首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hair cells and spiral ganglion neurons of the mammalian auditory system do not regenerate, and their loss leads to irreversible hearing loss. Aminoglycosides induce auditory hair cell death in vitro, and evidence suggests that phosphatidylinositol-3-kinase/Akt signaling opposes gentamicin toxicity via its downstream target, the protein kinase Akt. We previously demonstrated that somatostatin—a peptide with hormone/neurotransmitter properties—can protect hair cells from gentamicin-induced hair cell death in vitro, and that somatostatin receptors are expressed in the mammalian inner ear. However, it remains unknown how this protective effect is mediated. In the present study, we show a highly significant protective effect of octreotide (a drug that mimics and is more potent than somatostatin) on gentamicin-induced hair cell death, and increased Akt phosphorylation in octreotide-treated organ of Corti explants in vitro. Moreover, we demonstrate that somatostatin receptor-1 knockout mice overexpress somatostatin receptor-2 in the organ of Corti, and are less susceptible to gentamicin-induced hair cell loss than wild-type or somatostatin-1/somatostatin-2 double-knockout mice. Finally, we show that octreotide affects auditory hair cells, enhances spiral ganglion neurite number, and decreases spiral ganglion neurite length.  相似文献   

2.
The mammalian organ of Corti is a highly specialized sensory organ of the cochlea with a fine-grained pattern that is essential for auditory function. The sensory epithelium, the organ of Corti consists of a single row of inner hair cells and three rows of outer hair cells that are intercalated by support cells in a mosaic pattern. Previous studies show that the Wnt pathway regulates proliferation, promotes medial compartment formation in the cochlea, differentiation of the mechanosensory hair cells and axon guidance of Type II afferent neurons. WNT ligand expressions are highly dynamic throughout development but are insufficient to explain the roles of the Wnt pathway. We address a potential way for how WNTs specify the medial compartment by characterizing the expression of Porcupine (PORCN), an O-acyltransferase that is required for WNT secretion. We show PORCN expression across embryonic ages (E)12.5 - E14.5, E16.5, and postnatal day (P)1. Our results showed enriched PORCN in the medial domains during early stages of development, indicating that WNTs have a stronger influence on patterning of the medial compartment. PORCN was rapidly downregulated after E14.5, following the onset of sensory cell differentiation; residual expression remained in some hair cells and supporting cells. On E14.5 and E16.5, we also examined the spatial expression of Gsk3β, an inhibitor of canonical Wnt signaling to determine its potential role in radial patterning of the cochlea. Gsk3β was broadly expressed across the radial axis of the epithelium; therefore, unlikely to control WNT-mediated medial specification. In conclusion, the spatial expression of PORCN enriches WNT secretion from the medial domains of the cochlea to influence the specification of cell fates in the medial sensory domain.  相似文献   

3.
Hearing loss and balance disturbances are often caused by death of mechanosensory hair cells, which are the receptor cells of the inner ear. Since there is no cell line that satisfactorily represents mammalian hair cells, research on hair cells relies on primary organ cultures. The best-characterized in vitro model system of mature mammalian hair cells utilizes organ cultures of utricles from adult mice (Figure 1) 1-6. The utricle is a vestibular organ, and the hair cells of the utricle are similar in both structure and function to the hair cells in the auditory organ, the organ of Corti. The adult mouse utricle preparation represents a mature sensory epithelium for studies of the molecular signals that regulate the survival, homeostasis, and death of these cells.Mammalian cochlear hair cells are terminally differentiated and are not regenerated when they are lost. In non-mammalian vertebrates, auditory or vestibular hair cell death is followed by robust regeneration which restores hearing and balance functions 7, 8. Hair cell regeneration is mediated by glia-like supporting cells, which contact the basolateral surfaces of hair cells in the sensory epithelium 9, 10. Supporting cells are also important mediators of hair cell survival and death 11. We have recently developed a technique for infection of supporting cells in cultured utricles using adenovirus. Using adenovirus type 5 (dE1/E3) to deliver a transgene containing GFP under the control of the CMV promoter, we find that adenovirus specifically and efficiently infects supporting cells. Supporting cell infection efficiency is approximately 25-50%, and hair cells are not infected (Figure 2). Importantly, we find that adenoviral infection of supporting cells does not result in toxicity to hair cells or supporting cells, as cell counts in Ad-GFP infected utricles are equivalent to those in non-infected utricles (Figure 3). Thus adenovirus-mediated gene expression in supporting cells of cultured utricles provides a powerful tool to study the roles of supporting cells as mediators of hair cell survival, death, and regeneration.  相似文献   

