首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metalloproteins have many different functions in cells such as enzymes; signal transduction, transport and storage proteins. About one third of all proteins require metals to carry out their functions. In the present study we have analyzed the roles played by Arg and Lys (cationic side chains) interactions with π (Phe, Tyr or Trp) residues and their role in the structural stability of metalloproteins. These interactions might play an important role in the global conformational stability in metalloproteins. In spite of its lower natural occurrence (1.76%) the number of Trp residues involved in energetically significant interactions is higher in metalloproteins.  相似文献   

2.
3.
4.
5.
Although mesenchymal stem cells (MSCs) are the natural source for bone regeneration, the exact mechanisms governing MSC crosstalk with collagen I have not yet been uncovered. Cell adhesion to collagen I is mostly mediated by three integrin receptors – α1β1, α2β1 and α11β1. Using human MSC (hMSC), we show that α11 subunit exhibited the highest basal expression levels but on osteogenic stimulation, both α2 and α11 integrins were significantly upregulated. To elucidate the possible roles of collagen-binding integrins, we applied short hairpin RNA (shRNA)-mediated knockdown in hMSC and found that α2 or α11 deficiency, but not α1, results in a tremendous reduction of hMSC numbers owing to mitochondrial leakage accompanied by Bcl-2-associated X protein upregulation. In order to clarify the signaling conveyed by the collagen-binding integrins in hMSC, we analyzed the activation of focal adhesion kinase, extracellular signal-regulated protein kinase and serine/threonine protein kinase B (PKB/Akt) kinases and detected significantly reduced Akt phosphorylation only in α2- and α11-shRNA hMSC. Finally, experiments with hMSC from osteoporotic patients revealed a significant downregulation of α2 integrin concomitant with an augmented mitochondrial permeability. In conclusion, our study describes for the first time that disturbance of α2β1- or α11β1-mediated interactions to collagen I results in the cell death of MSCs and urges for further investigations examining the impact of MSCs in bone conditions with abnormal collagen I.  相似文献   

6.
MicroRNA 183 (miR-183) has been reported to inhibit tumor invasiveness and is believed to be involved in the development and function of ciliated neurosensory organs. We have recently found that expression of miR-183 increased after the induction of cellular senescence by exposure to H2O2. To gain insight into the biological roles of miR-183 we investigated two potential novel targets: integrin β1 (ITGB1) and kinesin 2α (KIF2A). miR-183 significantly decreased the expression of ITGB1 and KIF2A measured by Western blot. Targeting of the 3′-untranslated region (3′-UTR) of ITGB1 and KIF2A by miR-183 was confirmed by luciferase assay. Transfection with miR-183 led to a significant decrease in cell invasion and migration capacities of HeLa cells that could be rescued by expression of ITGB1 lacking the 3′-UTR. Although miR-183 had no effects on cell adhesion in HeLa cells, it significantly decreased adhesion to laminin, gelatin, and collagen type I in normal human diploid fibroblasts and human trabecular meshwork cells. These effects were also rescued by expression of ITGB1 lacking the 3′-UTR. Targeting of KIF2A by miR-183 resulted in some increase in the formation of cells with monopolar spindles in HeLa cells but not in human diploid fibroblast or human trabecular meshwork cells. The regulation of ITGB1 expression by miR-183 provides a new mechanism for the anti-metastatic role of miR-183 and suggests that this miRNA could influence the development and function in neurosensory organs, and contribute to functional alterations associated with cellular senescence in human diploid fibroblasts and human trabecular meshwork cells.  相似文献   

7.
The free energy of transfer of nonpolar solutes from water to lipid bilayers is often dominated by a large negative enthalpy rather than the large positive entropy expected from the hydrophobic effect. This common observation has led to the idea that membrane partitioning is driven by the "nonclassical" hydrophobic effect. We examined this phenomenon by characterizing the partitioning of the well-studied peptide melittin using isothermal titration calorimetry (ITC) and circular dichroism (CD). We studied the temperature dependence of the entropic (-TΔS) and enthalpic (ΔH) components of free energy (ΔG) of partitioning of melittin into lipid membranes made of various mixtures of zwitterionic and anionic lipids. We found significant variations of the entropic and enthalpic components with temperature, lipid composition and vesicle size but only small changes in ΔG (entropy-enthalpy compensation). The heat capacity associated with partitioning had a large negative value of about -0.5 kcal mol(-1) K(-1). This hallmark of the hydrophobic effect was found to be independent of lipid composition. The measured heat capacity values were used to calculate the hydrophobic-effect free energy ΔG (hΦ), which we found to dominate melittin partitioning regardless of lipid composition. In the case of anionic membranes, additional free energy comes from coulombic attraction, which is characterized by a small effective peptide charge due to the lack of additivity of hydrophobic and electrostatic interactions in membrane interfaces [Ladokhin and White J Mol Biol 309:543-552, 2001]. Our results suggest that there is no need for a special effect-the nonclassical hydrophobic effect-to describe partitioning into lipid bilayers.  相似文献   

