首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved mutant was isolated from the cellulolytic fungus Stachybotrys sp. after nitrous acid mutagenesis. It was fed-batch cultivated on cellulose and its extracellular cellulases (mainly the endoglucanases and β-glucosidases) were analyzed. One β-glucosidase was purified to homogeneity after two steps, MonoQ and gel filtration and shown to be a dimeric protein. The molecular weight of each monomer is 85 kDa. Besides its aryl β-glucosidase activity towards salicin, methyl-umbellypheryl-β-d-glucoside (MUG) and p-nitrophenyl-β-d-glucoside (pNPG), it showed a true β-glucosidase activity since it splits cellobiose into two glucose monomers. The Vmax and the Km kinetics parameters with pNPG as substrate were 78 U/mg and 0.27 mM, respectively. The enzyme shows more affinity to pNPG than cellobiose and salicin whose apparent values of Km were, respectively, 2.22 and 37.14 mM. This enzyme exhibits its optimal activity at pH 5 and at 50 °C. Interestingly, this activity is not affected by denaturing gel conditions (SDS and β-mercaptoethanol) as long as it is not pre-heated. The N-terminal sequence of the purified enzyme showed a significant homology with the family 1 β-glucosidases of Trichoderma reesei and Humicola isolens even though these two enzymes are much smaller in size.  相似文献   

2.
A highly efficient β-1,4-glucosidase (BGL) secreting strain, Stereum hirsutum SKU512, was isolated and identified based on morphological features and sequence analysis of internal transcribed spacer rDNA. A BGL containing a carbohydrate moiety was purified to homogeneity from S. hirsutum culture supernatants using only a single chromatography step on a gel filtration column. The relative molecular weight of S. hirsutum BGL was determined as 98 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis or 780 kDa by size exclusion chromatography, indicating that the enzyme is an octamer. S. hirsutum BGL showed the highest activity toward p-nitrophenyl-β-D-glucopyranoside (V max = 3,028 U mg-protein−1, k cat = 4,945 s−1) ever reported. The enzyme also showed good stability at an acidic pH ranging from 3.0 to 5.5. The BGL was able to promote transglycosylation with an activity of 42.9 U mg-protein−1 using methanol as an acceptor and glucose as a donor. The internal amino acid sequences of the isolated enzyme showed significant homology with hydrolases from glycoside hydrolase family 1 (GH1), indicating that the S. hirsutum BGL is a member of GH1 family. The characteristics of S. hirsutum BGL could prove to be of interest in several potential applications, especially in enhancing flavor release during the wine fermentation process.  相似文献   

3.
Plant β-glucosidases catalyze the hydrolysis of glycosidic linkages and play a vital role in defense against pathogens and stress. The present work investigated the relationship between leaf development and β-glucosidase protein content in Olea europea L. (cv. Picual) leaves. The total chlorophyll content increased with leaf age in current-season leaves. Immunoblot analysis revealed that the content of 61 kD protein of β-glucosidase also increased with leaf age, and that the enzyme existed in three isoforms (pI 5.8–6.2). Statistical analysis indicated a strong correlation between chlorophyll and β-glucosidase protein contents.  相似文献   

4.
A novel β-glucosidase (BGL)-producing strain was isolated and identified as Penicillium purpurogenum KJS506 based on its morphology and internal transcribed spacer (ITS) rDNA gene sequence. When rice straw and corn steep powder were used as carbon and nitrogen sources, respectively, the maximal BGL activity of 12.3 U ml−1, one of the highest levels among BGL-producing microorganisms was observed. The optimum temperature and pH for BGL production were 32 °C and 4, respectively. An extracellular BGL was purified to homogeneity by sequential chromatography of P. purpurogenum culture supernatants, and the purified BGL showed higher activity (V max = 934 U mg protein–1) than most BGLs from other sources. The complete ORF of bgl3 was cloned from P. purpurogenum by a modified thermal asymmetric interlaced polymerase chain reaction. The bgl3 gene consists of a 2,571-bp ORF and encodes a putative protein containing 856 amino acids with a calculated molecular mass of 89,624 Da. The putative gene product was identified as a member of glycoside hydrolase family 3. The present results should contribute to improved industrial production of BGL by P. purpurogenum KJS506.  相似文献   

