both (1S,3S)-isomer and (1R,3S)-isomer can be safely used for structural modifications, but (1R,3S)-isomer should be superior to (1S,3S)-isomer.  相似文献   

18.
Four aristolane sesquiterpenes were isolated from the fruiting bodies of Russula lepida and R. amarissima, namely (1R,2S)-1,2-dihydroxyaristolone (6), (2S,11S)-2,12-dihydroxy-aristolone (7), (1R,2S,11S)-1,2,12-trihydroxyaristolone (8), (1S,2S,11S)-1,2,12-trihydroxy-aristolone (9). In addition, a seco-cucurbitane triterpene, i.e. 3,4-secocucurbita-4,24E-diene-3-hydroxy-26-carboxylic acid (14) was isolated from both species. The configuration at C-2 of the already known rulepidol (2-hydroxyaristolone, 5) was corrected as S instead of R. Several more aristolane and nardosinane sesquiterpenes, as well as cucurbitane triterpenes, already reported both from European and Chinese samples of R. lepida, were also isolated. Compound 14 showed moderate cell growth inhibitory activity.  相似文献   

19.
The cytotoxic activities of sesquilignans, (7S,8S,7′R,8′R)- and (7R,8R,7′S,8′S)-morinol A and (7S,8S,7′S,8′S)- and (7R,8R,7′R,8′R)-morinol B were compared, showing no significant difference between stereoisomers (IC50 = 24–35 μM). As a next stage, the effect of substituents at 7, 7′, and 7″-aromatic ring on the activity was evaluated to find out the higher activity of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18 (IC50 = 6–7 μM). In the research on the structure–activity relationship of 7″-position of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18, the most potent compounds were 7,7′,7″-phenyl derivative 18 (IC50 = 6 μM) against HeLa cells. Against HL-60 cells, 7″-(4-nitrophenyl)-7,7′-phenyl derivative 33 and 7″-hexyl-7,7′-phenyl derivative 37 (IC50 = 5 μM) showed highest activity. We discovered the compounds showed four to sevenfold potent activity than that of natural (7S,8S,7′R,8′R)-morinol A. It was also confirmed that the 7′-benzylic hydroxy group have an important role for exhibiting activity, on the other hand, the resonance system of cinnamyl structure is not crucial for the potent activity.  相似文献   

20.
HPLC–PDA–MS and TLC analysis were used to look for minor cytotoxic chlorinated valepotriates from whole plants of Valeriana jatamansi (syn. Valeriana wallichii DC.). This resulted in isolation of 15 chlorinated valepotriates, designated as chlorovaltrates A-O, together with six known analogues, (1S,3R,5R,7S,8S,9S)-3,8-epoxy-1,5-dihydroxyvalechlorine, volvaltrate B, chlorovaltrate, rupesin B, (1S,3R,5R,7S,8S,9S)-3,8-epoxy-1-O-ethyl-5-hydroxyvalechlorine, and (1R,3R,5R,7S,8S,9S)-3,8-epoxy-1-O-ethyl-5-hydroxyvalechlorine. Their structures were elucidated by spectroscopic methods including homo- and heteronuclear two-dimensional NMR experiments. Chlorovaltrates K-N, chlorovaltrate and rupesin B showed moderate cytotoxicity against lung adenocarcinoma (A 549), metastatic prostate cancer (PC-3M), colon cancer (HCT-8) and hepatoma (Bel 7402) cell lines with IC50 values of 0.89–9.76 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号