首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is overexpressed in most human cancers and has been described as being involved in the progression of several human malignancies via the inhibition of protein phosphatase 2A (PP2A) activity toward c-Myc. However, with the exception of this role, the cellular function of CIP2A remains poorly understood. On the basis of yeast two-hybrid and coimmunoprecipitation assays, we demonstrate here that NIMA (never in mitosis gene A)-related kinase 2 (NEK2) is a binding partner for CIP2A. CIP2A exhibited dynamic changes in distribution, including the cytoplasm and centrosome, depending on the cell cycle stage. When CIP2A was depleted, centrosome separation and the mitotic spindle dynamics were impaired, resulting in the activation of spindle assembly checkpoint signaling and, ultimately, extension of the cell division time. Our data imply that CIP2A strongly interacts with NEK2 during G2/M phase, thereby enhancing NEK2 kinase activity to facilitate centrosome separation in a PP1- and PP2A-independent manner. In conclusion, CIP2A is involved in cell cycle progression through centrosome separation and mitotic spindle dynamics.  相似文献   

3.
4.
5.
Na+-dependent chloride cotransporters (NKCC1, NKCC2, and NCC) are activated by phosphorylation to play critical roles in diverse physiological responses, including renal salt balance, hearing, epithelial fluid secretion, and volume regulation. Serine threonine kinase WNK4 (With No K = lysine member 4) and members of the Ste20 kinase family, namely SPAK and OSR1 (Ste20-related proline/alanine-rich kinase, Oxidative stress-responsive kinase) govern phosphorylation. According to present understanding, WNK4 phosphorylates key residues within SPAK/OSR1 leading to kinase activation, allowing SPAK/OSR1 to bind to and phosphorylate NKCC1, NKCC2, and NCC. Recently, the calcium-binding protein 39 (Cab39) has emerged as a binding partner and enhancer of SPAK/OSR1 activity, facilitating kinase autoactivation and promoting phosphorylation of the cotransporters. In the present study, we provide evidence showing that Cab39 differentially interacts with WNK4 and SPAK/OSR1 to switch the classic two kinase cascade into a signal kinase transduction mechanism. We found that WNK4 in association with Cab39 activates NKCC1 in a SPAK/OSR1-independent manner. We discovered that WNK4 possesses a domain that bears close resemblance to the SPAK/OSR1 C-terminal CCT/PF2 domain, which is required for physical interaction between the Ste20 kinases and the Na+-driven chloride cotransporters. Modeling, yeast two-hybrid, and functional data reveal that this PF2-like domain located downstream of the catalytic domain in WNK4 promotes the direct interaction between the kinase and NKCC1. We conclude that in addition to SPAK and OSR1, WNK4 is able to anchor itself to the N-terminal domain of NKCC1 and to promote cotransporter activation.  相似文献   

6.
Overcoming drug-resistance is a big challenge to improve the survival of patients with epithelial ovarian cancer (EOC). In this study, we investigated the effect of chloroquine (CQ) and its combination with cisplatin (CDDP) in drug-resistant EOC cells. We used the three EOC cell lines CDDP-resistant A2780-CP20, RMG-1 cells, and CDDP-sensitive A2780 cells. The CQ-CDDP combination significantly decreased cell proliferation and increased apoptosis in all cell lines. The combination induced expression of γH2AX, a DNA damage marker protein, and induced G2/M cell cycle arrest. Although the CQ-CDDP combination decreased protein expression of ATM and ATR, phosphorylation of ATM was increased and expression of p21WAF1/CIP1 was also increased in CQ-CDDP-treated cells. Knockdown of p21WAF1/CIP1 by shRNA reduced the expression of γH2AX and phosphorylated ATM and inhibited caspase-3 activity but induced ATM protein expression. Knockdown of p21WAF1/CIP1 partly inhibited CQ-CDDP-induced G2/M arrest, demonstrating that knockdown of p21WAF1/CIP1 overcame the cytotoxic effect of the CQ-CDDP combination. Ectopic expression of p21WAF1/CIP1 in CDDP-treated ATG5-shRNA/A2780-CP20 cells increased expression of γH2AX and caspase-3 activity, demonstrating increased DNA damage and cell death. The inhibition of autophagy by ATG5-shRNA demonstrated similar results upon CDDP treatment, except p21WAF1/CIP1 expression. In an in vivo efficacy study, the CQ-CDDP combination significantly decreased tumor weight and increased expression of γH2AX and p21WAF1/CIP1 in A2780-CP20 orthotopic xenografts and a drug-resistant patient-derived xenograft model of EOC compared with controls. These results demonstrated that CQ increases cytotoxicity in combination with CDDP by inducing lethal DNA damage by induction of p21WAF1/CIP1 expression and autophagy inhibition in CDDP-resistant EOC.Subject terms: Cancer therapeutic resistance, Ovarian cancer, Translational research  相似文献   

