首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim: Testing the ability of the alternative ethanol production yeast Dekkera bruxellensis to produce ethanol from lignocellulose hydrolysate and comparing it to Saccharomyces cerevisiae. Methods and Results: Industrial isolates of D. bruxellensis and S. cerevisiae were cultivated in small‐scale batch fermentations of enzymatically hydrolysed steam exploded aspen sawdust. Different dilutions of hydrolysate were tested. None of the yeasts grew in undiluted or 1 : 2 diluted hydrolysate [final glucose concentration always adjusted to 40 g l?1 (0·22 mol l?1)]. This was most likely due to the presence of inhibitors such as acetate or furfural. In 1 : 5 hydrolysate, S. cerevisiae grew, but not D. bruxellensis, and in 1 : 10 hydrolysate, both yeasts grew. An external vitamin source (e.g. yeast extract) was essential for growth of D. bruxellensis in this lignocellulosic hydrolysate and strongly stimulated S. cerevisiae growth and ethanol production. Ethanol yields of 0·42 ± 0·01 g ethanol (g glucose)?1 were observed for both yeasts in 1 : 10 hydrolysate. In small‐scale continuous cultures with cell recirculation, with a gradual increase in the hydrolysate concentration, D. bruxellensis was able to grow in 1 : 5 hydrolysate. In bioreactor experiments with cell recirculation, hydrolysate contents were increased up to 1 : 2 hydrolysate, without significant losses in ethanol yields for both yeasts and only slight differences in viable cell counts, indicating an ability of both yeasts to adapt to toxic compounds in the hydrolysate. Conclusions: Dekkera bruxellensis and S. cerevisiae have a similar potential to ferment lignocellulose hydrolysate to ethanol and to adapt to fermentation inhibitors in the hydrolysate. Significance and Impact of the study: This is the first study investigating the potential of D. bruxellensis to ferment lignocellulosic hydrolysate. Its high competitiveness in industrial fermentations makes D. bruxellensis an interesting alternative for ethanol production from those substrates.  相似文献   

2.
Aims: To analyse the production of different metabolites by dark‐grown Euglena gracilis under conditions found to render high cell growth. Methods and Results: The combination of glutamate (5 g l?1), malate (2 g l?1) and ethanol (10 ml l?1) (GM + EtOH); glutamate (7·15 g l?1) and ethanol (10 ml l?1); or malate (8·16 g l?1), glucose (10·6 g l?1) and NH4Cl (1·8 g l?1) as carbon and nitrogen sources, promoted an increase of 5·6, 3·7 and 2·6‐fold, respectively, in biomass concentration in comparison with glutamate and malate (GM). In turn, the production of α‐tocopherol after 120 h identified by LC‐MS was 3·7 ± 0·2, 2·4 ± 0·1 and 2 ± 0·1 mg [g dry weight (DW)]?1, respectively, while in the control medium (GM) it was 0·72 ± 0·1 mg (g DW)?1. For paramylon synthesis, the addition of EtOH or glucose induced a higher production. Amino acids were assayed by RP‐HPLC; Tyr a tocopherol precursor and Ala an amino acid with antioxidant activity were the amino acids synthesized at higher concentration. Conclusions: Dark‐grown E. gracilis Z is a suitable source for the generation of the biotechnologically relevant metabolites tyrosine, α‐tocopherol and paramylon. Significance and Impact of the Study: By combining different carbon and nitrogen sources and inducing a tolerable stress to the cell by adding ethanol, it was possible to increase the production of biomass, paramylon, α‐tocopherol and some amino acids. The concentrations of α‐tocopherol achieved in this study are higher than others reported previously for Euglena, plant and algal systems. This work helps to understand the effect of different carbon sources on the synthesis of bio‐molecules by E. gracilis and can be used as a basis for future works to improve the production of different metabolites of biotechnological importance by this organism.  相似文献   