8.
9.
Fibrosis is characterized by elevated transforming growth factor β (TGFβ) signaling, resulting in extracellular matrix accumulation and increased PAI-1 (plasminogen activator inhibitor) expression. PAI-1 induces the internalization of urokinase plasminogen activator/receptor and integrin αvβ3 from the cell surface. Since increased αvβ3 expression correlates with increased TGFβ signaling, we hypothesized that aberrant PAI-1-mediated αvβ3 endocytosis could initiate an autocrine loop of TGFβ activity. We found that in PAI-1 knock-out (KO) mouse embryonic fibroblasts), αvβ3 endocytosis was reduced by ∼75%, leaving αvβ3 in enlarged focal adhesions, similar to wild type cells transfected with PAI-1 small interfering RNA. TGFβ signaling was significantly enhanced in PAI-1 KO cells, as demonstrated by a 3-fold increase in SMAD2/3-containing nuclei and a 2.9-fold increase in TGFβ activity that correlated with an increase in αvβ3 and TGFβ receptor II expression. As expected, PAI-1 KO cells had unregulated plasmin activity, which was only partially responsible for TGFβ activation, as evidenced by a mere 25% reduction in TGFβ activity when plasmin was inhibited. Treatment of cells with an αvβ3-specific cyclic RGD peptide (GpenGRGD) led to a more profound (59%) TGFβ inhibition; a nonspecific RGD peptide (GRGDNP) inhibited TGFβ by only 23%. Human primary fibroblasts were used to confirm that PAI-1 inhibition and β3 overexpression led to an increase in TGFβ activity. Consistent with a fibrotic phenotype, PAI-1 KO cells were constitutively myofibroblasts that had a 1.6-fold increase in collagen deposition over wild type cells. These data suggest that PAI-1-mediated regulation of αvβ3 integrin is critical for the control of TGFβ signaling and the prevention of fibrotic disease.Fibrotic disorders can result from environmental toxins, persistent infection, autoimmune disease, or mechanical injury, leading to the hardening and scarring of tissues. In fibrotic diseases, such as liver cirrhosis, renal fibrosis, and idiopathic lung fibrosis, or in pathological wound healing, such as hypertrophic scarring, scleroderma, and Dupuytren disease, the persistence of myofibroblasts contributes to disease progression by overproduction of extracellular matrix (ECM)2 and by excessive contraction (13). A shift in the balance of growth factors and cytokines that promote ECM deposition and proteases that degrade matrix often contributes to fibrotic disease (4, 5). Plasmin, a broad spectrum protease that is generated from plasminogen by uPA, is one of the proteases that degrades matrix and activates growth factors and other proteases (6). Since uPA activity is inhibited by PAI-1, the overexpression of PAI-1 results in matrix accumulation. For this reason, PAI-1 is a key prognostic marker for fibrotic disease. PAI-1 exerts its inhibitory activity on uPA by stimulating the endocytosis of the cell surface uPA·uPAR complex through the low density lipoprotein receptor-related protein (7). Integrin αvβ3 is also internalized with the uPA·uPAR·low density lipoprotein receptor-related protein complex (8). After endocytosis, uPAR and integrins are recycled back to the cell surface for another round of binding (8, 9). uPAR and αvβ3 promote cellular attachment and spreading, since they are receptors for the extracellular matrix molecule, vitronectin (10). Thus, cycling of the complex is thought to stimulate the attachment and detachment that is necessary for cell migration (8). Consequently, a shift in the expression of any of these components (PAI-1/uPA/uPAR/αvβ3) can result in either aggressive migration, as seen in cancer invasion, or a persistent increase in cell adhesion and cell tension, as seen in myofibroblasts in fibrotic tissue.The family of TGFβ growth factors has been intensively studied for their role in fibrotic wound healing. Up-regulation of TGFβ results in amplified and persistent overproduction of molecules, such as integrins and PAI-1 and other protease inhibitors (e.g. TIMPs) (2, 3). Up-regulated integrins continue the cycle of TGFβ signaling by participating in the sustained activation of TGFβ from its latent form. To date, studies have found that various αv integrins participate in the activation of TGFβ (αvβ3, αvβ5, αvβ6, and αvβ8), but the mechanism differs (1115). Integrins can serve as docking proteins to localize proteases that cleave and activate latent TGFβ in the ECM, or they can directly activate latent TGFβ in a protease-independent manner. Recently, it was discovered that latent TGFβ is also activated by mechanical stress generated from an integrin-mediated interaction between myofibroblasts and the ECM, primarily involving αvβ5. The mechanical stress promotes a conformational change that activates the latent TGFβ complex (15). αv integrins also modulate TGFβ signaling through the binding of αvβ3 to TGFβ receptor II (TGFβRII) in the presence of TGFβ. This interaction was shown to promote a dramatic increase in the proliferation of lung fibroblasts and induce invasion of epithelial breast cancer cells (16, 17).Our data establish a role for the PAI-1-mediated control of αvβ3 expression and support a significant role for αvβ3 in TGFβ signaling. Using PAI-1 KO cells, we tested the hypothesis that the absence of PAI-1 would result in the accumulation of αvβ3 on the cell surface, since PAI-1 promotes the endocytosis of uPA·uPAR·αvβ3. PAI-1-mediated endocytosis of β3 was significantly reduced in the PAI-1 KO cells. Correspondingly, we report that β3 accumulated at the cell surface in enlarged β3-containing focal adhesions. Thus, we explored whether the accumulation of αvβ3 on the cell surface had fibrogenic effects even in the absence of profibrotic PAI-1. Our results demonstrate dramatically increased TGFβ activity and an increase in collagen expression in PAI-1 KO cells. Together, these findings suggest that PAI-1 modulates β3 expression and localization and, in turn, TGFβ signaling. Our data reveal that maintaining precise levels of PAI-1 is a key to preventing fibrosis. Understanding the consequence of regulating PAI-1 activity is critical in light of the many clinical therapies currently under development that target PAI-1 (18, 19).  相似文献   