4.
Hearing loss can be caused by primary degeneration of spiral ganglion neurons or by secondary degeneration of these neurons after hair cell loss. The replacement of auditory neurons would be an important step in any attempt to restore auditory function in patients with damaged inner ear neurons or hair cells. Application of beta-bungarotoxin, a toxin derived from snake venom, to an explant of the cochlea eradicates spiral ganglion neurons while sparing the other cochlear cell types. The toxin was found to bind to the neurons and to cause apoptotic cell death without affecting hair cells or other inner ear cell types as indicated by TUNEL staining, and, thus, the toxin provides a highly specific means of deafferentation of hair cells. We therefore used the denervated organ of Corti for the study of neuronal regeneration and synaptogenesis with hair cells and found that spiral ganglion neurons obtained from the cochlea of an untreated newborn mouse reinnervated hair cells in the toxin-treated organ of Corti and expressed synaptic vesicle markers at points of contact with hair cells. These findings suggest that it may be possible to replace degenerated neurons by grafting new cells into the organ of Corti.  相似文献   

5.
6.
Cisplatin is an effective antineoplastic drug that is widely used to treat various cancers; however, it causes side effects such as ototoxicity via the induction of apoptosis of hair cells in the cochlea. Alpha-lipoic acid (ALA) has been reported to exert a protective effect against both antibiotic-induced and cisplatin-induced hearing loss. Therefore, this study was conducted to (1) elucidate the mechanism of the protective effects of ALA against cisplatin-induced ototoxicity using in vitro and ex vivo culture systems of HEI-OC1 auditory cells and rat cochlear explants and (2) to gain additional insight into the apoptotic mechanism of cisplatin-induced ototoxicity. ALA pretreatment significantly reduced apoptotic cell death of the inner and outer hair cells in cisplatin-treated organ of Corti explants and attenuated ototoxicity via marked inhibition of the increase in the expression of IL-1β and IL-6, the phosphorylation of ERK and p38, the degradation of IκBα, the increase in intracellular levels of ROS, and the activation of caspase-3 in cisplatin-treated HEI-OC1 cells. This study represents the first histological evaluation of the organ of Corti following treatment with ALA, and these results indicate that the protective effects of ALA against cisplatin-induced ototoxicity are mediated via the regulation of MAPKs and proinflammatory cytokines.  相似文献   

7.
The mammalian auditory sensory epithelium, the organ of Corti, contains sensory hair cells and nonsensory supporting cells arranged in a highly patterned mosaic. Notch-mediated lateral inhibition is the proposed mechanism for creating this sensory mosaic. Previous work has shown that mice lacking the Notch ligand JAG2 differentiate supernumerary hair cells in the cochlea, consistent with the lateral inhibitory model. However, it was not clear why only relatively modest increases in hair cell production were observed in Jag2 mutant mice. Here, we show that another Notch ligand, DLL1, functions synergistically with JAG2 in regulating hair cell differentiation in the cochlea. We also show by conditional inactivation that these ligands probably signal through the NOTCH1 receptor. Supernumerary hair cells in Dll1/Jag2 double mutants arise primarily through a switch in cell fate, rather than through excess proliferation. Although these results demonstrate an important role for Notch-mediated lateral inhibition during cochlear hair cell patterning, we also detected abnormally prolonged cellular proliferation that preferentially affected supporting cells in the organ of Corti. Our results demonstrate that the Notch pathway plays a dual role in regulating cellular differentiation and patterning in the cochlea, acting both through lateral inhibition and the control of cellular proliferation.  相似文献   

8.
9.
The auditory sensory cells are sensitive to a variety of influences such as noise, ototoxic drugs and aging. In the cochlea of mammals, the destroyed sensory cells are not replaced by new sensory cells. That leads to cochlear deafness, a frequent disease in human. Unfortunately, such auditory impairment is out of reach of treatment. The development of new therapeutic strategies in this field requires a precise knowledge of the mechanisms involved in auditory sensory cells disappearance and in organ of Corti's degeneration. The aim of our study was to characterize cellular and molecular changes in the cochlea of rats which had been intoxicated with the ototoxic antibiotic amikacin. The animals were sacrificed at different survival times during and after the antibiotic treatment and their cochleas were investigated using transmission and scanning electron microscopy and using confocal microscopy after tissue labellings with different fluorescent probes. The results revealed the existence of three periods. The first one corresponds to the disappearance of the sensory cells which die by apoptosis. During the second period, the organ of Corti undergoes a scarring process; concomitantly, a contingent of nonsensory supporting cells attempts to transdifferentiate directly into sensory cells. This process however fails, and the supporting cells never reach the status of hair cells. A general process of dedifferentiation of all the epithelial cells of the organ of Corti followed by a massive apoptosis of numerous epithelial cells and of most ganglion cells occurs during the third period. After that, the organ of Corti is definitely reduced to a simple monolayered epithelium. On the basis of these data, experimental strategies aimed i) to protect the sensory cells against apoptosis and ii) to promote sensory cell regeneration are now under study. They might have important implications in human therapy.  相似文献   