7.
We have recently identified FIBCD1 (Fibrinogen C domain containing 1) as a type II transmembrane endocytic receptor located primarily in the intestinal brush border. The ectodomain of FIBCD1 comprises a coiled coil, a polycationic region, and a C-terminal FReD (fibrinogen-related domain) that assembles into disulfide-linked homotetramers. The FIBCD1-FReD binds Ca2+ dependently to acetylated structures like chitin, N-acetylated carbohydrates, and amino acids. FReDs are present in diverse innate immune pattern recognition proteins including the ficolins and horseshoe crab TL5A. Here, we use chemical cross-linking, combined with analytical ultracentrifugation and electron microscopy of the negatively stained recombinant FIBCD1-FReD to show that it assembles into noncovalent tetramers in the absence of the coiled coil. We use surface plasmon resonance, carbohydrate binding, and pulldown assays combined with site-directed mutagenesis to define the binding site involved in the interaction of FIBCD1 with acetylated structures. We show that mutations of central residues (A432V and H415G) in the hydrophobic funnel (S1) abolish the binding of FIBCD1 to acetylated bovine serum albumin and chitin. The double mutations (D393N/D395A) at the putative calcium-binding site reduce the ability of FIBCD1 to bind ligands. We conclude that the FReDs of FIBCD1 forms noncovalent tetramers and that the acetyl-binding site of FReDs of FIBCD1 is homologous to that of tachylectin 5A and M-ficolin but not to the FReD of L-ficolin. We suggest that the spatial organization of the FIBCD1-FReDs determine the molecular pattern recognition specificity and subsequent biological functions.  相似文献   

8.
9.
Pre-replicative complex (pre-RC) assembly is a critical part of the mechanism that controls the initiation of DNA replication, and ATP binding and hydrolysis by multiple pre-RC proteins are essential for pre-RC assembly and activation. Here, we demonstrate that Adk1p (adenylate kinase 1 protein) plays an important role in pre-RC assembly in Saccharomyces cerevisiae. Isolated from a genetic screen, adk1G20S cells with a mutation within the nucleotide-binding site were defective in replication initiation. adk1Δ cells were viable at 25 °C but not at 37°C. Flow cytometry indicated that both the adk1-td (temperature-inducible degron) and adk1G20S mutants were defective in S phase entry. Furthermore, Adk1p bound to chromatin throughout the cell cycle and physically interacted with Orc3p, whereas the Adk1G20S protein had a reduced ability to bind chromatin and Orc3p without affecting the cellular ATP level. In addition, Adk1p associated with replication origins by ChIP assay. Finally, Adk1-td protein depletion prevented pre-RC assembly during the M-to-G1 transition. We suggest that Adk1p regulates ATP metabolism on pre-RC proteins to promote pre-RC assembly and activation.  相似文献   

10.
SK1 (sphingosine kinase 1) plays an important role in many aspects of cellular regulation. Most notably, elevated cellular SK1 activity leads to increased cell proliferation, protection from apoptosis, and induction of neoplastic transformation. We have previously shown that translocation of SK1 from the cytoplasm to the plasma membrane is integral for oncogenesis mediated by this enzyme. The molecular mechanism mediating this translocation of SK1 has remained undefined. Here, we demonstrate a direct role for CIB1 (calcium and integrin-binding protein 1) in this process. We show that CIB1 interacts with SK1 in a Ca2+-dependent manner at the previously identified “calmodulin-binding site” of SK1. We also demonstrate that CIB1 functions as a Ca2+-myristoyl switch, providing a mechanism whereby it translocates SK1 to the plasma membrane. Both small interfering RNA knockdown of CIB1 and the use of a dominant-negative CIB1 we have generated prevent the agonist-dependent translocation of SK1. Furthermore, we demonstrate the requirement of CIB1-mediated translocation of SK1 in controlling cellular sphingosine 1-phosphate generation and associated anti-apoptotic signaling.  相似文献   

