首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transient receptor potential channels TRPML2 and TRPML3 (MCOLN2 and MCOLN3) are nonselective cation channels. They are widely expressed in mammals. However, little is known about their physiological function(s) and activation mechanism(s). TRPML3 can be activated or rather de-inhibited by exposing it first to sodium-free extracellular solution and subsequently to high extracellular sodium. TRPML3 can also be activated by a variety of small chemical compounds identified in a high throughput screen and is inhibited by low pH. Furthermore, it was found that TRPML3 is constitutively active in low or no sodium-containing extracellular solution. This constitutive activity is independent of the intracellular presence of sodium, and whole-cell current densities are similar with pipette solutions containing cesium, potassium, or sodium. Here, we present mutagenesis data generated based on the hypothesis that negatively charged amino acids in the extracellular loops of TRPML3 may interfere with the observed sodium inhibition. We systematically mutated negatively charged amino acids in the first and second extracellular loops and found that mutating Glu-361 in the second loop has a significant impact on the sodium-mediated block of TRPML3. We further demonstrate that the TRPML3-related cation channel TRPML2 is also activated by lowering the extracellular sodium concentration as well as by a subset of small chemical compounds that were previously identified as activators of TRPML3, thus confirming the functional activity of TRPML2 at the plasma membrane and suggesting similar gating mechanisms for both TRPML channels.  相似文献   

2.
Expression of the calcium channels CaV2.1 and CaV2.2 is markedly suppressed by co-expression with truncated constructs containing Domain I. This is the basis for the phenomenon of dominant negative suppression observed for many of the episodic ataxia type 2 mutations in CaV2.1 that predict truncated channels. The process of dominant negative suppression has been shown previously to stem from interaction between the full-length and truncated channels and to result in downstream consequences of the unfolded protein response and endoplasmic reticulum-associated protein degradation. We have now identified the specific domain that triggers this effect. For both CaV2.1 and CaV2.2, the minimum construct producing suppression was the cytoplasmic N terminus. Suppression was enhanced by tethering the N terminus to the membrane with a CAAX motif. The 11-amino acid motif (including Arg52 and Arg54) within the N terminus, which we have previously shown to be required for G protein modulation, is also essential for dominant negative suppression. Suppression is prevented by addition of an N-terminal tag (XFP) to the full-length and truncated constructs. We further show that suppression of CaV2.2 currents by the N terminus-CAAX construct is accompanied by a reduction in CaV2.2 protein level, and this is also prevented by mutation of Arg52 and Arg54 to Ala in the truncated construct. Taken together, our evidence indicates that both the extreme N terminus and the Arg52, Arg54 motif are involved in the processes underlying dominant negative suppression.  相似文献   

3.
TRPML3 is a H+-regulated Ca2+ channel that shuttles between intracellular compartments and the plasma membrane. The A419P mutation causes the varitint-waddler phenotype as a result of gain-of-function (GOF). The mechanism by which A419P leads to GOF is not known. Here, we show that the TRPML3 pore is dynamic when conducting Ca2+ to change its conductance and permeability, which appears to be mediated by trapping Ca2+ within the pore. The pore properties can be restored by strong depolarization or by conducting Na+ through the pore. The A419P mutation results in expanded channel pore with altered permeability that limits modulation of the pore by Ca2+. This effect is specific for the A419P mutation and is not reproduced by other GOF mutations, including A419G, H283A, and proline mutations in the fifth transmembrane domain. These findings describe a novel mode of a transient receptor potential channel behavior and suggest that pore expansion by the A419P mutation may contribute to the varitint-waddler phenotype.  相似文献   

4.
Glycosylation plays a critical role in the biogenesis and function of membrane proteins. Transient receptor potential channel TRPP2 is a nonselective cation channel that is mutated in autosomal dominant polycystic kidney disease. TRPP2 has been shown to be heavily N-glycosylated, but the glycosylation sites and the biological role of N-linked glycosylation have not been investigated. Here we show, using a combination of mass spectrometry and biochemical approaches, that native TRPP2 is glycosylated at five asparagines in the first extracellular loop. Glycosylation is required for the efficient biogenesis of TRPP2 because mutations of the glycosylated asparagines result in strongly decreased protein expression of the ion channel. Wild-type and N-glycosylation-deficient TRPP2 is degraded in lysosomes, as shown by increased TRPP2 protein levels upon chemical inhibition of lysosomal degradation. In addition, using pharmacological and genetic approaches, we demonstrate that glucosidase II (GII) mediates glycan trimming of TRPP2. The non-catalytic β subunit of glucosidase II (GIIβ) is encoded by PRKCSH, one of the genes causing autosomal dominant polycystic liver disease (ADPLD). The impaired GIIβ-dependent glucose trimming of TRPP2 glycosylation in ADPLD may explain the decreased TRPP2 protein expression in Prkcsh−/− mice and the genetic interaction observed between TRPP2 and PRKCSH in ADPLD. These results highlight the biological importance of N-linked glycosylation and GII-mediated glycan trimming in the control of biogenesis and stability of TRPP2.  相似文献   