10.
Hearing loss in mammals is irreversible because cochlear neurons and hair cells do not regenerate. To determine whether we could replace neurons lost to primary neuronal degeneration, we injected EYFP‐expressing embryonic stem cell–derived mouse neural progenitor cells into the cochlear nerve trunk in immunosuppressed animals 1 week after destroying the cochlear nerve (spiral ganglion) cells while leaving hair cells intact by ouabain application to the round window at the base of the cochlea in gerbils. At 3 days post transplantation, small grafts were seen that expressed endogenous EYFP and could be immunolabeled for neuron‐specific markers. Twelve days after transplantation, the grafts had neurons that extended processes from the nerve core toward the denervated organ of Corti. By 64–98 days, the grafts had sent out abundant processes that occupied a significant portion of the space formerly occupied by the cochlear nerve. The neurites grew in fasciculating bundles projecting through Rosenthal's canal, the former site of spiral ganglion cells, into the osseous spiral lamina and ultimately into the organ of Corti, where they contacted hair cells. Neuronal counts showed a significant increase in neuronal processes near the sensory epithelium, compared to animals that were denervated without subsequent stem cell transplantation. The regeneration of these neurons shows that neurons differentiated from stem cells have the capacity to grow to a specific target in an animal model of neuronal degeneration. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

11.
The human ear is capable of processing sound with a remarkable resolution over a wide range of intensity and frequency. This ability depends largely on the extraordinary feats of the hearing organ, the organ of Corti and its sensory hair cells. The organ of Corti consists of precisely patterned rows of sensory hair cells and supporting cells along the length of the snail-shaped cochlear duct. On the apical surface of each hair cell, several rows of actin-containing protrusions, known as stereocilia, form a "V"-shaped staircase. The vertices of all the "V"-shaped stereocilia point away from the center of the cochlea. The uniform orientation of stereocilia in the organ of Corti manifests a distinctive form of polarity known as planar cell polarity (PCP). Functionally, the direction of stereociliary bundle deflection controls the mechanical channels located in the stereocilia for auditory transduction. In addition, hair cells are tonotopically organized along the length of the cochlea. Thus, the uniform orientation of stereociliary bundles along the length of the cochlea is critical for effective mechanotransduction and for frequency selection. Here we summarize the morphological and molecular events that bestow the structural characteristics of the mammalian hearing organ, the growth of the snail-shaped cochlear duct and the establishment of PCP in the organ of Corti. The PCP of the sensory organs in the vestibule of the inner ear will also be described briefly.  相似文献   

12.
Epidermal growth factor receptor (EGFR) levels were assayed by an enzyme-linked immunosorbent assay (ELISA) in microdissected organ of Corti (OC) from neonatal rats directly after isolation and after 3 days in culture with and without neomycin treatment. In addition, the cellular distribution of the EGFR in the OC was determined by immunohistochemistry. The in vitro level of EGFR determined by ELISA assays doubled after neomycin damage to OC, suggesting that EGFR is subject to up-regulation following this treatment. Immunohistochemistry of both in vivo and in vitro controls indicates that EGFR is predominantly localized in the stereociliary bundles of the hair cells; supporting cells and the apical junctions between the remaining Kolliker organ cells were also immunolabeled. In neomycin-treated cultures, sensory cells were degenerated, so no labeling could be seen. However, supporting and Kolliker organ cells continued to show labeling. In addition, nerve fibers in the region of the future osseous spiral lamina and projecting out toward the damaged sensory epithelium were immunostained. The up-regulation of the EGFR and its redistribution within the OC following neomycin damage support the earlier observation that growth factors that act through EGFR, such as EGF and transforming growth factor-alpha can induce neonatal mammalian auditory hair cell replacement under culture conditions, after aminoglycoside treatment.  相似文献   