3.
《Process Biochemistry》1999,34(4):341-347
The influence of initial glucose concentrations on the production of biomass and lutein by Chlorella protothecoides CS-41 was investigated in batch cultures using both shake flasks and fermentors. The maximum biomass concentration increased from 4·9 to 31·2 g litre−1 dry cells with an increase in initial glucose concentration from 10 to 80 g litre−1. An even higher initial glucose concentration (100 g litre−1) resulted in a lower biomass concentration, a lower specific growth rate, a lower growth yield coefficient and a considerably longer lag phase, which might be due to substrate inhibition. The initial glucose level also had a significant effect on the production of lutein. In a 3·7-litre fermentor an increase in lutein production from 19·39 to 76·56 mg litre−1 was obtained with an increase in initial glucose concentration from 10 to 40 g litre−1, within which range, lutein yield coefficient was constant (YItn=1·90±0·02 mg g−1). A simple substrate inhibition model was developed, which fitted the experimental data better than the classical Haldane model. A group of time-dependent kinetic models for algal cultivation in fermentors were also constructed, which were in good agreement with the experimental results and could be employed to predict the production of biomass and lutein, and the consumption of glucose in fermentor cultures.  相似文献   

4.
Aims: To characterize the kinetics of growth, sugar uptake and xylitol production in batch and fed‐batch cultures for a xylitol assimilation‐deficient strain of Candida tropicalis isolated via chemical mutagenesis. Methods and Results: Chemical mutagenesis using nitrosoguanidine led to the isolation of the xylitol‐assimilation deficient strain C. tropicalis SS2. Shake‐flask fermentations with this mutant showed a sixfold higher xylitol yield than the parent strain in medium containing 25 g l?1 glucose and 25 g l?1 xylose. With 20 g l?1 glycerol, replacing glucose for cell growth, and various concentrations of xylose, the studies indicated that the mutant strain resulted in xylitol yields from xylose close to theoretical. Under fully aerobic conditions, fed‐batch fermentation with repeated addition of glycerol and xylose resulted in 3·3 g l?1 h?1 xylitol volumetric productivity with the final concentration of 220 g l?1 and overall yield of 0·93 g g?1 xylitol. Conclusions: The xylitol assimilation‐deficient mutant isolated in this study showed the potential for high xylitol yield and volumetric productivity under aerobic conditions. In the evaluation of glycerol as an alternative low‐cost nonfermentable carbon source, high biomass and xylitol yields under aerobic conditions were achieved; however, the increase in initial xylose concentrations resulted in a reduction in biomass yield based on glycerol consumption. This may be a consequence of the role of an active transport system in the yeast requiring increasing energy for xylose uptake and possible xylitol secretion, with little or no energy available from xylose metabolism. Significance and Impact of the Study: The study confirms the advantage of using a xylitol assimilation‐deficient yeast under aerobic conditions for xylitol production with glycerol as a primary carbon source. It illustrates the potential of using the xylose stream in a biomass‐based bio‐refinery for the production of xylitol with further cost reductions resulting from using glycerol for yeast growth and energy production.  相似文献   

5.
Aims: A Lactobacillus buchneri strain NRRL B‐30929 can convert xylose and glucose into ethanol and chemicals. The aims of the study were to survey three strains (NRRL B‐30929, NRRL 1837 and DSM 5987) for fermenting 17 single substrates and to exam NRRL B‐30929 for fermenting mixed substrates from biomass hydrolysates. Methods and Results: Mixed acid fermentation was observed for all three L. buchneri strains using various carbohydrates; the only exception was uridine which yielded lactate, acetate and uracil. Only B‐30929 is capable of utilizing cellobiose, a desired trait in a potential biocatalyst for biomass conversion. Flask fermentation indicated that the B‐30929 strain can use all the sugars released from pretreated hydrolysates, and producing 1·98–2·35 g l?1 ethanol from corn stover hydrolysates and 2·92–3·01 g l?1 ethanol from wheat straw hydrolysates when supplemented with either 0·25× MRS plus 1% corn steep liquor or 0·5× MRS. Conclusions: The L. buchneri NRRL B‐30929 can utilize mixed sugars in corn stover and wheat straw hydrolysates for ethanol and other chemical production. Significance and Impact of the Study: These results are valuable for future research in engineering L. buchneri NRRL B‐30929 for fermentative production of ethanol and chemicals from biomass.  相似文献   

