首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SRPK1 (serine-arginine protein kinase 1) is a protein kinase that specifically phosphorylates proteins containing serine-arginine-rich domains. Its substrates include a family of SR proteins that are key regulators of mRNA AS (alternative splicing). VEGF (vascular endothelial growth factor), a principal angiogenesis factor contains an alternative 3' splice site in the terminal exon that defines a family of isoforms with a different amino acid sequence at the C-terminal end, resulting in anti-angiogenic activity in the context of VEGF165-driven neovascularization. It has been shown recently in our laboratories that SRPK1 regulates the choice of this splice site through phosphorylation of the splicing factor SRSF1 (serine/arginine-rich splicing factor 1). The present review summarizes progress that has been made to understand how SRPK1 inhibition may be used to manipulate the balance of pro- and anti-angiogenic VEGF isoforms in animal models in vivo and therefore control abnormal angiogenesis and other pathophysiological processes in multiple disease states.  相似文献   

2.
3.
4.
The airways in asthma and COPD are characterized by an increase in airway smooth muscle (ASM) mass and bronchial vascular changes associated with increased expression of pro-angiogenic growth factors, such as fibroblast growth factors (FGF-1 and FGF-2) and vascular endothelial growth factor (VEGF). We investigated the contribution of FGF-1/-2 in VEGF production in ASM cells and assessed the influence of azithromycin and dexamethasone and their underlying signaling mechanisms. Growth-synchronized human ASM cells were pre-treated with MAPK inhibitors, U0126 for ERK1/2MAPK and SB239063 for p38MAPK as well as with dexamethasone or azithromycin, 30 min before incubation with FGF-1 or FGF-2. Expression of VEGF (VEGF-A, VEGF121, and VEGF165) was assessed by quantitative PCR, VEGF release by ELISA and MAPK phosphorylation by Western blotting. Both FGF-1 and FGF-2 significantly induced mRNA levels of VEGF-A, VEGF121, and VEGF165. The VEGF protein release was increased 1.8-fold (FGF-1) and 5.5-fold (FGF-2) as compared to controls. Rapid transient increase in ERK1/2MAPK and p38MAPK phosphorylation and subsequent release of VEGF from FGF-1 or FGF-2-treated ASM cells were inhibited by respective blockers. Furthermore, azithromycin and dexamethasone significantly reduced both the VEGF release and the activation of p38MAPK pathway in response to FGF-1 or FGF-2 treatment. Our Results demonstrate that FGF-1 and FGF-2 up-regulate VEGF production via ERK1/2MAPK and p38MAPK pathways. Both azithromycin and dexamethasone elicited their anti-angiogenic effects via p38MAPK pathway in vitro, thereby suggesting a possible therapeutic approach to tackle VEGF-mediated vascular remodeling.  相似文献   

5.
6.
We investigated whether the gene expression of vascular endothelial growth factor (VEGF) and its receptors (VEGFR and neuropilin-1 [NRP-1]) could be specifically regulated during the megakaryocytic differentiation of human thrombopoietin (TPO)-dependent UT-7/TPO cells. Undifferentiated UT-7/TPO cells expressed a functional VEGFR-2, leading to VEGF binding and VEGF165-induced tyrosine phosphorylation, cell proliferation, and apoptosis inhibition. The megakaryocytic differentiation of UT-7/TPO cells on treatment with phorbol myristate acetate (PMA) was accompanied by a marked up-regulation of NRP-1 mRNA and protein expression and by an increase in VEGF-binding activity, which was mainly mediated by VEGFR-2. VEGF165 promoted the formation of complexes containing NRP-1 and VEGFR-2 in undifferentiated UT-7/TPO cells in a dose-dependent manner. Unlike human umbilical vein endothelial cells, PMA-differentiated UT-7/TPO cells exhibited complex formation between NRP-1 and VEGFR-2 even in the absence of VEGF165. These findings suggest that NRP-1-VEGFR-2-complex formation may contribute to effective cellular functions mediated by VEGF165 in megakaryocytic cells.  相似文献   