13.
In vitro cultures of isolated fowl embryo otocysts were studied with the electron microscope. Hair cells of the developing organ of Corti and crista ampullaris have been examined with particular reference to the structure of the cilia and of the cell membrane. Two types of hair cells could be distinguished on the basis whether or not they possessed a "kinocilium" and "stereocilia," or "stereocilia" only. The cytoplasmic membranes were simple and there were no multiple vesicular layers in any of the hair cells. The supporting elements consisted of supporting cells flanking the hair cells, fibroblasts, and the cartilaginous otic capsule. Both the cochlear and vestibular sensory area showed rich innervation by mainly non-myelinated fibers with partial myelinization in others. There were well developed ganglion cells present. Bare axons penetrated the basement membrane and spread, amongst the supporting cells sheltering them, to the base of the hair cells where they formed bud-shaped nerve endings but, at the stage of development examined, no calyces. These in vitro cultures of the isolated fowl embryo otocyst provided convenient and suitable material for the electron microscope study of the sensory epithelium of the ear and revealed further that the isolated fowl embryo otocyst possesses great powers of self-differentiation also at the ultrastructural level.  相似文献   

14.
FGFR1 is required for the development of the auditory sensory epithelium   总被引:12,自引:0,他引:12  
The mammalian auditory sensory epithelium, the organ of Corti, comprises the hair cells and supporting cells that are pivotal for hearing function. The origin and development of their precursors are poorly understood. Here we show that loss-of-function mutations in mouse fibroblast growth factor receptor 1 (Fgfr1) cause a dose-dependent disruption of the organ of Corti. Full inactivation of Fgfr1 in the inner ear epithelium by Foxg1-Cre-mediated deletion leads to an 85% reduction in the number of auditory hair cells. The primary cause appears to be reduced precursor cell proliferation in the early cochlear duct. Thus, during development, FGFR1 is required for the generation of the precursor pool, which gives rise to the auditory sensory epithelium. Our data also suggest that FGFR1 might have a distinct later role in intercellular signaling within the differentiating auditory sensory epithelium.  相似文献   

15.
The adult mammalian cochlea receives dual afferent innervation: the inner sensory hair cells are innervated exclusively by type I spiral ganglion neurons (SGN), whereas the sensory outer hair cells are innervated by type II SGN. We have characterized the spatiotemporal reorganization of the dual afferent innervation pattern as it is established in the developing mouse cochlea. This reorganization occurs during the first postnatal week just before the onset of hearing. Our data reveal three distinct phases in the development of the afferent innervation of the organ of Corti: (1) neurite growth and extension of both classes of afferents to all hair cells (E18-P0); (2) neurite refinement, with formation of the outer spiral bundles innervating outer hair cells (P0-P3); (3) neurite retraction and synaptic pruning to eliminate type I SGN innervation of outer hair cells, while retaining their innervation of inner hair cells (P3-P6). The characterization of this developmental innervation pattern was made possible by the finding that tetramethylrhodamine-conjugated dextran (TMRD) specifically labeled type I SGN. Peripherin and choline-acetyltransferase immunofluorescence confirmed the type II and efferent innervation patterns, respectively, and verified the specificity of the type I SGN neurites labeled by TMRD. These findings define the precise spatiotemporal neurite reorganization of the two afferent nerve fiber populations in the cochlea, which is crucial for auditory neurotransmission. This reorganization also establishes the cochlea as a model system for studying CNS synapse development, plasticity and elimination.  相似文献   

16.
17.
Taylor RR  Jagger DJ  Forge A 《PloS one》2012,7(1):e30577

Background

Following the loss of hair cells from the mammalian cochlea, the sensory epithelium repairs to close the lesions but no new hair cells arise and hearing impairment ensues. For any cell replacement strategy to be successful, the cellular environment of the injured tissue has to be able to nurture new hair cells. This study defines characteristics of the auditory sensory epithelium after hair cell loss.

Methodology/Principal Findings

Studies were conducted in C57BL/6 and CBA/Ca mice. Treatment with an aminoglycoside-diuretic combination produced loss of all outer hair cells within 48 hours in both strains. The subsequent progressive tissue re-organisation was examined using immunohistochemistry and electron microscopy. There was no evidence of significant de-differentiation of the specialised columnar supporting cells. Kir4.1 was down regulated but KCC4, GLAST, microtubule bundles, connexin expression patterns and pathways of intercellular communication were retained. The columnar supporting cells became covered with non-specialised cells migrating from the outermost region of the organ of Corti. Eventually non-specialised, flat cells replaced the columnar epithelium. Flat epithelium developed in distributed patches interrupting regions of columnar epithelium formed of differentiated supporting cells. Formation of the flat epithelium was initiated within a few weeks post-treatment in C57BL/6 mice but not for several months in CBA/Ca''s, suggesting genetic background influences the rate of re-organisation.