6.
Aims: Analysis of the physiology and metabolism of Escherichia coli arcA and creC mutants expressing a bifunctional alcohol‐acetaldehyde dehydrogenase from Leuconostoc mesenteroides growing on glycerol under oxygen‐restricted conditions. The effect of an ldhA mutation and different growth medium modifications was also assessed. Methods and Results: Expression of adhE in Ecoli CT1061 [arcA creC(Con)] resulted in a 1·4‐fold enhancement in ethanol synthesis. Significant amounts of lactate were produced during micro‐oxic cultures and strain CT1061LE, in which fermentative lactate dehydrogenase was deleted, produced up to 6·5 ± 0·3 g l?1 ethanol in 48 h. Escherichia coli CT1061LE derivatives resistant to >25 g l?1 ethanol were obtained by metabolic evolution. Pyruvate and acetaldehyde addition significantly increased both biomass and ethanol concentrations, probably by overcoming acetyl‐coenzyme A (CoA) shortage. Yeast extract also promoted growth and ethanol synthesis, and this positive effect was mainly attributable to its vitamin content. Two‐stage bioreactor cultures were conducted in a minimal medium containing 100 μg l?1 calcium d ‐pantothenate to evaluate oxic acetyl‐CoA synthesis followed by a switch into fermentative conditions. Ethanol reached 15·4 ± 0·9 g l?1 with a volumetric productivity of 0·34 ± 0·02 g l?1 h?1. Conclusions: Escherichia coli responded to adhE over‐expression by funnelling carbon and reducing equivalents into a highly reduced metabolite, ethanol. Acetyl‐CoA played a key role in micro‐oxic ethanol synthesis and growth. Significance and Impact of the Study: Insight into the micro‐oxic metabolism of Ecoli growing on glycerol is essential for the development of efficient industrial processes for reduced biochemicals production from this substrate, with special relevance to biofuels synthesis.  相似文献   

7.
The influence of pH, temperature and carbon source (glucose and maltose) on growth rate and ethanol yield of Dekkera bruxellensis was investigated using a full-factorial design. Growth rate and ethanol yield were lower on maltose than on glucose. In controlled oxygen-limited batch cultivations, the ethanol yield of the different combinations varied from 0.42 to 0.45 g (g glucose)−1 and growth rates varied from 0.037 to 0.050 h−1. The effect of temperature on growth rate and ethanol yield was negligible. It was not possible to model neither growth rate nor ethanol yield from the full-factorial design, as only marginal differences were observed in the conditions tested. When comparing three D. bruxellensis strains and two industrial isolates of Saccharomyces cerevisiae, S. cerevisiae grew five times faster, but the ethanol yields were 0–13% lower. The glycerol yields of S. cerevisiae strains were up to six-fold higher compared to D. bruxellensis, and the biomass yields reached only 72–84% of D. bruxellensis. Our results demonstrate that D. bruxellensis is robust to large changes in pH and temperature and may have a more energy-efficient metabolism under oxygen limitation than S. cerevisiae.  相似文献   

8.
Starch from wheat flour was enzymatically hydrolyzed and used for ethanol production by Zymmonas mobilis. The addition of a nitrogen source like ammonium sulfate was sufficient to obtain a complete fermentation of the hdyrolyzed strach. In batch culture a glucose concentration as high as 223 g/l could be fermented (conversion 99.5%) to 105 g/l of ethanol in 70 h with an ethanol yield of 0.47 g/g (92% of theoretical). In continuous culture the use of a flocculent strain and a fermentor with an internal settler resulted (D=1,4 h−1) in a high ethanol productivity of 70.7 g/l·h with: ethanol concentration 49.5 g/l, ethanol yield 0.50 g/g (98% of theoretical and substrate conversion 99%.  相似文献   

9.
Sweet sorghum juice supplemented with 0.5% ammonium sulphate was used as a substrate for ethanol production by Saccharomyces cerevisiae TISTR 5048. In batch fermentation, kinetic parameters for ethanol production depended on initial cell and sugar concentrations. The optimum initial cell and sugar concentrations in the batch fermentation were 1 × 108 cells ml−1 and 24 °Bx respectively. At these conditions, ethanol concentration produced (P), yield (Y ps) and productivity (Q p ) were 100 g l−1, 0.42 g g−1 and 1.67 g l−1 h−1 respectively. In fed-batch fermentation, the optimum substrate feeding strategy for ethanol production at the initial sugar concentration of 24 °Bx was one-time substrate feeding, where P, Y ps and Q p were 120 g l−1, 0.48 g g−1 and 1.11 g l−1 h−1 respectively. These findings suggest that fed-batch fermentation improves the efficiency of ethanol production in terms of ethanol concentration and product yield.  相似文献   