7.
Liu X  Mayeda A  Tao M  Zheng ZM 《Journal of virology》2003,77(3):2105-2115
Bovine papillomavirus type 1 (BPV-1) late pre-mRNAs are spliced in keratinocytes in a differentiation-specific manner: the late leader 5' splice site alternatively splices to a proximal 3' splice site (at nucleotide 3225) to express L2 or to a distal 3' splice site (at nucleotide 3605) to express L1. Two exonic splicing enhancers, each containing two ASF/SF2 (alternative splicing factor/splicing factor 2) binding sites, are located between the two 3' splice sites and have been identified as regulating alternative 3' splice site usage. The present report demonstrates for the first time that ASF/SF2 is required under physiological conditions for the expression of BPV-1 late RNAs and for selection of the proximal 3' splice site for BPV-1 RNA splicing in DT40-ASF cells, a genetically engineered chicken B-cell line that expresses only human ASF/SF2 controlled by a tetracycline-repressible promoter. Depletion of ASF/SF2 from the cells by tetracycline greatly decreased viral RNA expression and RNA splicing at the proximal 3' splice site while increasing use of the distal 3' splice site in the remaining viral RNAs. Activation of cells lacking ASF/SF2 through anti-immunoglobulin M-B-cell receptor cross-linking rescued viral RNA expression and splicing at the proximal 3' splice site and enhanced Akt phosphorylation and expression of the phosphorylated serine/arginine-rich (SR) proteins SRp30s (especially SC35) and SRp40. Treatment with wortmannin, a specific phosphatidylinositol 3-kinase/Akt kinase inhibitor, completely blocked the activation-induced activities. ASF/SF2 thus plays an important role in viral RNA expression and splicing at the proximal 3' splice site, but activation-rescued viral RNA expression and splicing in ASF/SF2-depleted cells is mediated through the phosphatidylinositol 3-kinase/Akt pathway and is associated with the enhanced expression of other SR proteins.  相似文献   

8.
Alternative splicing contributes to the complexity of proteome by producing multiple mRNAs from a single gene. Affymetrix exon arrays and experiments in vivo or in vitro demonstrated that alternative splicing was regulated by mechanical stress. Expression of mechano-growth factor (MGF) which is the splicing isoform of insulin-like growth factor 1(IGF-1) and vascular endothelial growth factor (VEGF) splicing variants such as VEGF121, VEGF165, VEGF206, VEGF189, VEGF165 and VEGF145 are regulated by mechanical stress. However, the mechanism of this process is not yet clear. Increasing evidences showed that the possible mechanism is related to Ca2+ signal pathway and phosphorylation signal pathway. This review proposes possible mechanisms of mechanical splicing regulation. This will contribute to the biomechanical study of alternative splicing.  相似文献   

9.
The 2.9 A crystal structure of the core SRPK1:ASF/SF2 complex reveals that the N-terminal half of the basic RS domain of ASF/SF2, which is destined to be phosphorylated, is bound to an acidic docking groove of SRPK1 distal to the active site. Phosphorylation of ASF/SF2 at a single site in the C-terminal end of the RS domain generates a primed phosphoserine that binds to a basic site in the kinase. Biochemical experiments support a directional sliding of the RS peptide through the docking groove to the active site during phosphorylation, which ends with the unfolding of a beta strand of the RRM domain and binding of the unfolded region to the docking groove. We further suggest that the priming of the first serine facilitates directional substrate translocation and efficient phosphorylation.  相似文献   

10.
Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA3.1 empty vector, pcDNA3.1-VEGF111b or pcDNA3.1-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.  相似文献   

11.
Serine/arginine-rich (SR) proteins play an important role in constitutive and alternative pre-mRNA splicing. The C-terminal arginine-serine domain of these proteins, such as SF2/ASF, mediates protein-protein interactions and is phosphorylated in vivo. Using glutathione S-transferase (GST)-SF2/ASF-affinity chromatography, the SF2/ASF kinase activity was co-purified from HeLa cells with a 95-kDa protein, which was recognized by an anti-SR protein kinase (SRPK) 1 monoclonal antibody. Recombinant SRPK1 and SRPK2 bound to and phosphorylated GST-SF2/ASF in vitro. Phosphopeptide mapping showed that identical sites were phosphorylated in the pull-down kinase reaction with HeLa extracts and by recombinant SRPKs. Epitope-tagged SF2/ASF transiently expressed in COS7 cells co-immunoprecipitated with SRPKs. Deletion analysis mapped the phosphorylation sites to a region containing an (Arg-Ser)8 repeat beginning at residue 204, and far-Western analysis showed that the region is required for binding of SRPKs to SF2/ASF. Further binding studies showed that SRPKs bound unphosphorylated SF2/ASF but did not bind phosphorylated SF2/ASF. Expression of an SRPK2 kinase-inactive mutant caused accumulation of SF2/ASF in the cytoplasm. These results suggest that the formation of complexes between SF2/ASF and SRPKs, which is influenced by the phosphorylation state of SF2/ASF, may have regulatory roles in the assembly and localization of this splicing factor.  相似文献   

