首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
DNA of higher eukaryotes is organized in supercoiled loops anchored to a nuclear matrix (NM). The DNA loops are attached to the NM by means of non-coding sequences known as matrix attachment regions (MARs). Attachments to the NM can be subdivided in transient and permanent, the second type is considered to represent the attachments that subdivide the genome into structural domains. As yet very little is known about the factors involved in modulating the MAR-NM interactions. It has been suggested that the cell is a vector field in which the linked cytoskeleton-nucleoskeleton may act as transducers of mechanical information. We have induced a stable change in the typical morphology of cultured HeLa cells, by chronic exposure of the cells to the polar compound dimethylsulfoxide (DMSO). Using a PCR-based method for mapping the position of any DNA sequence relative to the NM, we have monitored the position relative to the NM of sequences corresponding to four independent genetic loci located in separate chromosomes representing different territories within the cell nucleus. Here, we show that stable modification of the NM morphology correlates with the redefinition of DNA loop structural domains as evidenced by the shift of position relative to the NM of the c-myc locus and the multigene locus PRM1 --> PRM2 --> TNP2, suggesting that both cell and nuclear shape may act as cues in the choice of the potential MARs that should be attached to the NM.  相似文献   

3.
4.
核基质附着区 (matrixattachmentregions,MARs)是与核基质 (或核骨架 )特异结合的DNA序列 ,属于非编码序列 ,富含AT。通过与核基质的结合 ,它能使染色质形成独立的环状结构 ,调控基因的转录和表达 ,减少由于位置效应引起的转基因沉默。MARs在提高转基因表达水平、消除转基因个体间表达水平的差异、抑制转基因沉默等方面起着重要的作用。就MAR的一些结构功能特征及其在基因工程中的应用等方面进行了阐述。  相似文献   

5.
In the interphase nucleus of metazoan cells DNA is organized in supercoiled loops anchored to a nuclear matrix (NM). DNA loops are operationally classified in structural and facultative. Varied evidence indicates that DNA replication occurs in replication foci organized upon the NM and that structural DNA loops may correspond to the replicons in vivo. In normal rat liver the hepatocytes are arrested in G0 but synchronously re-enter the cell cycle after partial-hepatectomy leading to liver regeneration. Using this model we have previously determined that the DNA loops corresponding to a gene-rich genomic region move in a sequential fashion towards the NM during replication and then return to their original configuration in newly quiescent cells, once liver regeneration has been achieved. In the present work we determined the organization into structural DNA loops of a gene-poor region centered on c-myc and tracked-down its movement at the peak of S phase and after the return to cellular quiescence during and after liver regeneration. The results confirmed that looped DNA moves towards the NM during replication but in this case the configuration of the gene-poor region into DNA loops becomes reorganized and after replication only the loop containing c-myc resembles the original in the control G0 hepatocytes. Our results suggest that the local chromatin configuration around potentially active genes constraints the formation of specific structural DNA loops after DNA replication, while in non-coding regions the structural DNA loops are only loosely determined after DNA replication by structural constraints that modulate the DNA-NM interactions.  相似文献   

6.
在细胞分裂间期,每条染色质都占据着特定的染色质领域(chromosome territory,CT)。每个CT领域内进一步分成不同的拓扑学相关区域(topological associated domain,TAD),每个TAD又由若干子TAD(sub-TAD)构成。不同的TAD相互聚集,形成基因活跃表达和不表达的A、B两种组份或区室(compartment)。然而,目前对于染色质折叠方式及维持机制的研究尚无定论。核基质附着区(matrix attachment regions,MARs)是在不同物种基因组中广泛存在的一类富含AT序列的与核基质结合的DNA元件,能够通过与CTCF、SATB1等调控蛋白质相互作用,对远距离的基因表达进行调控。本研究以染色质三维结构为背景,通过整合染色质三维结构及组蛋白修饰等组学数据,对MARs元件与染色质三维结构的关系进行研究,对MARs元件参与形成的相互作用网络的结构及功能进行探索。结果发现,MARs元件与染色质三维结构高度相关,而且在高强度相互作用中占据较大的比例,提示MARs元件在染色质折叠方面发挥作用。此外,通过拓扑结构聚类分析还首次揭示,MARs元件分为不同类型,包括维持染色质领域及空间构象等的结构单元部分,以及调控基因表达等的功能单元部分。这表明,MARs元件在基因组三维高级结构的建立、维持以及功能等方面发挥重要作用。  相似文献   

7.
S/MAR与基因表达   总被引:3,自引:0,他引:3  
在真核生物的细胞核内,基因组是通过DNA的核骨架附着(SAR)或称核基质附着区(MAR)(简记为S/MAR)锚定在核骨架网状系统上的.S/MAR既有一定的特征,又有多样性,研究认为它参与了DNA复制调控和转录调控等多种核内生化过程,通过重组,在目的基因一侧或两侧带上S/MAR后作基因转染或基因动植物,发现整合后的基因表达有时可增强几倍,甚至上万倍和/或显示位置独立效应,有些研究还报道,S/MAR能  相似文献   