10.
Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20–50 g l−1 glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l−1) than in the batch culture (194 mg l−1). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures.  相似文献   

11.
Aims: To investigate the effects of pretreated‐beet molasses on Escherichia coli fermentation using benzaldehyde lyase (BAL) production by recombinant E. coli BL21(DE3)pLySs process as the model system. Methods and Results: The effect of the initial pretreated (hydrolysed) beet molasses concentration was investigated at 16, 24, 30 and 56 g l?1 at a dissolved oxygen condition of 40% air saturation cascade to airflow, at N = 625 min?1 and pHC = 7·2 controlled‐pH operation conditions. The highest cell concentration and BAL activity were obtained as CX = 5·3 g l?1 and A = 1617 U cm?3, respectively, in the medium containing 30 g l?1 pretreated beet molasses consisting of 7·5 g l?1 glucose and 7·5 g l?1 fructose. Production with and without IPTG (isopropyl‐β‐d ‐thiogalactopyranoside) induction using the medium containing 30 g l?1 of pretreated beet molasses yielded the same amount of BAL production, where the overall cell yield on the substrate was 0·37 g g?1, and the highest oxygen transfer coefficient was KLa = 0·048 s?1. Conclusions: Pretreated beet molasses was used in the fermentation with E. coli for the first time and it yielded higher cell and BAL production compared with the glucose‐based medium. Significance and Impact of the Study: Pretreated beet molasses was found to be a good carbon source for E. coli fermentation. Furthermore, IPTG addition was not required to induce recombinant protein production as galactose, one of the monomers of trisaccharide raffinose present in the beet molasses (1·2%), induced the lac promoter.  相似文献   

12.
Fed-batch culture of Alcaligenes latus, ATCC 29713, was investigated for producing the intracellular bioplastic poly(β–hydroxybutyric acid), PHB. Constant rate feeding, exponentially increasing feeding rate, and pH-stat fed batch methods were evaluated. pH-stat fed batch culture reduced or delayed accumulation of the substrate in the broth and led to significantly enhanced PHB productivity relative to the other modes of feeding. Presence of excessive substrate appeared to inhibit PHB synthesis, but not the production of cells. In fed-batch culture, the maximum specific growth rate (0.265?h?1) greatly exceeded the value (0.075?h?1) previously observed in batch culture of the same strain. Similarly, the maximum PHB production rate (up to 1.15?g?·?l?1?·?h?1) was nearly 8-fold greater than values observed in batch operations. Fed-batch operation was clearly superior to batch fermentation for producing PHB. A low growth rate was not a prerequisite for PHB accumulation, but a reduced or delayed accumulation of substrate appeared to enhance PHB accumulation. Under the best conditions, PHB constituted up to 63% of dry cell mass after 12?h of culture. The average biomass yield coefficient on sucrose was about 0.35, or a little less than in batch fermentations. The highest PHB concentrations attained were about 18?g?·?l?1.  相似文献   

13.
The optimization task was performed using the gluconic acid synthesis by the Acetobacter methanolicusMB 58 strain. The microorganisms were grown continuously on methanol as the growth substrate. After finishing the growth process by the deficiency of N and P, the gluconic acid synthesis was started by adding glucose. The synthesis process was performed continuously. The oxygen transfer rate depended on the gluconic acid concentration. During the growth process, the oxygen transfer rate reached a value of about 13 g O2 · kg?1 · h?1using a 30-l glass fermenter equipped with a 6 blade stirrer and fully baffled. This rate declined to a value of between 2 and 5 g O2 · kg?1 · h?1 in the presence of gluconic acid concentrations above 150 g gluconic acid · kg?1medium. The yield (g gluconic acid · g?1glucose) depended on the gluconic acid concentration and amounted to y = 0.7 in relation to 150 g gluconic acid · kg?1medium and y = 0.8 in relation to 200 g · kg?1medium, respectively. The fermenters were coupled with ultrafiltration moduls (Fa. ROMICON and Fa. SARTORIUS). The biomass concentrations amounted from 5 to 40 g dry mass kg?1medium. The ultrafiltration modules retained the biomass within the fermentation system. A glucose solution (30 to 50 weight percent glucose) was continuously dosed into the fermenter. The retention time was chosen between 2 and 30 h. The gluconic acid synthesis rate reached values of up to 32 g gluconic acid · kg?1 · h?1. Within a range of up to 250 g gluconic acid · kg?1medium, the acid concentration had no influence on the enzyme activity.  相似文献   