5.
《Process Biochemistry》2010,45(6):851-858
A high β-glucosidase (BGL)-producing strain was isolated and identified as Penicillium pinophilum KMJ601 based on its morphology and internal transcribed spacer rDNA gene sequence. Under the optimal culture conditions, a maximum BGL specific activity of 3.2 U ml−1 (83 U mg-protein−1), one of the highest levels among BGL-producing microorganisms was obtained. An extracellular BGL was purified to homogeneity by sequential chromatography of P. pinophilum culture supernatants on a DEAE-Sepharose column, a gel filtration column, and then on a Mono Q column. The relative molecular weight of P. pinophilum BGL was determined to be 120 kDa by SDS-PAGE and size exclusion chromatography, indicating that the enzyme is a monomer. The hydrolytic activity of the BGL had a pH optimum of 3.5 and a temperature optimum of 32 °C. P. pinophilum BGL showed a higher activity (Vmax = 1120 U mg-protein−1) than most BGLs purified from other sources. The internal amino acid sequences of P. pinophilum BGL showed a significant homology with hydrolases from glycoside hydrolase family 3. Although BGLs have been purified and characterized from several other sources, P. pinophilum BGL is distinguished from other BGLs by its high activity.  相似文献   

6.
Acidobacterium capsulatum, an acidophilic, mesophilic and chemoorganotrophic bacterium, produced an inducible, acidic β-glucosidase in the cellobiose medium. The enzyme was successively purified 109 times by CM-Sepharose, Sephacryl S-200 chromatography and preparative discontinuous polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis of the purified enzyme gave a single band at pH 4.3. The enzyme had an optimum pH of 3.0 and optimum reaction temperature of 55°C, being stable from pH 1.5 to 6.0 and at temperatures from 20 to 45°C. No activity was detected above pH 6.5 or above 65°C. The molecular weight of 90,000 was estimated by gel filtration and the enzyme had an isoelectric point of 7.0. The enzyme hydrolyzed aryl-β-glycosides and β-linked disaccharides.  相似文献   

7.
Summary An extremely thermophilic aerobic bacterium which produced -glucosidase was isolated from soil collected at the Yudanaka hot spring in Japan. It was identified as belonging to the genus Thermus. Production of -glucosidase by this bacterium was stimulated by the addition of cellobiose or laminaribiose to the medium. The optimum pH and temperature of the enzyme were 4.5–6.5 and 85° C respectively. The enzyme was stable in the pH range of 4.5–7.0 at 70° C for 2 h and the half-life at 75° C was 5 days. The K m value of the enzyme for p-nitrophenyl--d-glucopyranoside, determined at 70° C in 0.1 M sodium phosphate buffer (pH 6.5), was 0.28 mM while the K m was 2.0 mM for cellobiose. The enzyme effectively hydrolysed cellobiose at 70° C and the conversion yields of cellobiose to glucose were 95%, 93% and 90% at substrate concentrations of 5%, 10% and 15%, respectively.  相似文献   