5.
6.
7.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent second messenger that mobilizes Ca(2+) from the acidic endolysosomes by activation of the two-pore channels TPC1 and TPC2. The channel properties of human TPC1 have not been studied before, and its cellular function is not known. In the present study, we characterized TPC1 incorporated into lipid bilayers. The native and recombinant TPC1 channels are activated by NAADP. TPC1 activity requires acidic luminal pH and high luminal Ca(2+). With Ba(2+) as the permeable ion, luminal Ca(2+) activates TPC1 with an apparent K(m) of 180 μm. TPC1 operates in two tightly coupled conductance states of 47 ± 8 and 200 ± 9 picosiemens. Importantly, opening of the large conductance markedly increases the small conductance mean open time. Changes in membrane potential from 0 to -60 mV increased linearly both the small and the large conductances and NP(o), indicating that TPC1 is regulated by voltage. Intriguingly, the apparent affinity for activation of TPC1 by its ligand NAADP is not constant. Rather, hyperpolarization increases the apparent affinity of TPC1 for NAADP by 10 nm/mV. The concerted regulation of TPC1 activity by luminal Ca(2+) and by membrane potential thus provides a potential mechanism to explain NAADP-induced Ca(2+) oscillations. These findings reveal unique properties of TPC1 to explain its role in Ca(2+) oscillations and cell function.  相似文献   

8.
Two-pore channels (TPCNs) have been proposed to form lysosomal Ca2+ release channels that are activated by nicotinic acid adenine dinucleotide phosphate. Here, we employ a glass chip-based method to record for the first time nicotinic acid adenine dinucleotide phosphate -dependent currents through a two-pore channel (TPCN2) from intact lysosomes. We show that TPCN2 is a highly selective Ca2+ channel that is regulated by intralysosomal pH. Using site-directed mutagenesis, we identify an amino acid residue in the putative pore region that is crucial for conferring high Ca2+ selectivity. Our glass chip-based method will provide electrophysiological access not only to lysosomal TPCN channels but also to a broad range of other intracellular ion channels.  相似文献   

9.
Transient receptor potential melastatin 7 (TRPM7) channels are novel Ca2+-permeable non-selective cation channels ubiquitously expressed. Activation of TRPM7 channels has been shown to be involved in cellular Mg2+ homeostasis, diseases caused by abnormal magnesium absorption, and in Ca2+-mediated neuronal injury under ischemic conditions. Here we show strong evidence suggesting that TRPM7 channels also play an important role in cellular Zn2+ homeostasis and in Zn2+-mediated neuronal injury. Using a combination of fluorescent Zn2+ imaging, small interfering RNA, pharmacological analysis, and cell injury assays, we show that activation of TRPM7 channels augmented Zn2+-induced injury of cultured mouse cortical neurons. The Zn2+-mediated neurotoxicity was inhibited by nonspecific TRPM7 blockers Gd3+ or 2-aminoethoxydiphenyl borate, and by knockdown of TRPM7 channels with small interfering RNA. In addition, Zn2+-mediated neuronal injury under oxygen-glucose deprivation conditions was also diminished by silencing TRPM7. Furthermore, we show that overexpression of TRPM7 channels in HEK293 cells increased intracellular Zn2+ accumulation and Zn2+-induced cell injury, while silencing TRPM7 by small interfering RNA attenuated the Zn2+-mediated cell toxicity. Thus, TRPM7 channels may represent a novel target for neurological disorders where Zn2+ toxicity plays an important role.  相似文献   