8.
Tumor progression is characterized by definite changes in the protein composition of the nuclear matrix (NM). The interactions of chromatin with the NM occur via specific DNA sequences called MARs (matrix attachment regions). In the present study, we applied a proteomic approach along with a Southwestern assay to detect both differentially expressed and MAR-binding NM proteins, in persistent hepatocyte nodules (PHN) in respect with normal hepatocytes (NH). In PHN, the NM undergoes changes both in morphology and in protein composition. We detected over 500 protein spots in each two dimensional map and 44 spots were identified. Twenty-three proteins were differentially expressed; among these, 15 spots were under-expressed and 8 spots were over-expressed in PHN compared to NH. These changes were synchronous with several modifications in both NM morphology and the ability of NM proteins to bind nuclear RNA and/or DNA containing MARs sequences. In PHN, we observed a general decrease in the expression of the basic proteins that bound nuclear RNA and the over-expression of two species of Mw 135 kDa and 81 kDa and pI 6.7-7.0 and 6.2-7.4, respectively, which exclusively bind to MARs. These results suggest that the deregulated expression of these species might be related to large-scale chromatin reorganization observed in the process of carcinogenesis by modulating the interaction between MARs and the scaffold structure.  相似文献   

9.
植物的MAR及其对转基因表达的效应   总被引:1,自引:0,他引:1  
赵艳  高振宇  黄大年 《遗传》2001,23(3):281-284
与核基质结合的DNA序列称为基质附着区(matrix attachment regions,MARs),可提高转基因的表达水平并降低转基因在不同转基因系间的表达差异,因其在植物基因工程中的巨大应用潜力而引起了研究者的极大兴趣。对植物中MAR的研究尚处于早期阶段,本文综述了植物中MAR的分离鉴定、序列特征及MAR对植物中转基因表达的影响,并进一步讨论了MAR对转基因效应的可能机制。 Abstract:DNA sequences called matrix attachment regions (MARs) have recently attracted mu ch attention because of their perceived capacity to increase levels of transgene expression and to reduce transformant-to-transformant variation of transgene ex pression in plants. Work with MARs in plants is in its early stage .In the prese nt paper ,we reviewed the procedure to isolate and identify MAR sequences from higher plants, the sequence characteristics of the plant MARs and the effect of MARs on the transgene expression in plants. Funthermore, the possible mechanism to explain how MARs affect transgene expression in transformants was discussed.  相似文献   

10.
A large variety of DNA sequences have been described in nuclear matrix attachment regions. It could be most likely a result of the different methods used for their isolation. The idea about how different types of known DNA sequences (strongly attached to the nuclear matrix, weakly attached, or not attached) directly participate in anchoring DNA loops to the nuclear matrices isolated by different experimental procedures was tested in this study. Matrix-attached (M) and matrix-independent or loop (L) fractions as well as nuclear matrices were isolated using extractions of nuclei with 25 mM lithium 3,5-diiodosalicylate (LIS), 2 M NaCl, 0.65 M ammonium sulphate containing buffers followed by DNase I/RNase A digestion, or according to so designated conventional method. Using PCR-based and in vitro binding assays it was established that LIS and ammonium sulphate extractions gave similar results for the type of attachment of sequences investigated. The harsh extraction with 2 M NaCl or the conventional procedure led to some rearrangements in the attachment of DNA loops. As a result a big part of matrix attached sequences were found detached in the loop fractions. However, the in vitro binding abilities of the MARs to the nuclear matrices isolated by different methods did not change.  相似文献   

11.
杜氏盐藻中的核基质与核基质结合区   总被引:6,自引:0,他引:6  
真核生物细胞核DNA通过核基质结合区(Matrix attachment region,MAR)附着到核基质上。为了进一步探索染色体DNA与核基质之间的相互作用,从单细胞真核藻类-杜氏盐藻中克隆出了MAR片段。首先构建了杜氏盐藻的随机MAR文库,通过体外结合实验分离出能与核基质结合的MAR序列。从构建的MAR文库中,筛选出3个能与核基质结合的MAR,其中两个片段与核基质具有较强的结合力,测序分析表明具有MAR片段的一些典型特征性基序。  相似文献   

12.
The nucleus: a black box being opened.   总被引:5,自引:0,他引:5  
  相似文献   

13.
核基质结合序列(MAR)与基因表达调控   总被引:1,自引:0,他引:1  
核基质结合序列(MAR)是能在体外与核基质特异结合的DNA序列,广泛存在于染色质Loop结构的边界序列中。随着研究的深入,发现MAR序列不仅在染色质折叠中起到重要作用,影响邻近内源基因表达,而且将MAR序列构建到外源基因表达盒两侧转化动植物时,也影响外源基因的表达。因此,MAR序列是基因组中一种重要的基因间边界序列,为阐明非编码序列在基因表达中的作用和构建真核生物高效表达载体提供了新途径。  相似文献   