14.
Optimum growth conditions for the fermentation of non-concentrated whey permeate by Kluyveromyces fragilis NRRL 665 have been defined. Use of 3.75 g yeast extract l?1, a growth temperature of 38°C and a pH of 4.0 allowed a maximum productivity of 5.23 g ethanol l?1 h?1 in continuous culture with a yield 91% of theoretical. Complete batch fermentation of permeate with 100 g lactose l?1 was possible with a maximum specific growth rate of 0.276 h?1 without any change in ethanol yield. Fermentation of concentrated permeate resulted, however, in a general decrease of specific substrate consumption rate, demonstrated by the inability to completely convert an initial 90 or 150 g lactose l?1 in continuous culture, even at dilution rates as low as 0.05 and 0.08 h?1, respectively. The decrease could be related to substrate inhibition, to an increase in osmotic pressure caused by lactose and salts, and to ethanol inhibition of both alcohol and biomass yield. The decrease in specific productivity could be counterbalanced by use of high cell density cultures, obtained by cell recycle of K. fragilis. Fermentation of a non-concentrated permeáte at a dilution rate of 1 h?1 resulted in a productivity of 22 g l?1 h?1 at 22 g ethanol l?1. Cell recycle using flocculating Kluyveromyces lactis NCYC 571 was also tested. With this strain a productivity of 9.3 g l?1 h?1 at 45 g product l?1 was attained at a dilution rate of 0.2 h?1, with an initial lactose concentration of 95 g l?1.  相似文献   

15.
Glucose utilization by Brettanomyces bruxellensis at different acetic acid concentrations under aerobic and anaerobic conditions was investigated. The presence of the organic acid disturbs the growth and fermentative activity of the yeast when its concentration exceeds 2 g l−1. A mathematical model is proposed for the kinetic behavior analysis of yeast growing in batch culture. A Matlab algorithm was used for estimation of model parameters, whose confidence intervals were also calculated at a 0.95 probability level using a t-Student distribution for f degrees of freedom. The model successfully simulated the batch kinetics observed at different concentrations of acetic acid under both oxygen conditions.  相似文献   

16.
Aims: Kluyveromyces lactis was cultured in cheese whey permeate on both batch and continuous mode to investigate the effect of time course and growth rate on β‐galactosidase activity, lactose consumption, ethanol production and protein profiles of the cells. Methods and Results: Cheese whey was the substrate to grow K. lactis as a batch or continuous culture. In order to precise the specific growth rate for maximum β‐galactosidase activity a continuous culture was performed at five dilution (growth) rates ranging from 0·06, 0·09, 0·12, 0·18 to 0·24 h?1. The kinetics of lactose consumption and ethanol production were also evaluated. On both batch and continuous culture a respirofermentative metabolism was detected. The growth stage for maximum β‐gal activity was found to be at the transition between late exponential and entrance of stationary growth phase of batch cultures. Fractionating that transition stage in several growth rates at continuous culture a maximum β‐galactosidase activity at 0·24 h?1 was observed. Following that stage β‐gal activity undergoes a decline which does not correlate to the density of its corresponding protein band on the gel prepared from the same samples. Conclusion: The maximum β‐galactosidase activity per unit of cell mass was found to be 341·18 mmol ONP min?1 g?1 at a dilution rate of 0·24 h?1. Significance and Impact of the Study: The physiology of K. lactis growing in cheese whey permeate can proven useful to optimize the conversion of that substrate in biomass rich in β‐gal or in ethanol fuel. In addition to increasing the native enzyme the conditions established here can be set to increase yields of recombinant protein production based on the LAC4 promoter in K. lactis host.  相似文献   

17.
The best yields and productivities of 0.38 g · g?1 and 0.35 g · l?1 h?1, respectively, for the propionic acid production in a batchsystem using sugar-cane final molasses as carbon source were obtained when an initial TRS concentration of 50 g · l?1 was used. It was obvious that this process is severely inhibited by the acids produced and the most drastic effect (μ = 0) was at a TVA concentration near to 250 mmol · l?1, independently of the initial TRS concentration employed. A generalizated equation of noncompetitive inhibition was adjusted: and kinetic inhibition constants for each initial TRS concentration studied were estimated.  相似文献   