10.
The urothelium is a sensory structure that contributes to mechanosensation in the urinary bladder. Here, we provide evidence for a critical role for the Piezo1 channel, a newly identified mechanosensory molecule, in the mouse bladder urothelium. We performed a systematic analysis of the molecular and functional expression of Piezo1 channels in the urothelium. Immunofluorescence examination demonstrated abundant expression of Piezo1 in the mouse and human urothelium. Urothelial cells isolated from mice exhibited a Piezo1-dependent increase in cytosolic Ca2+ concentrations in response to mechanical stretch stimuli, leading to potent ATP release; this response was suppressed in Piezo1-knockdown cells. In addition, Piezo1 and TRPV4 distinguished different intensities of mechanical stimulus. Moreover, GsMTx4, an inhibitor of stretch-activated channels, attenuated the Ca2+ influx into urothelial cells and decreased ATP release from them upon stretch stimulation. These results suggest that Piezo1 senses extension of the bladder urothelium, leading to production of an ATP signal. Thus, inhibition of Piezo1 might provide a promising means of treating bladder dysfunction.  相似文献   

11.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca2+ required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca2+ from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca2+ release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca2+ that will enable it to act as a Ca2+ release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca2+] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca2+ release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca2+ release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μm but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.  相似文献   

12.
In animals, visual pigments are essential for photoreceptor function and survival. These G-protein-coupled receptors consist of a protein moiety (opsin) and a covalently bound 11-cis-retinylidene chromophore. The chromophore is derived from dietary carotenoids by oxidative cleavage and trans-to-cis isomerization of double bonds. In vertebrates, the necessary chemical transformations are catalyzed by two distinct but structurally related enzymes, the carotenoid oxygenase β-carotenoid-15,15′-monooxygenase and the retinoid isomerase RPE65 (retinal pigment epithelium protein of 65 kDa). Recently, we provided biochemical evidence that these reactions in insects are catalyzed by a single enzyme family member named NinaB. Here we show that in the fly pathway, carotenoids are mandatory precursors of the chromophore. After chromophore formation, the retinoid-binding protein Pinta acts downstream of NinaB and is required to supply photoreceptors with chromophore. Like ninaE encoding the opsin, ninaB expression is eye-dependent and is activated as a downstream target of the eyeless/pax6 and sine oculis master control genes for eye development. The requirement for coordinated synthesis of chromophore and opsin is evidenced by analysis of ninaE mutants. Retinal degeneration in opsin-deficient photoreceptors is caused by the chromophore and can be prevented by restricting its supply as seen in an opsin and chromophore-deficient double mutant. Thus, our study identifies NinaB as a key component for visual pigment production and provides evidence that chromophore in opsin-deficient photoreceptors can elicit retinal degeneration.  相似文献   

13.
When glucose is added to yeast cells that are starved for 3 days, fructose-1,6-bisphosphatase (FBPase) and malate dehydrogenase 2 are degraded in the vacuole via the vacuole import and degradation (Vid) pathway. In this study, we examined the distribution of FBPase at the ultrastructural level. FBPase was observed in areas close to the plasma membrane and in cytoplasmic structures that are heterogeneous in size and density. We have isolated these intracellular structures that contain FBPase, the Vid vesicle marker Vid24p, and the endosomal marker Pep12p. They appeared irregular in size and shape. In yeast, actin polymerization plays an important role in early steps of endocytosis. Mutants that affect actin polymerization inhibited FBPase degradation, suggesting that actin polymerization is important for FBPase degradation. Both FBPase and malate dehydrogenase 2 were associated with actin patches. Vid vesicle proteins such as Vid24p or Sec28p were also at actin patches, although they dissociated from these structures at later time points. We propose that Vid24p and Sec28p are present at actin patches during glucose starvation. Cargo proteins arrive at these sites following the addition of glucose, and the endocytic vesicles then pinch off from the plasma membrane. Following the fusion of endosomes with the vacuole, cargo proteins are then degraded in the vacuole.  相似文献   

