首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The renaissance of peptides in pharmaceutical industry results from their importance in many biological functions. However, low metabolic stability and the lack of oral availability of most peptides is a certain limitation. Whereas metabolic instability may be often overcome by development of small cyclic peptides containing d-amino acids, the very low oral availability of most peptides is a serious limitation for some medicinal applications. The situation is complicated because a twofold optimization – biological activity and oral availability – is required to overcome this problem. Moreover, most simple “rules” for achieving oral availability are not general and are applicable only to limited cases. Many structural modifications for increasing biological activities and metabolic stabilities of cyclic peptides have been described, of which N-alkylation is probably the most common. This mini-review focuses on the effects of N-methylation of cyclic peptides in strategies to optimize bioavailabilities.  相似文献   

2.
The ABCA1 transporter functions on the basolateral surface of hepatocytes   总被引:4,自引:0,他引:4  
ABCA1 on the cell surface and in endosomes plays an essential role in the cell-mediated lipidation of apoA-I to form nascent HDL. Our previous studies of transgenic mice overexpressing ABCA1 suggested that ABCA1 in the liver plays a major role in regulating plasma HDL levels. The site of function of ABCA1 in the polarized hepatocyte was currently assessed by expression of an adenoviral construct encoding a human ABCA1-GFP fusion protein in the polarized hepatocyte-like WIF-B cell line. Consistent with localization of ABCA1 at the basolateral (vascular) cell surface, expression of ABCA1-GFP stimulated apoA-I mediated efflux of WIF-B cell cholesterol into the culture medium. Confocal fluorescence microscopy revealed that ABCA1-GFP was expressed solely on the basolateral surface and associated endocytic vesicles. These findings suggest an important role for hepatocyte basolateral membrane ABCA1 in the regulation of the levels of intracellular hepatic cholesterol, as well as plasma HDL.  相似文献   

3.
We present a novel lead for inhibitors of multidrug resistance-associated proteins (MRPs). Compound 1 (4-[(5,6,7,8-tetrahydro-4-oxo-4H-[1]benzothieno[2,3-d][1,3]thiazin-2-yl)amino]benzoic acid) was about six times more potent than the known inhibitor MK571 at MRP1, while at MRP2 its effect was similar to that of MK571. Structural analogs were also evaluated. Among them, compound 2, sharing the 4-aminobenzoic acid substructure with 1, also inhibited MRP1. Both derivatives were inactive against P-gp. It can be concluded that their carboxyl group is needed for inhibition of MRPs and accounts for the selectivity of these compounds.  相似文献   

4.
5.
6.
An oral bioavailability issue encountered during the course of lead optimization in the renin program is described herein. The low F(po) of pyridone analogs was shown to be caused by a combination of poor passive permeability and gut efflux transport. Substitution of pyridone ring for a more lipophilic moiety (logD>1.7) had minimal effect on rMdr1a transport but led to increased passive permeability (P(app)>10 × 10(-6) cm/s), which contributed to overwhelm gut transporters and increase rat F(po). LogD and in vitro passive permeability determination were found to be key in guiding SAR and improve oral exposure of renin inhibitors.  相似文献   

7.
灵芝多糖是灵芝的主要药理活性成分之一。本研究通过检测血清指标分析灵芝子实体多糖(Ganoderma lingzhi fruitbody polysaccharides,GLFPS)对小鼠急性酒精性肝损伤的预防作用并结合代谢组学探究作用机制。结果显示,GLFPS显著抑制因酒精作用而升高的小鼠血清中ALT、AST、TG、TC和ADH水平。通过代谢组分析,在模型组与对照组中得到85个差异代谢物,其中三磷酸腺苷(adenosine triphosphate)、L-天门冬氨酸(L-aspartic acid)以及赖氨酸(L-lysine)等在相互作用网络中起重要作用,说明酒精能引起小鼠肝脏腺苷和氨基酸代谢的改变。GLFPS组与模型组有58个差异代谢物,主要包括脂质和有机氧化物,说明GLFPS可以通过调节小鼠肝脏中脂质与有机化合物代谢来预防急性酒精肝损伤。对差异代谢物进行KEGG富集分析发现主要涉及胆碱代谢、甘油磷脂代谢和ABC转运蛋白。GLFPS能够有效缓解这3个代谢通路中因酒精作用发生明显改变的代谢。综上可见,灵芝子实体多糖能够通过调节小鼠胆碱代谢、甘油磷脂代谢以及部分ABC转运蛋白有效预防酒精性肝损伤。  相似文献   