14.
高等真核细胞的染色体DNA通过基质结合区(MAR)不时地与核基质特异性结合而组织成一种空间环状结构。为了研究以DNA套环形式附着于核基质上的DNA序列的特性,从处于泌乳期的乳腺组织中克隆了多个MAR DNA序列。体外结合实验表明,这些序列能够同核基质蛋白共结合成不溶性的复合物,这些复合物可较容易的通过离心去除。其中,两个MAR序列中包含有TL、CA—和GA—阻断以及ATTA基序。这两个序列中含有多个复制/转录因子的结合位点、增强子基序、多个完全的和非完全的反向重复序列以及潜在的DNA弯曲核心序列样结构。同一DNA序列中存在不同元件的组合可能说明在控制一系列细胞的发育过程中,它们可能发挥有正的或负的调控元件的功能。  相似文献   

15.
Nuclear DNA is organized into chromatin loop domains. At the base of these loops, matrix-associated regions (MARs) of the DNA interact with nuclear matrix proteins. MARs act as structural boundaries within chromatin, and MAR binding proteins may recruit multiprotein complexes that remodel chromatin. The potential tumor suppressor protein CTCF binds to vertebrate insulators and is required for insulator activity. We demonstrate that CTCF is associated with the nuclear matrix and can be cross-linked to DNA by cisplatin, an agent that preferentially cross-links nuclear matrix proteins to DNA in situ. These results suggest that CTCF anchors chromatin to the nuclear matrix, suggesting that there is a functional connection between insulators and the nuclear matrix. We also show that the chromatin-modifying enzymes HDAC1 and HDAC2, which are intrinsic nuclear matrix components and thought to function as corepressors of CTCF, are incapable of associating with CTCF. Hence, the insulator activity of CTCF apparently involves an HDAC-independent association with the nuclear matrix. We propose that CTCF may demarcate nuclear matrix-dependent points of transition in chromatin, thereby forming topologically independent chromatin loops that may support gene silencing.  相似文献   

16.
Localization of SV40 genes within supercoiled loop domains   总被引:18,自引:4,他引:14       下载免费PDF全文
Recent studies indicate that eukaryotic DNA is organized into supercoiled loop domains. These loops appear to be anchored at their bases to an insoluble nuclear skeleton or matrix. Most of the DNA in the loops can be released from the matrix by nuclease digestion; the residual DNA remaining with the nuclear matrix represents sequences at the base of the loops, and possibly other sequences which are intimately associated with the nuclear matrix for other reasons. Using a quantitative application of the Southern blotting technique, we have found this residual DNA from SV40 infected 3T3 cells to be enriched in SV40 sequences, indicating that they reside near matrix-DNA attachment points. An enrichment of 3-7 fold relative to total cellular DNA, was found in each of three different lines of SV40 infected 3T3 cells. Control experiments with globin genes showed no such enrichment in this residual matrix DNA. This sequence specificity suggests that the spatial organization of DNA sequences within loops may be related to the functionality of these sequences within the cell.  相似文献   

17.
18.
19.

Background

In the interphase nucleus of metazoan cells DNA is organized in supercoiled loops anchored to a nuclear matrix (NM). There is varied evidence indicating that DNA replication occurs in replication factories organized upon the NM and that DNA loops may correspond to the actual replicons in vivo. In normal rat liver the hepatocytes are arrested in G0 but they synchronously re-enter the cell cycle after partial-hepatectomy leading to liver regeneration in vivo. We have previously determined in quiescent rat hepatocytes that a 162 kbp genomic region containing members of the albumin gene family is organized into five structural DNA loops.

Results

In the present work we tracked down the movement relative to the NM of DNA sequences located at different points within such five structural DNA loops during the S phase and after the return to cellular quiescence during liver regeneration. Our results indicate that looped DNA moves sequentially towards the NM during replication and then returns to its original position in newly quiescent cells, once the liver regeneration has been achieved.

Conclusions

Looped DNA moves in a sequential fashion, as if reeled in, towards the NM during DNA replication in vivo thus supporting the notion that the DNA template is pulled progressively towards the replication factories on the NM so as to be replicated. These results provide further evidence that the structural DNA loops correspond to the actual replicons in vivo.  相似文献   

20.
Genomic imprinting at the Igf2/H19 locus originates from allele-specific DNA methylation, which modifies the affinity of some proteins for their target sequences. Here, we show that AT-rich DNA sequences located in the vicinity of previously characterized differentially methylated regions (DMRs) of the imprinted Igf2 gene are conserved between mouse and human. These sequences have all the characteristics of matrix attachment regions (MARs), which are known as versatile regulatory elements involved in chromatin structure and gene expression. Combining allele-specific nuclear matrix binding assays and real-time PCR quantification, we show that retention of two of these Igf2 MARs (MAR0 and MAR2) in the nuclear matrix fraction depends on the tissue and is specific to the paternal allele. Furthermore, on this allele, the Igf2 MAR2 is functionally linked to the neighboring DMR2 while, on the maternal allele, it is controlled by the imprinting-control region. Our work clearly demonstrates that genomic imprinting controls matrix attachment regions in the Igf2 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号