14.
Voltage-gated proton channels and NADPH oxidase function cooperatively in phagocytes during the respiratory burst, when reactive oxygen species are produced to kill microbial invaders. Agents that activate NADPH oxidase also enhance proton channel gating profoundly, facilitating its roles in charge compensation and pHi regulation. The “enhanced gating mode” appears to reflect protein kinase C (PKC) phosphorylation. Here we examine two candidates for PKC-δ phosphorylation sites in the human voltage-gated proton channel, HV1 (Hvcn1), Thr29 and Ser97, both in the intracellular N terminus. Channel phosphorylation was reduced in single mutants S97A or T29A, and further in the double mutant T29A/S97A, by an in vitro kinase assay with PKC-δ. Enhanced gating was evaluated by expressing wild-type (WT) or mutant HV1 channels in LK35.2 cells, a B cell hybridoma. Stimulation by phorbol myristate acetate enhanced WT channel gating, and this effect was reversed by treatment with the PKC inhibitor GF109203X. The single mutant T29A or double mutant T29A/S97A failed to respond to phorbol myristate acetate or GF109203X. In contrast, the S97A mutant responded like cells transfected with WT HV1. We conclude that under these conditions, direct phosphorylation of the proton channel molecule at Thr29 is primarily responsible for the enhancement of proton channel gating. This phosphorylation is crucial to activation of the proton conductance during the respiratory burst in phagocytes.  相似文献   

15.
Human alkaline ceramidase 2 (ACER2) plays an important role in cellular responses by regulating the hydrolysis of ceramides in cells. Here we report its biochemical characterization, membrane topology, and activity regulation. Recombinant ACER2 was expressed in yeast mutant cells (Δypc1Δydc1) that lack endogenous ceramidase activity, and microsomes from ACER2-expressiong yeast cells were used to biochemically characterize ACER2. ACER2 catalyzed the hydrolysis of various ceramides and followed Michaelis-Menten kinetics. ACER2 required Ca2+ for both its in vitro and cellular activities. ACER2 has 7 putative transmembrane domains, and its amino (N) and carboxyl (C) termini were found to be oriented in the lumen of the Golgi complex and cytosol, respectively. ACER2 mutant (ACER2ΔN36) lacking the N-terminal tail (the first 36 amino acid residues) exhibited undetectable activity and was mislocalized to the endoplasmic reticulum, suggesting that the N-terminal tail is necessary for both ACER2 activity and Golgi localization. ACER2 mutant (ACER2ΔN13) lacking the first 13 residues was also mislocalized to the endoplasmic reticulum although it retained ceramidase activity. Overexpression of ACER2, ACER2ΔN13, but not ACER2ΔN36 increased the release of sphingosine 1-phosphate from cells, suggesting that its mislocalization does not affect the ability of ACER2 to regulate sphingosine 1-phosphate secretion. However, overexpression of ACER2 but not ACER2ΔN13 or ACER2ΔN36 inhibited the glycosylation of integrin β1 subunit and Lamp1, suggesting that its mistargeting abolishes the ability of ACER2 to regulation protein glycosylation. These data suggest that ACER2 has broad substrate specificity and requires Ca2+ for its activity and that ACER2 has the cytosolic C terminus and luminal N terminus, which are essential for its activity, correct cellular localization, and regulation for protein glycosylation.  相似文献   

16.
  1. Download : Download high-res image (230KB)
  2. Download : Download full-size image
  相似文献   

17.
Transient receptor potential ankyrin 1 (TRPA1) is a calcium-permeable non-selective cation channel that is activated by various noxious or irritant substances in nature, including spicy compounds. Many TRPA1 chemical activators have been reported; however, only limited information is available regarding the amino acid residues that contribute to the activation by non-electrophilic activators, whereas activation mechanisms by electrophilic ligands have been well characterized. We used intracellular Ca2+ measurements and whole-cell patch clamp recordings to show that eudesmol, an oxygenated sesquiterpene present at high concentrations in the essential oil of hop cultivar Hallertau Hersbrucker, could activate human TRPA1. Gradual activation of inward currents with outward rectification by eudesmol was observed in human embryonic kidney-derived 293 cells expressing human TRPA1. This activation was completely blocked by a TRPA1-specific inhibitor, HC03–0031. We identified three critical amino acid residues in human TRPA1 in putative transmembrane domains 3, 4, and 5, namely threonine at 813, tyrosine at 840, and serine at 873, for activation by β-eudesmol in a systematic mutational study. Our results revealed a new TRPA1 activator in hop essential oil and provide a novel insight into mechanisms of human TRPA1 activation by non-electrophilic chemicals.  相似文献   