12.
The arginine-serine (RS)-rich domain of the SR protein ASF/SF2 is phosphorylated by SR protein kinases (SRPKs) and Clk/Sty kinases. However, the mode of phosphorylation by these kinases and their coordination in the biological regulation of ASF/SF2 is unknown. Here, we report the crystal structure of an active fragment of human SRPK1 bound to a peptide derived from an SR protein. This structure led us to identify a docking motif in ASF/SF2. We find that this docking motif restricts phosphorylation of ASF/SF2 by SRPK1 to the N-terminal part of the RS domain - a property essential for its assembly into nuclear speckles. We further show that Clk/Sty causes release of ASF/SF2 from speckles by phosphorylating the C-terminal part of its RS domain. These results suggest that the docking motif of ASF/SF2 is a key regulatory element for sequential phosphorylation by SRPK1 and Clk/Sty and, thus, is essential for its subcellular localization.  相似文献   

13.
14.
Peroxisome proliferator-activated receptor ?? (PPAR??) activation has anti-angiogenic and apoptotic effects in endothelial cells. Here, we investigated the mechanisms of the anti-angiogenic action of a novel PPAR?? ligand, KR-62980. KR-62980 inhibited in vitro basal tube formation and in vivo neovascularization in mice induced by Matrigel containing vascular endothelial growth factor (VEGF165, 5 ng/ml). VEGF165-induced cell proliferation and chemotactic migration in human umbilical vein endothelial cells (HUVECs) were also suppressed by KR-62980, in a mechanism accompanied by apoptotic cell death. KR-62980 downregulated the VEGF165-induced VEGFR-2 expression but increased the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression in parallel with reduced phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2), PI3K p85??, and p38 MAPK. The knockdown of PTEN expression abolished KR-62980-suppressed cell proliferation and angiogenesis. All of the effects of KR-62980 disappeared with pretreatment of bisphenol A diaglycidyl ether (BADGE), a PPAR?? antagonist. In summary, KR-62980 inhibited VEGF165-induced angiogenesis in HUVECs by PPAR??-mediated dual mechanisms: VEGFR-2 downregulation and PTEN upregulation.  相似文献   

15.
Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor 165 (VEGF165) are potent pro-angiogenic growth factors that play a pivotal role in tumor angiogenesis. The activity of these growth factors is regulated by heparan sulfate (HS), which is essential for the formation of FGF2/FGF receptor (FGFR) and VEGF165/VEGF receptor signaling complexes. However, the structural characteristics of HS that determine activation or inhibition of such complexes are only partially defined. Here we show that ovarian tumor endothelium displays high levels of HS sequences that harbor glucosamine 6-O-sulfates when compared with normal ovarian vasculature where these sequences are also detected in perivascular area. Reduced HS 6-O-sulfotransferase 1 (HS6ST-1) or 6-O-sulfotransferase 2 (HS6ST-2) expression in endothelial cells impacts upon the prevalence of HS 6-O-sulfate moieties in HS sequences, which consist of repeating short, highly sulfated S domains interspersed by transitional N-acetylated/N-sulfated domains. 1–40% reduction in 6-O-sulfates significantly compromises FGF2- and VEGF165-induced endothelial cell sprouting and tube formation in vitro and FGF2-dependent angiogenesis in vivo. Moreover, HS on wild-type neighboring endothelial or smooth muscle cells fails to restore endothelial cell sprouting and tube formation. The affinity of FGF2 for HS with reduced 6-O-sulfation is preserved, although FGFR1 activation is inhibited correlating with reduced receptor internalization. These data show that 6-O-sulfate moieties in endothelial HS are of major importance in regulating FGF2- and VEGF165-dependent endothelial cell functions in vitro and in vivo and highlight HS6ST-1 and HS6ST-2 as potential targets of novel antiangiogenic agents.  相似文献   

16.
17.
Angiogenesis plays an important role in bone development and postnatal bone fracture repair. Vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) are primarily involved in angiogenesis. This study investigated the expression of VEGF isoforms, VEGFR-1, and VEGFR-2 during the osteoblastic differentiation of cultured human periosteal-derived cells. In addition, the effect of exogenous VEGF on the osteoblastic differentiation of cultured human periosteal-derived cells was also examined. The expression of the VEGF isoforms (VEGF121, VEGF165, VEGF189, and VEGF206), VEGFR-1, and VEGFR-2 was observed in the periosteal-derived cells. Administration of KRN633, a VEGFR-1 and VEGFR-2 inhibitor, decreased the alkaline phosphatase (ALP) activity during the osteoblastic differentiation of cultured human periosteal-derived cells. However, the administration of VEGFR2 Kinase Inhibitor IV, a VEGFR-2 inhibitor, did not affect the ALP activity. The addition of recombinant human VEGF165 elevated the ALP activity and increased the calcium content in the periosteal-derived cells. Treating the periosteal-derived cells with recombinant human VEGF165 resulted in an increase in Runx2 transactivation in the periosteal-derived cells. These results suggest that exogenous VEGF stimulates the osteoblastic differentiation of cultured human periosteal-derived cells and VEGF might act as an autocrine growth factor for the osteoblastic differentiation of cultured human periosteal-derived cells.  相似文献   