11.
Triggering receptor expressed on myeloid cells-2 (TREM-2) is rapidly emerging as a key regulator of the innate immune response via its regulation of macrophage inflammatory responses. Here we demonstrate that proximal TREM-2 signaling parallels other DAP12-based receptor systems in its use of Syk and Src-family kinases. However, we find that the linker for activation of T cells (LAT) is severely reduced as monocytes differentiate into macrophages and that TREM-2 exclusively uses the linker for activation of B cells (LAB encoded by the gene Lat2−/−) to mediate downstream signaling. LAB is required for TREM-2-mediated activation of Erk1/2 and dampens proximal TREM-2 signals through a novel LAT-independent mechanism resulting in macrophages with proinflammatory properties. Thus, Lat2−/− macrophages have increased TREM-2-induced proximal phosphorylation, and lipopolysaccharide stimulation of these cells leads to increased interleukin-10 (IL-10) and decreased IL-12p40 production relative to wild type cells. Together these data identify LAB as a critical, LAT-independent regulator of TREM-2 signaling and macrophage development capable of controlling subsequent inflammatory responses.  相似文献   

12.
The tumor suppressor p53 protein is tightly regulated by a ubiquitin-proteasomal degradation mechanism. Several E3 ubiquitin ligases, including MDM2 (mouse double minute 2), have been reported to play an essential role in the regulation of p53 stability. However, it remains unclear how the activity of these E3 ligases is regulated. Here, we show that the HECT-type E3 ligase Smurf1/2 (Smad ubiquitylation regulatory factor 1/2) promotes p53 degradation by enhancing the activity of the E3 ligase MDM2. We provide evidence that the role of Smurf1/2 on the p53 stability is not dependent on the E3 activity of Smurf1/2 but rather is dependent on the activity of MDM2. We find that Smurf1/2 stabilizes MDM2 by enhancing the heterodimerization of MDM2 with MDMX, during which Smurf1/2 interacts with MDM2 and MDMX. We finally provide evidence that Smurf1/2 regulates apoptosis through p53. To our knowledge, this is the first report to demonstrate that Smurf1/2 functions as a factor to stabilize MDM2 protein rather than as a direct E3 ligase in regulation of p53 degradation.  相似文献   

13.
14.
The T cell-specific tyrosine kinase, p56lck, plays crucial roles in T cell receptor (TCR)-mediated T cell activation. Here, we report that SOCS-6 (suppressor of cytokine signaling-6) is a negative regulator of p56lck. SOCS-6 was identified as a protein binding to the kinase domain of p56lck through yeast two-hybrid screening. SOCS-6 bound specifically to p56lck (F505), which mimics the active form of p56lck, but not to wild type p56lck. In Jurkat T cells, SOCS-6 binding to p56lck was detected 1–2 h after TCR stimulation. Confocal microscopy showed that upon APC-T cell conjugation, SOCS-6 was recruited to the immunological synapse and colocalized with the active form of p56lck. SOCS-6 promoted p56lck ubiquitination and its subsequent targeting to the proteasome. Moreover, SOCS-6 overexpression led to repression of TCR-dependent interleukin-2 promoter activity. These results establish that SOCS-6 acts as a negative regulator of T cell activation by promoting ubiquitin-dependent proteolysis.  相似文献   

15.
16.
ADAMTS (A disintegrin and metalloproteinase with thrombospondin motifs)-like (ADAMTSL) proteins, a subgroup of the ADAMTS superfamily, share several domains with ADAMTS proteinases, including thrombospondin type I repeats, a cysteine-rich domain, and an ADAMTS spacer, but lack a catalytic domain. We identified two new members of ADAMTSL proteins, ADAMTSL-6α and -6β, that differ in their N-terminal amino acid sequences but have common C-terminal regions. When transfected into MG63 osteosarcoma cells, both isoforms were secreted and deposited into pericellular matrices, although ADAMTSL-6α, in contrast to -6β, was barely detectable in the conditioned medium. Immunolabeling at the light and electron microscopic levels showed their close association with fibrillin-1-rich microfibrils in elastic connective tissues. Surface plasmon resonance analyses demonstrated that ADAMTSL-6β binds to the N-terminal half of fibrillin-1 with a dissociation constant of ∼80 nm. When MG63 cells were transfected or exogenously supplemented with ADAMTSL-6, fibrillin-1 matrix assembly was promoted in the early but not the late stage of the assembly process. Furthermore, ADAMTSL-6 transgenic mice exhibited excessive fibrillin-1 fibril formation in tissues where ADAMTSL-6 was overexpressed. All together, these results indicated that ADAMTSL-6 is a novel microfibril-associated protein that binds directly to fibrillin-1 and promotes fibrillin-1 matrix assembly.  相似文献   