8.
Growth of yeast strains, either deleted for the vacuolar ABC transporter Ycf1 or deleted for the plasma membrane ABC transporter Yor1p or overexpressing Yor1p, were compared for their sensitivity to cadmium. On solid medium cell death (or growth inhibition) was observed at cadmium concentrations higher than 100 microM when yeasts were grown at 30 degrees C for 24 h. However, for all tested strains cell death (or growth inhibition) was already observed at 40 microM cadmium when incubated at 23 degrees C for 60 h. Thus cadmium is more toxic to yeast at 23 degrees C than at 30 degrees C. At 23 degrees C, the Deltayor1 strain grew more slowly than the wild-type strain and the double Deltayor1, Deltaycf1 deleted strain was much more sensitive to cadmium than each single Deltayor1 or Deltaycf1 deletant. Overexpression of Yor1p in a Deltaycf1 strain restores full growth. Cadmium uptake measurements show that Deltaycf1 yeast strains expressing or overexpressing Yor1p store less cadmium than the corresponding Deltaycf1, Deltayor1 strain. The strains expressing Yor1p display an energy-dependent efflux of cadmium estimated for the yeast overexpressing Yor1p to be about 0.02 nmol 109Cd/mg protein/min. Yeast cells loaded with radiolabeled glutathione and then with radioactive cadmium displayed a twice-higher efflux of glutathione than that of cadmium suggesting that Yor1p transports both compounds as a bis-glutathionato-cadmium complex. All together, these results suggest that in addition to being accumulated in the yeast vacuole by Ycf1p, cadmium is also effluxed out of the cell by Yor1p.  相似文献   

9.
Interaction of the breast cancer resistance protein with plant polyphenols   总被引:8,自引:0,他引:8  
Multidrug transporters influence drug distribution in vivo and are often associated with tumour drug resistance. Here we show that plant-derived polyphenols that interact with P-glycoprotein can also modulate the activity of the recently discovered ABC transporter, breast cancer resistance protein (BCRP/ABCG2). In two separate BCRP-overexpressing cell lines, accumulation of the established BCRP substrates mitoxantrone and bodipy-FL-prazosin was significantly increased by the flavonoids silymarin, hesperetin, quercetin, and daidzein, and the stilbene resveratrol (each at 30 microM) as measured by flow cytometry, though there was no corresponding increase in the respective wild-type cell lines. These compounds also stimulated the vanadate-inhibitable ATPase activity in membranes prepared from bacteria (Lactococcus lactis) expressing BCRP. Given the high dietary intake of polyphenols, such interactions with BCRP, particularly in the intestines, may have important consequences in vivo for the distribution of these compounds as well as other BCRP substrates.  相似文献   

10.
On the mechanism of MgATP-dependent gating of CFTR Cl- channels   总被引:3,自引:0,他引:3  
CFTR, the product of the gene mutated in cystic fibrosis, is an ATPase that functions as a Cl(-) channel in which bursts of openings separate relatively long interburst closed times (tauib). Channel gating is controlled by phosphorylation and MgATP, but the underlying molecular mechanisms remain controversial. To investigate them, we expressed CFTR channels in Xenopus oocytes and examined, in excised patches, how gating kinetics of phosphorylated channels were affected by changes in [MgATP], by alterations in the chemical structure of the activating nucleotide, and by mutations expected to impair nucleotide hydrolysis and/or diminish nucleotide binding affinity. The rate of opening to a burst (1/tauib) was a saturable function of [MgATP], but apparent affinity was reduced by mutations in either of CFTR's nucleotide binding domains (NBDs): K464A in NBD1, and K1250A or D1370N in NBD2. Burst duration of neither wild-type nor mutant channels was much influenced by [MgATP]. Poorly hydrolyzable nucleotide analogs, MgAMPPNP, MgAMPPCP, and MgATPgammaS, could open CFTR channels, but only to a maximal rate of opening approximately 20-fold lower than attained by MgATP acting on the same channels. NBD2 catalytic site mutations K1250A, D1370N, and E1371S were found to prolong open bursts. Corresponding NBD1 mutations did not affect timing of burst termination in normal, hydrolytic conditions. However, when hydrolysis at NBD2 was impaired, the NBD1 mutation K464A shortened the prolonged open bursts. In light of recent biochemical and structural data, the results suggest that: nucleotide binding to both NBDs precedes channel opening; at saturating nucleotide concentrations the rate of opening to a burst is influenced by the structure of the phosphate chain of the activating nucleotide; normal, rapid exit from bursts occurs after hydrolysis of the nucleotide at NBD2, without requiring a further nucleotide binding step; if hydrolysis at NBD2 is prevented, exit from bursts occurs through a slower pathway, the rate of which is modulated by the structure of the NBD1 catalytic site and its bound nucleotide. Based on these and other results, we propose a mechanism linking hydrolytic and gating cycles via ATP-driven dimerization of CFTR's NBDs.  相似文献   