18.
Aim: To maximize biomass production of an ochratoxigenic mould–controlling strain of Lachancea thermotolerans employing response surface methodology (RSM). Methods and Results: Using Plackett–Burman screening designs (PBSD) and central composite designs (CCD), an optimized culture medium containing (g l?1): fermentable sugars (FS), 139·2, provided by sugar cane molasses (CMz), (NH4)2HPO4 (DAP), 9·0, and yeast extract (YE), 2·5, was formulated. Maximal cell concentration obtained after 24 h at 28°C was 24·2 g l?1cell dry weight (CDW). The mathematical model obtained was validated in experiments performed in shaken‐flask cultures and also in aerated bioreactors. Maximum yield and productivity values achieved were, respectively, of 0·23 g CDW/g FS in a medium containing (g l?1): FS, 87·0; DAP, 7·0; YE, 1·0; and of 0·96 g CDW l?1 h?1 in a medium containing (g l?1): FS, 150·8 plus DAP, 6·9. Conclusions: Optimized culture conditions for maximizing yeast biomass production determined in flask cultures were applicable at a larger scale. The highest yield values were attained in media containing relatively low‐CMz concentrations supplemented with DAP and YE. Yeast extract would not be necessary if higher productivity is the aim. Significance and Impact of the Study: Cells of L. thermotolerans produced aerobically could be sustainably produced in a medium just containing cheap carbon, nitrogen and phosphorus sources. Response surface methodology allowed the fine‐tuning of cultural conditions.  相似文献   

19.
Aims: This paper developed a novel process for lactic acid and chitin co-production of the pelletized Rhzious oryzae NRRL 395 fermentation using underutilized cull potatoes and glucose as nutrient source. Methods and Results: Whole potato hydrolysate medium was first used to produce the highest pelletized biomass yield accompanying the highest chitin content in biomass. An enhanced lactic acid production then followed up using batch, repeated batch and fed batch culture with glucose as carbon source and mixture of ammonia and sodium hydroxide as neutralizer. The lactic acid productivity peaked at 2·8 and 3 g l−1 h−1 in repeated batch culture and batch culture, respectively. The fed batch culture had the highest lactate concentration of 140 g l−1. Conclusions: Separation of the biomass cultivation and the lactic acid production is able to not only improve lactic acid production, but also enhance the chitin content. Cull potato hydrolysate used as a nutrient source for biomass cultivation can significantly increase both biomass yield and chitin content. Significance and Impact of the Study: The three-step process using pelletized R. oryzae fermentation innovatively integrates utilization of agricultural residues into the process of co-producing lactic acid and chitin, so as to improve the efficiency, revenues and cost of fungal lactic acid production.  相似文献   

20.
Aims: To investigate the effects of nisin on lactobacilli contamination of yeast during ethanol fermentation and to determine the appropriate concentration required to control the growth of selected lactobacilli in a YP/glucose media fermentation model. Methods and Results: The lowest concentration of nisin tested (5 IU ml?1) effectively controlled the contamination of YP/glucose media with 106 CFU ml?1 lactobacilli. Lactic acid yield decreased from 5·0 to 2·0 g l?1 and potential ethanol yield losses owing to the growth and metabolism of Lactobacillus plantarum and Lactobacillus brevis were reduced by 11 and 7·8%, respectively. Approximately, equal concentrations of lactic acid were produced by Lact. plantarum and Lact. brevis in the presence of 5 and 2 IU ml?1 nisin, respectively, thus demonstrating the relatively higher nisin sensitivity of Lact. brevis for the strains in this study. No differences were observed in the final ethanol concentrations produced by yeast in the absence of bacteria at any of the nisin concentrations tested. Conclusions: Metabolism of contaminating bacteria was reduced in the presence of 5 IU ml?1 nisin, resulting in reduced lactic acid production and increased ethanol production by the yeast. Significance and Impact of the Study: Bacteriocins represent an alternative to the use of antibiotics for the control of bacterial contamination in fuel ethanol plants and may be important in preventing the emergence of antibiotic‐resistant contaminating strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号