17.
Ankyrin repeat domain protein 2 (ANKRD2) translocates from the nucleus to the cytoplasm upon myogenic induction. Overexpression of ANKRD2 inhibits C2C12 myoblast differentiation. However, the mechanism by which ANKRD2 inhibits myoblast differentiation is unknown. We demonstrate that the primary myoblasts of mdm (muscular dystrophy with myositis) mice (pMBmdm) overexpress ANKRD2 and ID3 (inhibitor of DNA binding 3) proteins and are unable to differentiate into myotubes upon myogenic induction. Although suppression of either ANKRD2 or ID3 induces myoblast differentiation in mdm mice, overexpression of ANKRD2 and inhibition of ID3 or vice versa is insufficient to inhibit myoblast differentiation in WT mice. We identified that ANKRD2 and ID3 cooperatively inhibit myoblast differentiation by physical interaction. Interestingly, although MyoD activates the Ankrd2 promoter in the skeletal muscles of wild-type mice, SREBP-1 (sterol regulatory element binding protein-1) activates the same promoter in the skeletal muscles of mdm mice, suggesting the differential regulation of Ankrd2. Overall, we uncovered a novel pathway in which SREBP-1/ANKRD2/ID3 activation inhibits myoblast differentiation, and we propose that this pathway acts as a critical determinant of the skeletal muscle developmental program.  相似文献   

18.
19.
ADP-ribosylation is involved in a variety of biological processes, many of which are chromatin-dependent and linked to important functions during the cell cycle. However, any study on ADP-ribosylation and the cell cycle faces the problem that synchronization with chemical agents or by serum starvation and subsequent growth factor addition already activates ADP-ribosylation by itself. Here, we investigated the functional contribution of ARTD1 in cell cycle re-entry and G1/S cell cycle progression using T24 urinary bladder carcinoma cells, which synchronously re-enter the cell cycle after splitting without any additional stimuli. In synchronized cells, ARTD1 knockdown, but not inhibition of its enzymatic activity, caused specific down-regulation of cyclin E during cell cycle re-entry and G1/S progression through alterations of the chromatin composition and histone acetylation, but not of other E2F-1 target genes. Although Cdk2 formed a functional complex with the residual cyclin E, p27Kip1 Murray AH, Hunt T. The cell cycle: an introduction. New York: Oxford University Press, 1993. [Google Scholar] protein levels increased in G1 upon ARTD1 knockdown most likely due to inappropriate cyclin E-Cdk2-induced phosphorylation-dependent degradation, leading to decelerated G1/S progression. These results provide evidence that ARTD1 regulates cell cycle re-entry and G1/S progression via cyclin E expression and p27Kip1 Murray AH, Hunt T. The cell cycle: an introduction. New York: Oxford University Press, 1993. [Google Scholar] stability independently of its enzymatic activity, uncovering a novel cell cycle regulatory mechanism.  相似文献   

20.
In most bacteria, two tRNAs decode the four arginine CGN codons. One tRNA harboring a wobble inosine (tRNAArgICG) reads the CGU, CGC and CGA codons, whereas a second tRNA harboring a wobble cytidine (tRNAArgCCG) reads the remaining CGG codon. The reduced genomes of Mycoplasmas and other Mollicutes lack the gene encoding tRNAArgCCG. This raises the question of how these organisms decode CGG codons. Examination of 36 Mollicute genomes for genes encoding tRNAArg and the TadA enzyme, responsible for wobble inosine formation, suggested an evolutionary scenario where tadA gene mutations first occurred. This allowed the temporary accumulation of non-deaminated tRNAArgACG, capable of reading all CGN codons. This hypothesis was verified in Mycoplasma capricolum, which contains a small fraction of tRNAArgACG with a non-deaminated wobble adenosine. Subsets of Mollicutes continued to evolve by losing both the mutated tRNAArgCCG and tadA, and then acquired a new tRNAArgUCG. This permitted further tRNAArgACG mutations with tRNAArgGCG or its disappearance, leaving a single tRNAArgUCG to decode the four CGN codons. The key point of our model is that the A-to-I deamination activity had to be controlled before the loss of the tadA gene, allowing the stepwise evolution of Mollicutes toward an alternative decoding strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号