11.
12.
Resveratrol is a polyphenol contained in red wine that has been amply investigated for its beneficial effects on organismal metabolism, in particular in the context of the so-called “French paradox,” i.e., the relatively low incidence of coronary heart disease exhibited by a population with a high dietary intake of cholesterol and saturated fats. At least part of the beneficial effect of resveratrol on human health stems from its capacity to promote autophagy by activating the NAD-dependent deacetylase sirtuin 1. However, the concentration of resveratrol found in red wine is excessively low to account alone for the French paradox. Here, we investigated the possibility that other mono- and polyphenols contained in red wine might induce autophagy while affecting the acetylation levels of cellular proteins. Phenolic compounds found in red wine, including anthocyanins (oenin), stilbenoids (piceatannol), monophenols (caffeic acid, gallic acid) glucosides (delphinidin, kuronamin, peonidin) and flavonoids (catechin, epicatechin, quercetin, myricetin), were all capable of stimulating autophagy, although with dissimilar potencies. Importantly, a robust negative correlation could be established between autophagy induction and the acetylation levels of cytoplasmic proteins, as determined by a novel immunofluorescence staining protocol that allows for the exclusion of nuclear components from the analysis. Inhibition of sirtuin 1 by both pharmacological and genetic means abolished protein deacetylation and autophagy as stimulated by resveratrol, but not by piceatannol, indicating that these compounds act through distinct molecular pathways. In support of this notion, resveratrol and piceatannol synergized in inducing autophagy as well as in promoting cytoplasmic protein deacetylation. Our results highlight a cause-effect relationship between the deacetylation of cytoplasmic proteins and autophagy induction by red wine components.  相似文献   

13.
Resveratrol is a polyphenol contained in red wine that has been amply investigated for its beneficial effects on organismal metabolism, in particular in the context of the so-called “French paradox,” i.e., the relatively low incidence of coronary heart disease exhibited by a population with a high dietary intake of cholesterol and saturated fats. At least part of the beneficial effect of resveratrol on human health stems from its capacity to promote autophagy by activating the NAD-dependent deacetylase sirtuin 1. However, the concentration of resveratrol found in red wine is excessively low to account alone for the French paradox. Here, we investigated the possibility that other mono- and polyphenols contained in red wine might induce autophagy while affecting the acetylation levels of cellular proteins. Phenolic compounds found in red wine, including anthocyanins (oenin), stilbenoids (piceatannol), monophenols (caffeic acid, gallic acid) glucosides (delphinidin, kuronamin, peonidin) and flavonoids (catechin, epicatechin, quercetin, myricetin), were all capable of stimulating autophagy, although with dissimilar potencies. Importantly, a robust negative correlation could be established between autophagy induction and the acetylation levels of cytoplasmic proteins, as determined by a novel immunofluorescence staining protocol that allows for the exclusion of nuclear components from the analysis. Inhibition of sirtuin 1 by both pharmacological and genetic means abolished protein deacetylation and autophagy as stimulated by resveratrol, but not by piceatannol, indicating that these compounds act through distinct molecular pathways. In support of this notion, resveratrol and piceatannol synergized in inducing autophagy as well as in promoting cytoplasmic protein deacetylation. Our results highlight a cause-effect relationship between the deacetylation of cytoplasmic proteins and autophagy induction by red wine components.  相似文献   