8.
Summary When culturing the cellulolytic-active Basidiomycete and brown-rot fungus Lenzites trabea A-419 in submerged culture with glucose and cellulose as a carbon source, the fungus only excreted -glucosidase (EC 3.2.1.21) and an endo-1,4--glucanase (EC 3.2.1.4).No evidence for C1 activity (EC 3.2.1.91) was found in the culture filtrate or in the ultra concentrate. -Glucosidase could be separated from endoglucanase by chromatography on Sepharose 6-B. Further fractionation of the -glucosidase on DEAE-Sephadex A-25 resulted in a 525-fold purification. The molecular weight of the isolated -glucosidase was determined by co-chromatography on Sephadex G-200 to be 320,000 daltons. The enzyme developed maximum activities at pH 4.5 and 75°C. The enzyme does not act on crystalline cellulose or CMC, but it hydrolyzes cellotriose,-tetraose, and-pentaose to cellobiose and glucose. -glucosidase activity was strongly inhibited by the reaction product, glucose. A Ki value of 2.7×10–3 (M) for noncompetitive inhibition was found.  相似文献   

9.
An extracellular -glucosidase (EC 3.2.2.21) from the anaerobic fungus Piromyces sp. strain E2 was purified. The enzyme is a monomer with a molecular mass of 45 kDa and a pI of 4.15. The enzyme readily hydrolyzes p-nitrophenyl--d-glycoside, p-nitrophenyl--d-fucoside, cellobiose, cellotriose, cellotetraose and cellopentaose but is not active towards Avicel, carboxymethylcellulose, xylan, p-nitrophenyl--d-galactoside and p-nitrophenyl--d-xyloside. To cleave p-nitrophenyl--d-glucoside the maximum activity is reached at pH 6.0 and 55°C, and the enzyme is stable up to 72 h at 40°C. Activity is inhibited by d-glucurono--lactone, cellobiose, sodium dodecyl sulfate, Hg2+ and Cu2+ cations. With p-nitrophenyl--d-glycoside, p-nitrophenyl--d-fucoside, and. cellobiose as enzyme substrates, the K m and V max balues are 1.5 mM and 25.5 IU·mg-1, 1.1. mM and 133 IU·mg-1, and 0.05 mM and 55.6 IU·mg-1, respectively.  相似文献   

10.
A collection of 60 non-Saccharomyces yeasts isolated from grape musts in Uruguayan vineyards was screened for beta-glucosidase activity and Metschnikowia pulcherrima was the best source of this enzyme activity. Its major beta-glucosidase was successfully purified to homogeneity by ion-exchange chromatography on amino-agarose gel. The enzyme exhibited an optimum catalytic activity at 50 degrees C and pH 4.5 and was active against (1 --> 4)-beta and (1 --> 2)-beta glycosidic linkages. In spite of preserving 100% of its activity and stability in the presence of 12% (v/v) ethanol and 5 g glucose/l, the enzyme was unstable below pH 4. We characterized the beta-glucosidase from M. pulcherrima with a view to its potential applications in wine-making.  相似文献   

11.
This study aimed to develop viable enzymes for bioconversion of resveratrol-glucoside into resveratrol. Out of 13 bacterial strains tested, Lactobacillus kimchi JB301 could completely convert polydatin into resveratrol. The purified enzyme had an optimum temperature of 30–40 °C and optimum pH of pH 5.0 against polydatin. This enzyme showed high substrate specificities towards different substrates in the following order: isorhaponticin >> polydatin >> mulberroside A > oxyresveratrol-3-O-glucoside. Additionally, it rarely hydrolyzed astringin and desoxyrhaponticin. Based on these catalytic specificities, we suggest this enzyme be named stilbene glucoside-specific β-glucosidase. Furthermore, polydatin extracts from Polygonum cuspidatum were successfully converted to resveratrol with a high yield (of over 99%). Stilbene glucoside-specific β-glucosidase is the first enzyme isolated from lactic acid bacteria capable of bio-converting various stilbene glucosides into stilbene.  相似文献   

12.
本研究对Aspergillus niger Glu05生产β-葡萄糖苷酶的培养基组分及培养条件进行了优化.优化后的培养基组成和培养条件分别为:麸皮4%,tryptone 4%,1μmol MnSO4,1μmol NaCl,KH2PO40.2%,oH自然,摇床转速250 r/min,培养温度30℃,培养周期5d.优化后发酵液中酶活力达到44.11 IU/mL,与初始的产酶水平32.87 IU/mL相比,提高了36%.  相似文献   