10.
11.
12.
13.
Endothelin-1 (ET-1) is a potent vasoconstrictor and co-mitogen for vascular smooth muscle and is implicated in pulmonary vascular remodeling and the development of pulmonary arterial hypertension. Vascular smooth muscle is an important source of ET-1. Here we demonstrate synergistic induction of preproET-1 message RNA and release of mature peptide by a combination of tumor necrosis factor α (TNFα) and interferon γ (IFNγ) in primary human pulmonary artery smooth muscle cells. This induction was prevented by pretreatment with the histone acetyltransferase inhibitor anacardic acid. TNFα induced a rapid and prolonged pattern of nuclear factor (NF)-κB p65 subunit activation and binding to the native preproET-1 promoter. In contrast, IFNγ induced a delayed activation of interferon regulatory factor-1 without any effect on NF-κB p65 nuclear localization or consensus DNA binding. However, we found cooperative p65 binding and histone H4 acetylation at distinct κB sites in the preproET-1 promoter after stimulation with both TNFα and IFNγ. This was associated with enhanced recruitment of RNA polymerase II to the ATG start site and read-through of the ET-1 coding region. Understanding such mechanisms is crucial in determining the key control points in ET-1 release. This has particular relevance to developing novel treatments targeted at the inflammatory component of pulmonary vascular remodeling.Endothelin-1 is a 21-amino acid peptide which is known to be both a potent vasoconstrictor and mitogen for vascular smooth muscle (1, 2). It is released as a 38-amino acid precursor (Big ET-12) before cleavage to the mature ET-1 form. As such it has been implicated in the pathogenesis of vascular disease and is particularly associated with pulmonary arterial hypertension (3). Indeed, several endothelin receptor antagonists are now approved for the treatment of pulmonary arterial hypertension (4). However, endothelin receptor antagonists as a class are associated with potentially serious side effects (4), making new treatments aimed at blocking ET-1 synthesis an attractive alternative.Although endothelial cells are thought to be the main source of ET-1 release, several groups including our own have shown that ET-1 can be released from the more numerous vascular smooth muscle cells (510). The vascular pathology observed in pulmonary arterial hypertension is propagated by inflammation, and circulating levels of cytokines including tumor necrosis factor α (TNFα) are elevated in patients with pulmonary arterial hypertension (1115). In many cell types cytokines mediate their biological effects at least in part by the activation of the nuclear factor κB (NF-κB) pathway (16), and a role for NF-κB in pulmonary arterial hypertension has been proposed (17). In addition, we have shown previously that a combination of TNFα and interferon γ (IFNγ) stimulates human pulmonary artery smooth muscle (HPASM) cells to release ET-1 (18). However, the mechanisms underlying this effect are unknown.The preproET-1 promoter region has been shown experimentally to possess binding sites for nuclear factor (NF)-1 and phorbol ester-sensitive c-Fos and c-Jun complexes (19), acute phase reactant regulatory proteins, and binding sites for AP-1 and GATA-2 (2022). In addition, binding sites for interferon regulatory factor-1 (IRF-1) and NF-κB are predicted by Transfac analysis (23). The close proximity of the IRF-1 site and one of the NF-κB sites is characteristic of genes that are regulated by the synergistic action of TNFα and IFNγ, such as interleukin-6 (IL-6) and intercellular adhesion molecule-1 (24, 25), although ET-1 has not previously been recognized in this group.Our aims were, therefore, to investigate the role of NF-κB in ET-1 release by primary HPASM cells. In addition, we were interested in the role of histone acetylation in the epigenetic control of the ET-1 production. Understanding these novel mechanisms will allow a greater understanding of the pathogenesis of vascular remodeling in pulmonary vessels and aid in the development of new treatment strategies aimed at blocking synthesis of ET-1.  相似文献   