14.
Nitroxide radicals are widely used as molecular probes in different fields of chemistry and biology. In this work, we describe pH-sensitive imidazoline- and imidazolidine-based nitroxides with pK values in the range 4.7-7.6 (2,2,3,4,5,5-hexamethylperhydroimidazol-1-oxyl, 4-amino-2,2,5,5-tetramethyl-2,5-dihydro-1H-imidazol-1-oxyl, 4-dimethylamino-2,2-diethyl-5,5-dimethyl-2,5-dihydro-1H-imidazol-1-oxyl, and 2,2-diethyl-5,5-dimethyl-4-pyrrolidyline-1-yl-2,5-dihydro-1H-imidazol-1-oxyl), which allow the pH-monitoring inside chloroplasts. We have demonstrated that EPR spectra of these spin-probes localized in the thylakoid lumen markedly change with the light-induced acidification of the thylakoid lumen in chloroplasts. Comparing EPR spectrum parameters of intrathylakoid spin-probes with relevant calibrating curves, we could estimate steady-state values of lumen pHin established during illumination of chloroplasts with continuous light. For isolated bean (Vicia faba) chloroplasts suspended in a medium with pHout = 7.8, we found that pHin ≈ 5.4-5.7 in the state of photosynthetic control, and pHin ≈ 5.7-6.0 under photophosphorylation conditions. Thus, ATP synthesis occurs at a moderate acidification of the thylakoid lumen, corresponding to transthylakoid pH difference ΔpH ≈ 1.8-2.1. These values of ΔpH are consistent with a point of view that under steady-state conditions the proton gradient ΔpH is the main contributor to the proton motive force driving the operation of ATP synthesis, provided that stoichiometric ratio H+/ATP is n ≥ 4-4.7.  相似文献   

15.
Smooth muscle cells (SMCs) are exposed to both platelet-derived growth factor (PDGF) and type I collagen (CNI) at the time of arterial injury. In these studies we explore the individual and combined effects of these agonists on human saphenous vein SMC proliferation. PDGF-BB produced a 5.5-fold increase in SMC DNA synthesis whereas CNI stimulated DNA synthesis to a much lesser extent (1.6-fold increase). Alternatively, we observed an 8.3-fold increase in DNA synthesis when SMCs were co-incubated with CNI and PDGF-BB. Furthermore, stimulation of SMCs with PDGF-BB produced a significant increase in ERK-2 activity whereas CNI alone had no effect. Co-incubation of SMCs with PDGF-BB and CNI resulted in ERK-2 activity that was markedly greater than that produced by PDGF-BB alone. In a similar fashion, PDGF-BB induced phosphorylation of the PDGF receptor beta (PDGFRbeta) and CNI did not, whereas concurrent agonist stimulation produced a synergistic increase in receptor activity. Blocking antibodies to the alpha2 and beta1 subunits eliminated this synergistic interaction, implicating the alpha2beta1 integrin as the mediator of this effect. Immunoprecipitation of the alpha2beta1 integrin in unstimulated SMCs followed by immunoblotting for the PDGFRbeta as well as Src family members, pp60(src), Fyn, Lyn, and Yes demonstrated coassociation of alpha2beta1 and the PDGFRbeta as well as pp60(src). Incubation of cells with CNI and/or PDGF-BB did not change the degree of association. Finally, inhibition of Src activity with SU6656 eliminated the synergistic effect of CNI on PDGF-induced PDGFRbeta phosphorylation suggesting an important role for pp60(src) in the observed receptor crosstalk. Together, these data demonstrate that CNI synergistically enhances PDGF-induced SMC proliferation through Src-dependent crosstalk between the alpha2beta1 integrin and the PDGFRbeta.  相似文献   