13.
An intracellular -glucosidase was isolated from the cellobiose-fermenting yeast, Candida wickerhamii. Production of the enzyme was stimulated under aerobic growth, with the highest level of production in a medium containing cellobiose as a carbohydrate source. The molecular mass of the purified protein was approximately 94 kDa. It appeared to exist as a dimeric structure with a native molecular mass of about 180 kDa. The optimal pH ranged from 6.0 to 6.5 with p-nitrophenyl -d-glucopyranoside (NpGlc) as a substrate. The optimal temperature for short-term (15-min) assays was 35°C, while temperature-stability analysis revealed that the enzyme was labile at temperatures of 28° C and above. Using NpGlc as a substrate, the enzyme was estimated to have a K m of 0.28 mM and a V max of 525 mol product min–1 mg protein–1. Similar to the extracellular -glucosidase produced by C. wickerhamii, this enzyme resisted end-product inhibition by glucose, retaining 58% of its activity at 100 mM glucose. The activity of the enzyme was highest against aryl -1,4-glucosides. However, p-nitrophenyl xylopyranoside, lactose, cellobiose, and trehalose also served as substrates for the purified protein. Activity of the enzyme was stimulated by long-chain n-alkanols and inhibited by ethanol, 2-propanol, and 2-butanol. The amino acid sequence, obtained by Edman degradation analysis, suggests that this -glucosidase is related to the family-3 glycosyl hydrolases.  相似文献   

14.
Summary Kinetic properties of extracellular -glucosidase from Aspergillus ornatus were determined. The pH and temperature optima for the enzyme were found to be 4.6 and 60°C, respectively. Under these conditions, the enzyme exhibited a K m (p-nitrophenyl--glucoside) value of 0.76±0.11 mM. The activation energy for the enzyme was 11.8 kcal/mol. Several divalent metal ions inhibited -glucosidase activity, some of which showed inhibition of enzyme activity only at higher concentrations. Ag2+ was the most potent inhibitor. A metal chelating agent, EDTA, also inhibited -glucosidase activity. Except for trehalose, glucose, glucono--lactone, cellobiose, gentiobiose, laminaribiose, maltose and isomaltose inhibited -glucosidase activity. Glucose was found to be a competitive inhibitor, whereas glucono--lactone and other -linked disaccharides were noncompetitive (mixed) inhibitors of the enzyme.  相似文献   

15.
Aureobasidium pullulans produced an intracellular-glucosidase. The enzyme was purified 124-fold by solubilization with Triton X-100, Q-Sepharose treatment, hydroxylapatite, octyl-Sepharose column chromatography, and gel filtration on Sephacryl S-200, and had a specific activity of 316.82 U/mg protein. The enzyme displayed an optimum pH for its action at 4.0 and was fully stable at pH 3.0–6.0 at 50°C. The-glucosidase was completely stable up to 60°C and had an optimum activity at 60°C. The partially purified enzyme preparation hydrolyzed maltose, isomaltose, sucrose, and trehalose at relative rates of 100, 60, 47, and 50, respectively, and had little or no activity on polysaccharides. TheK m value for maltose hydrolysis at pH 4.0 and 50°C was 1.85mm. The enzyme was not adsorbed onto raw corn starch and showed little raw starch degradation. The-glucosidase did not require any metal ion for activity. This represents the first characterization of intracellular-glucosidase fromA. pullulans.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