14.
15.
16.
17.
18.
<正> Following the bioautographic te-chnique, 24 lysine producing microor-ganisms have been isolated from amongthe 263 hydrocarbon utilisers. Morphological, cultural and biochemicalcharacters of two promising isolates,have been studied. One of them iden-tified as Arthrobacter globiformis andthe other as Micrococcus varians, pro-duce 3.4 and 2.6 g lysine per litreof medium.  相似文献   

19.
Interstitial flow in and around bone tissue is oscillatory in nature and affects the mechanical microenvironment for bone cell growth and formation. We investigated the role of oscillatory shear stress (OSS) in modulating the proliferation of human osteoblast-like MG63 cells and its underlying mechanisms. Application of OSS (0.5 ± 4 dynes/cm2) to MG63 cells induced sustained activation of phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR/p70S6K (p70S6 kinase) signaling cascades and hence cell proliferation, which was accompanied by increased expression of cyclins A and D1, cyclin-dependent protein kinases-2, -4, and -6, and bone formation-related genes (c-fos, Egr-1, and Cox-2) and decreased expression of p21CIP1 and p27KIP1. OSS-induced activation of PI3K/Akt/mTOR/p70S6K and cell proliferation were inhibited by specific antibodies or small interference RNAs of αvβ3 and β1 integrins and by dominant-negative mutants of Shc (Shc-SH2) and focal adhesion kinase (FAK) (FAK(F397Y)). Co-immunoprecipitation assay showed that OSS induces sustained increases in association of Shc and FAK with αvβ3 and β1 integrins and PI3K subunit p85, which were abolished by transfecting the cells with FAK(F397Y) or Shc-SH2. OSS also induced sustained activation of ERK, which was inhibited by the specific PI3K inhibitor LY294002 and was required for OSS-induced activation of mTOR/p70S6K and proliferation in MG63 cells. Our findings provide insights into the mechanisms by which OSS induces osteoblast-like cell proliferation through activation of αvβ3 and β1 integrins and synergistic interactions of FAK and Shc with PI3K, leading to the modulation of downstream ERK and Akt/mTOR/p70S6K pathways.  相似文献   

20.
We previously found that pigeon IgG possesses unique N-glycan structures that contain the Galα1–4Galβ1–4Galβ1–4GlcNAc sequence at their nonreducing termini. This sequence is most likely produced by putative α1,4- and β1,4-galactosyltransferases (GalTs), which are responsible for the biosynthesis of the Galα1–4Gal and Galβ1–4Gal sequences on the N-glycans, respectively. Because no such glycan structures have been found in mammalian glycoproteins, the biosynthetic enzymes that produce these glycans are likely to have distinct substrate specificities from the known mammalian GalTs. To study these enzymes, we cloned the pigeon liver cDNAs encoding α4GalT and β4GalT by expression cloning and characterized these enzymes using the recombinant proteins. The deduced amino acid sequence of pigeon α4GalT has 58.2% identity to human α4GalT and 68.0 and 66.6% identity to putative α4GalTs from chicken and zebra finch, respectively. Unlike human and putative chicken α4GalTs, which possess globotriosylceramide synthase activity, pigeon α4GalT preferred to catalyze formation of the Galα1–4Gal sequence on glycoproteins. In contrast, the sequence of pigeon β4GalT revealed a type II transmembrane protein consisting of 438 amino acid residues, with no significant homology to the glycosyltransferases so far identified from mammals and chicken. However, hypothetical proteins from zebra finch (78.8% identity), frogs (58.9–60.4%), zebrafish (37.1–43.0%), and spotted green pufferfish (43.3%) were similar to pigeon β4GalT, suggesting that the pigeon β4GalT gene was inherited from the common ancestors of these vertebrates. The sequence analysis revealed that pigeon β4GalT and its homologs form a new family of glycosyltransferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号