18.
Polycystin-2 (PC2) is a Ca2+-permeable transient receptor potential channel activated and regulated by changes in cytoplasmic Ca2+. PC2 mutations are responsible for ∼15% of autosomal dominant polycystic kidney disease. Although the C-terminal cytoplasmic tail of PC2 has been shown to contain a Ca2+-binding EF-hand domain, the molecular basis of PC2 channel gating by Ca2+ remains unknown. We propose that the PC2 EF-hand is a Ca2+ sensor required for channel gating. Consistent with this, Ca2+ binding causes a dramatic decrease in the radius of gyration (Rg) of the PC2 EF-hand by small angle x-ray scattering and significant conformational changes by NMR. Furthermore, increasing Ca2+ concentrations cause the C-terminal cytoplasmic tail to transition from a mixture of extended oligomers to a single compact dimer by analytical ultracentrifugation, coupled with a >30 Å decrease in maximum interatomic distance (Dmax) by small angle x-ray scattering. Mutant PC2 channels unable to bind Ca2+ via the EF-hand are inactive in single-channel planar lipid bilayers and inhibit Ca2+ release from ER stores upon overexpression in cells, suggesting dominant negative properties. Our results support a model where PC2 channels are gated by discrete conformational changes in the C-terminal cytoplasmic tail in response to changes in cytoplasmic Ca2+ levels. These properties of PC2 are lost in autosomal dominant polycystic kidney disease, emphasizing the importance of PC2 to kidney cell function. We speculate that PC2 and the Ca2+-dependent transient receptor potential channels in general are regulated by similar conformational changes in their cytoplasmic domains that are propagated to the channel pore.  相似文献   

19.
The increased expression of McPIP2;1 (MipC), a root-specific aquaporin (AQP) from Mesembryanthemum crystallinum, under salt stress has suggested a role for this AQP in the salt tolerance of the plant. However, whether McPIP2;1 transports water or another solute and how its activity is regulated are so far unknown. Therefore, wild type (wt) or mutated McPIP2;1 protein was expressed in Xenopus laevis oocytes. Then, the osmotic water permeability (Pf) of the oocytes membrane was assessed by hypotonic challenges. Selectivity of McPIP2;1 to water was determined by radiolabeled glycerol or urea uptake assays. Moreover, swelling and in vitro phosphorylation assays revealed that both water permeation and phosphorylation status of McPIP2;1 were significantly increased by the phosphorylation agonists okadaic acid (OA), phorbol myristate acetate (PMA), and 8-Br-cAMP, and markedly decreased by the inhibitory peptides PKI 14-22 and PKC 20-28, inhibitors of protein kinases A (PKA) and C (PKC), respectively. Substitution of Ser123 or both, Ser123 and Ser282, abolished the water channel activity of McPIP2;1 while substitution of Ser282 only partially inhibited it (51.9% inhibition). Despite lacking Ser123 and/or Ser282, the McPIP2;1 mutant forms were still phosphorylated in vitro, which suggests that phosphorylation may have a dual role on this AQP. Our results indicate that McPIP2;1 water permeability depends completely on Ser123 and is positively regulated by PKA- and PKC-mediated phosphorylation. Regulation of the phosphorylation status of McPIP2;1 may contribute to control water transport through root cells when the plant is subjected to high salinity conditions.  相似文献   

20.
One of the family of voltage-gated calcium channels (VGCC), the N-type Ca2+ channel, is located predominantly in neurons and is associated with a variety of neuronal responses, including neurodegeneration. A precise mechanism for how the N-type Ca2+ channel plays a role in neurodegenerative disease, however, is unknown. In this study, we immunized N-type Ca2+ channel α1B-deficient (α1B−/−) mice and their wild type (WT) littermates with myelin oligodendrocyte glycoprotein 35–55 and analyzed the progression of experimental autoimmune encephalomyelitis (EAE). The neurological symptoms of EAE in the α1B−/− mice were less severe than in the WT mice. In conjunction with these results, sections of the spinal cord (SC) from α1B−/− mice revealed a reduction in both leukocytic infiltration and demyelination compared with WT mice. No differences were observed in the delayed-type hypersensitivity response, spleen cell proliferation, or cytokine production from splenocytes between the two genotypes. On the other hand, Western blot array analysis and RT-PCR revealed that a typical increase in the expression of MCP-1 in the SC showed a good correlation with the infiltration of leukocytes into the SC. Likewise, immunohistochemical analysis showed that the predominant source of MCP-1 was activated microglia. The cytokine-induced production of MCP-1 in primary cultured microglia from WT mice was significantly higher than that from α1B−/− mice and was significantly inhibited by a selective N-type Ca2+ channel antagonist, ω-conotoxin GVIA or a withdrawal of extracellular Ca2+. These results suggest that the N-type Ca2+ channel is involved in the pathogenesis of EAE at least in part by regulating MCP-1 production by microglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号