16.
This study investigated the cellular location and the contribution of individual β-glucosidase (BGL) to total BGL activity in Neurospora crassa. Among the seven bgl genes, bgl3, bgl5, and bgl7 were transcribed at basal levels, whereas bgl1, bgl2, bgl4, and bgl6 were significantly up-regulated when the wild-type strain was induced with cellulose (Avicel). BGL1 and BGL4 were found to be contributors to intracellular BGL activity, whereas the activities of BGL2 and BGL6 were mainly extracellular. Sextuple bgl deletion strains expressing one of the three basally transcribed bgls did not produce any detectable BGL activity when they were grown on Avicel. BGL6 is the major contributor to overall BGL activity, and most of its activity resides cell-bound. The sextuple bgl deletion strain containing only bgl6 utilized cellobiose at a rate similar to that of the wild type, while the strain with only bgl6 deleted utilized cellobiose much slower than that of the wild type.  相似文献   

17.
18.
We investigated extracellular carbohydrase production in the medium of an ectomycorrhizal fungus, Tricholoma matsutake, to reveal its ability to utilize carbohydrates such as starch as a growth substrate and to survey the saprotrophic aspects. We found β-glucosidase activity in the static culture filtrate of this fungus. The β-glucosidase was purified and characterized. The purified enzyme was obtained from about 2.1 l static culture filtrate, with 9.0% recovery, and showed a single protein band on SDS-PAGE. Molecular mass was about 160 kDa. The enzyme was most active around 60°C and pH 5.0, and stable over a pH of 4.0–8.0 for 30 min at 37°C. The purified enzyme was activated by the presence of Ca2+ and Mn2+ ions (about 2–3 times that of the control). The enzyme readily hydrolyzed oligosaccharides having a β-1,4-glucosidic linkage such as cellobiose and cellotriose. However, it did not hydrolyze polysaccharides such as avicel and CM-cellulose or oligosaccharides having an α-glucosidic linkage. Moreover, cellotriose was hydrolyzed by the enzyme for various durations, and the resultant products were analyzed by TLC. We concluded that the enzyme from T. matsutake seems to be a β-glucosidase because cellotriose with a β-1,4-glucosidic linkage decomposed to glucose during the enzyme reaction.  相似文献   

19.
Summary Clostridium stercorarium cultures grown on cellobiose contain both an extracellular and a cell-bound -glucosidase activity. A substantial portion of the cell-bound enzyme could be extracted by osmotic shock, suggesting a periplasmic localization. The -glucosidase present in culture supernatants was purified to homogeneity. It was found to be identical in all aspects tested with the cell-bound -glucosidase. The enzyme exists as a monomer with an apparent molecular weight of 85.000 (SDS-PAGE) and a pI of 4.8. It shows optimal activity as pH 5.5 and 65° C. Thiol groups are essential for enzyme activity. In the presence of reducing agents and divalent cations the half-life of the purified enzyme was more than 5 h at 60°C. The enzyme hydrolyses at different rates a wide range of substrates including aryl--glucosides, cellobiose, and disordered cellulose. K m values were determined as 0.8 mM for p-nitrophenyl--glucoside (PNPG) and 33 mM for cellobiose. The cellular localization and the substrate specificity pattern are consistent with a dual role of the C. stercorarium -glucosidase in cellulose saccharification: (1) Cleavage of cellobiose formed by exoglucanase and (2) degradation of cellodextrins produced by endoglucanase action.  相似文献   

20.
Chitosan was found to be a better support than alginate beads for immobilization of β-glucosidase from Scytalidium lignicola. The optimum concentration of glutaraldehyde for enzyme immobilization was 0.2%. Immobolized β-glucosidase was more able in the pH range of 3–6. Immobilized β-glucosidase retained about 70% of its activity at 50%C after 72 h of incubation while free enzyme lost most of its activity. The log of activity retained vs time was a straight line with free enzyme but was curved for immnobilized enzyme. Lineweaver-Burk plots of free and immoblized β-glucosidase gave Km values of 2 × 10−4 M and 5.5 × 10−4 M for p-nitrophenyl β-d-glucopyranoside, respectively. Addition of immobilized β-glucosidase to a saccharification system gave a 30% increase in reducing sugar availability compared to free enzyme addition and was at least 4 times reusable without appreciable loss in enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号