18.
Abstract. Reversible phosphorylation plays an important role in pre-mRNA splicing in mammalian cells. Two kinases, SR protein-specific kinase (SRPK1) and Clk/Sty, have been shown to phosphorylate the SR family of splicing factors. We report here the cloning and characterization of SRPK2, which is highly related to SRPK1 in sequence, kinase activity, and substrate specificity. Random peptide selection for preferred phosphorylation sites revealed a stringent preference of SRPK2 for SR dipeptides, and the consensus derived may be used to predict potential phosphorylation sites in candidate arginine and serine-rich (RS) domain–containing proteins. Phosphorylation of an SR protein (ASF/SF2) by either SRPK1 or 2 enhanced its interaction with another RS domain–containing protein (U1 70K), and overexpression of either kinase induced specific redistribution of splicing factors in the nucleus. These observations likely reflect the function of the SRPK family of kinases in spliceosome assembly and in mediating the trafficking of splicing factors in mammalian cells. The biochemical and functional similarities between SRPK1 and 2, however, are in contrast to their differences in expression. SRPK1 is highly expressed in pancreas, whereas SRPK2 is highly expressed in brain, although both are coexpressed in other human tissues and in many experimental cell lines. Interestingly, SRPK2 also contains a proline-rich sequence at its NH2 terminus, and a recent study showed that this NH2-terminal sequence has the capacity to interact with a WW domain protein in vitro. Together, our studies suggest that different SRPK family members may be uniquely regulated and targeted, thereby contributing to splicing regulation in different tissues, during development, or in response to signaling.  相似文献   

19.
The essential splicing factor SF2/ASF and the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) modulate alternative splicing in vitro of pre-mRNAs that contain 5' splice sites of comparable strengths competing for a common 3' splice site. Using natural and model pre-mRNAs, we have examined whether the ratio of SF2/ASF to hnRNP A1 also regulates other modes of alternative splicing in vitro. We found that an excess of SF2/ASF effectively prevents inappropriate exon skipping and also influences the selection of mutually exclusive tissue-specific exons in natural beta-tropomyosin pre-mRNA. In contrast, an excess of hnRNP A1 does not cause inappropriate exon skipping in natural constitutively or alternatively spliced pre-mRNAs. Although hnRNP A1 can promote alternative exon skipping, this effect is not universal and is dependent, e.g., on the size of the internal alternative exon and on the strength of the polypyrimidine tract in the preceding intron. With appropriate alternative exons, an excess of SF2/ASF promotes exon inclusion, whereas an excess of hnRNP A1 causes exon skipping. We propose that in some cases the ratio of SF2/ASF to hnRNP A1 may play a role in regulating alternative splicing by exon inclusion or skipping through the antagonistic effects of these proteins on alternative splice site selection.  相似文献   

20.
The mammalian serine-arginine (SR) protein, ASF/SF2, contains multiple contiguous RS dipeptides at the C terminus, and approximately 12 of these serines are processively phosphorylated by the SR protein kinase 1 (SRPK1). We have recently shown that a docking motif in ASF/SF2 specifically interacts with a groove in SRPK1, and this interaction is necessary for processive phosphorylation. We previously showed that SRPK1 and its yeast ortholog Sky1p maintain their active conformations using diverse structural strategies. Here we tested if the mechanism of ASF/SF2 phosphorylation by SRPK is evolutionarily conserved. We show that Sky1p forms a stable complex with its heterologous mammalian substrate ASF/SF2 and processively phosphorylates the same sites as SRPK1. We further show that Sky1p utilizes the same docking groove to bind yeast SR-like protein Gbp2p and phosphorylates all three serines present in a contiguous RS dipeptide stretch. However, the mechanism of Gbp2p phosphorylation appears to be non-processive. Thus, there are physical attributes of SR and SR-like substrates that dictate the mechanism of phosphorylation, whereas the ability to processively phosphorylate substrates is inherent to SR protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号