16.
Resistance to anti-neoplastic agents is the major cause of therapy failure, leading to disease recurrence and metastasis. E2F1 is a strong inducer of apoptosis in response to DNA damage through its capacity to activate p53/p73 death pathways. Recent evidence, however, showed that E2F1, which is aberrantly expressed in advanced malignant melanomas together with antagonistic p73 family members, drives cancer progression. Investigating mechanisms responsible for dysregulated E2F1 losing its apoptotic function, we searched for genomic signatures in primary and late clinical tumor stages to allow the prediction of downstream effectors associated with apoptosis resistance and survival of aggressive melanoma cells. We identified miR-205 as specific target of p73 and found that upon genotoxic stress, its expression is sufficiently abrogated by endogenous DNp73. Significantly, metastatic cells can be rescued from drug resistance by selective knockdown of DNp73 or overexpression of miR-205 in p73-depleted cells, leading to increased apoptosis and the reduction of tumor growth in vivo. Our data delineate an autoregulatory circuit, involving high levels of E2F1 and DNp73 to downregulate miR-205, which, in turn, controls E2F1 accumulation. Finally, drug resistance associated to this genetic signature is mediated by removing the inhibitory effect of miR-205 on the expression of Bcl-2 and the ATP-binding cassette transporters A2 (ABCA2) and A5 (ABCA5) related to multi-drug resistance and malignant progression. These results define the E2F1-p73/DNp73-miR-205 axis as a crucial mechanism for chemoresistance and, thus, as a target for metastasis prevention.  相似文献   

17.
Resistance to anti-neoplastic agents is the major cause of therapy failure, leading to disease recurrence and metastasis. E2F1 is a strong inducer of apoptosis in response to DNA damage through its capacity to activate p53/p73 death pathways. Recent evidence, however, showed that E2F1, which is aberrantly expressed in advanced malignant melanomas together with antagonistic p73 family members, drives cancer progression. Investigating mechanisms responsible for dysregulated E2F1 losing its apoptotic function, we searched for genomic signatures in primary and late clinical tumor stages to allow the prediction of downstream effectors associated with apoptosis resistance and survival of aggressive melanoma cells. We identified miR-205 as specific target of p73 and found that upon genotoxic stress, its expression is sufficiently abrogated by endogenous DNp73. Significantly, metastatic cells can be rescued from drug resistance by selective knockdown of DNp73 or overexpression of miR-205 in p73-depleted cells, leading to increased apoptosis and the reduction of tumor growth in vivo. Our data delineate an autoregulatory circuit, involving high levels of E2F1 and DNp73 to downregulate miR-205, which, in turn, controls E2F1 accumulation. Finally, drug resistance associated to this genetic signature is mediated by removing the inhibitory effect of miR-205 on the expression of Bcl-2 and the ATP-binding cassette transporters A2 (ABCA2) and A5 (ABCA5) related to multi-drug resistance and malignant progression. These results define the E2F1-p73/DNp73-miR-205 axis as a crucial mechanism for chemoresistance and, thus, as a target for metastasis prevention.  相似文献   

18.
Solubilizing groups have been frequently appended to kinase inhibitor drug molecules when solubility is insufficient for pharmaceutical development. Such groups are usually located at substitution sites that have minimal impact on target activity. In this report we describe the incorporation of solubilizing groups in a class of Rho kinase (ROCK) inhibitors that not only confer improved solubility, but also enhance target potency and selectivity against a closely related kinase, PKA.  相似文献   

19.
The bioisosteric replacement of the indole core of CRTH2 antagonists using thienopyrroles was investigated, resulting in potent antagonists with good selectivity over DP1. Early ADME/PK assessment of this chemotype demonstrated bioavailability in mice.  相似文献   

20.
Aim:  The aim of the study was to study the role of carbon dioxide metabolism in Streptococcus thermophilus through investigation of the phenotype of a carbamoylphosphate synthetase-negative mutant.
Methods and results:  The effect of carbon dioxide on the nutritional requirements of Strep. thermophilus DSM20617T and its derivative, carbamoylphosphate synthetase-negative mutant A17( ΔcarB ), was investigated by cultivating the strain in a chemically defined medium under diverse gas compositions and in milk. The results obtained revealed that CO2 depletion or carB gene inactivation determined the auxotrophy of Strep. thermophilus for l -arginine and uracil. In addition, the parent strain grew faster than the mutant, even when milk was supplemented with uracil or arginine.
Conclusions:  Milk growth experiments underlined that carbamoylphosphate synthetase activity was essential for the optimal growth of Strep. thermophilus in milk.
Significance and impact of the study:  The study of the carbon dioxide metabolism in Strep. thermophilus revealed new insights with regard to the metabolism of this species, which could be useful for the optimization of dairy fermentation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号