Conclusions/Significance

The lack of dedifferentiation amongst supporting cells and their replacement by cells from the outer side of the organ of Corti are factors that may need to be considered in any attempt to promote endogenous hair cell regeneration. The variability of the cellular environment along an individual cochlea arising from patch-like generation of flat epithelium, and the possible variability between individuals resulting from genetic influences on the rate at which remodelling occurs may pose challenges to devising the appropriate regenerative therapy for a deaf patient.  相似文献   

18.
Hearing loss in mammals is irreversible because cochlear neurons and hair cells do not regenerate. To determine whether we could replace neurons lost to primary neuronal degeneration, we injected EYFP-expressing embryonic stem cell-derived mouse neural progenitor cells into the cochlear nerve trunk in immunosuppressed animals 1 week after destroying the cochlear nerve (spiral ganglion) cells while leaving hair cells intact by ouabain application to the round window at the base of the cochlea in gerbils. At 3 days post transplantation, small grafts were seen that expressed endogenous EYFP and could be immunolabeled for neuron-specific markers. Twelve days after transplantation, the grafts had neurons that extended processes from the nerve core toward the denervated organ of Corti. By 64-98 days, the grafts had sent out abundant processes that occupied a significant portion of the space formerly occupied by the cochlear nerve. The neurites grew in fasciculating bundles projecting through Rosenthal's canal, the former site of spiral ganglion cells, into the osseous spiral lamina and ultimately into the organ of Corti, where they contacted hair cells. Neuronal counts showed a significant increase in neuronal processes near the sensory epithelium, compared to animals that were denervated without subsequent stem cell transplantation. The regeneration of these neurons shows that neurons differentiated from stem cells have the capacity to grow to a specific target in an animal model of neuronal degeneration.  相似文献   

19.
In the adult mammalian auditory epithelium, the organ of Corti, loss of sensory hair cells results in permanent hearing loss. The underlying cause for the lack of regenerative response is the depletion of otic progenitors in the cell pool of the sensory epithelium. Here, we show that an increase in the sequence-specific methylation of the otic Sox2 enhancers NOP1 and NOP2 is correlated with a reduced self-renewal potential in vivo and in vitro; additionally, the degree of methylation of NOP1 and NOP2 is correlated with the dedifferentiation potential of postmitotic supporting cells into otic stem cells. Thus, the stemness the organ of Corti is related to the epigenetic status of the otic Sox2 enhancers. These observations validate the continued exploration of treatment strategies for dedifferentiating or reprogramming of differentiated supporting cells into progenitors to regenerate the damaged organ of Corti.  相似文献   

20.
Isolation and culture of hair cell progenitors from postnatal rat cochleae   总被引:14,自引:0,他引:14  
Cochlear hair cells are a terminally differentiated cell population that is crucial for hearing. Although recent work suggests that there are hair cell progenitors in postnatal mammalian cochleae, isolation and culture of pure hair cell progenitors from a well-defined cochlear area have not been reported. Here we present an experimental method that allows isolation and culture of hair cell progenitors from postnatal rat cochleae. These progenitor cells are isolated from the lesser epithelial ridge (LER, or outer spiral sulcus cell) area of pre-plated neonatal rat cochlear segments. They express the same markers as LER cells in vivo, including ZO1, Islet1, Hes1, and Hes5. When these cells are induced to express Hath1, they show the potential to differentiate into hair cell-like cells. Interestingly, these cells can be lifted from monolayer cultures and maintained in aggregate cultures in which spheres can be formed. Hair cell progenitors in the spheres display their proliferating capability and express only epithelial markers. Furthermore, when these spheres are mixed with dissociated mesenchymal cells prepared from postnatal rat utricular whole mounts, and replated onto a collagen substratum, the epithelial progenitor cells are able to differentiate into cells expressing markers of hair cells and supporting cells in epithelial islands, which mirrors the inner ear sensory epithelium in vivo. Successful isolation and culture of hair cell progenitors from the mammalian cochlea will facilitate studies on gene expression profiling and mechanism of differentiation/regeneration of hair cells, which are crucial for repairing hearing loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号