首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between hydroxyl radical (OH*) generation in the zone of ischemia/reperfusion and the size of infarction formed was investigated in 18-22-week-old anaesthetized male SHRSP and Wistar rats using a myocardial microdialysis technique. The marker of OH* generation, 2,3-dihydroxybenzoic acid (2,3-DHBA), was analyzed in dialyzates by high performance liquid chromatography with electrochemical detection. Myocardial ischemia was induced by ligation of the descending branch of the left main coronary artery for 30 min. The mean value of basal 2,3-DHBA level in the dialyzate samples from SHRSP (243 +/- 21 pg for 30 min) was significantly higher than that from Wistar rats (91 +/- 4 pg for 30 min, p < 0.0002); it positively correlated with left ventricular hypertrophy (r = 0.806; p < 0.05). During reperfusion total 2,3-DHBA output was 1.8-fold higher in SHRSP than in Wistar rats (659 +/- 60 pg versus 364 +/- 66 pg for 60 min, respectively, p < 0.0002). At the same time, 2,3-DHBA increase above the basal level was the same in Wistar and SHRSP rats (181 +/- 25 and 172 +/- 36 pg for 60 min, respectively). The infarct size in SHRSP (45.4 +/- 4.3%) was significantly higher (p < 0.05) than in Wistar rats (32.8 +/- 3.3%). There was a significant positive correlation between basal level of 2,3-DHBA and total reperfusion 2,3-DHBA content in SHRSP (r = 0.752; p < 0.05). Thus, data obtained clearly indicate that the hypertrophied myocardium of SHRSP was less tolerant to ischemia/reperfusion than that of Wistar rats due to chronically increased OH* production and enhanced total OH* output during reperfusion. Greater myocardial damage in SHRSP than in Wistar rats following the equal increase in OH* production above the basal level suggests the existence of deficit of the antioxidant defense in the hypertrophied myocardium.  相似文献   

2.
3.
Recently there has been a moderate resurgence in the use of flax-seed in a variety of ways including bread. The scientific basis of its use is very limited. There is some claim for beneficial effects in cancer and lupus nephritis. These claims could be due to its ability to scavenge oxygen radicals. However, its antioxidant activity is not known. Recently a method has been developed to isolate secoisolariciresinol diglucoside (SDG) from defatted flax-seed in large quantity (patent pending). We investigated the ability of SDG to scavenge úOH using high pressure liquid chromatography (HPLC) method. úOH was generated by photolysis of H2O2 (1.25-10.0 \sgmaelig;moles/ml) with ultraviolet light and was trapped with salicylic acid which is hydroxylated to produce úOH-adduct products 2,3-dihydroxybenzoic acid (DHBA) and 2,5-DHBA. H2O2 produced a concentration-dependent úOH as estimated by 2,3-DHBA and 2,5-DHBA. A standard curve was constructed for known concentrations of 2,3-DHBA and 2,5-DHBA against corresponding area under the peaks which then was used for measurement of 2,3-DHBA and 2,5-DHBA generated by UV irradiation of H2O2 in the presence of salicylic acid. SDG in the concentration range of 25, 50, 100, 250, 500, 750, 1000 and 2000 \sgmaelig;g/ml (36.4, 72.8, 145.6, 364.0, 728.0, 1092.0, 1456.0 and 2912.0 \sgmaelig;M respectively) produced a concentration-dependent decrease in the formation of 2,3-DHBA and 2,5-DHBA, the inhibition being 4 and 4.65% respectively with 25 \sgmaelig;g/ml (36.4 \sgmaelig;M) and 82 and 74% respectively with 2000 \sgmaelig;g/ml (2912.0 \sgmaelig;M). The decrease in úOH-adduct products was due to scavenging of úOH not and by scavenging of formed 2,3-DHBA and 2,5-DHBA. SDG prevented the lipid peroxidation of liver homogenate in a concentration-dependent manner in the concentration range from 319.3-2554.4 \sgmaelig;M. These results suggest that SDG scavenges úOH and therefore has an antioxidant activity.  相似文献   

4.
Abstract: To obtain direct evidence of oxygen radical activity in the course of cerebral ischemia under different intraischemic temperatures, we used a method based on the chemical trapping of hydroxyl radical in the form of the stable adducts 2,3- and 2,5-dihydroxybenzoic acid (DHBA) following salicylate administration. Wistar rats were subjected to 20 min of global forebrain ischemia by two-vessel occlusion plus systemic hypotension (50 mm Hg). Intraischemic striatal temperature was maintained as normothermic (37°C), hypothermic (30°C), or hyperthermic (39°C) but was held at 37°C before and following ischemia. Salicylate was administered either systemically (200 mg/kg, i.p.) or by continuous infusion (5 mM) through a microdialysis probe implanted in the striatum. Striatal extracellular fluid was sampled at regular intervals before, during, and after ischemia, and levels of 2,3- and 2,5-DHBA were assayed by HPLC with electrochemical detection. Following systemic administration of salicylate, stable baseline levels of 2,3- and 2,5-DHBA were observed before ischemia. During 20 min of normothermic ischemia, a 50% reduction in mean levels of both DHBAs was documented, suggesting a baseline level of hydroxyl radical that was diminished during ischemia, presumably owing to oxygen restriction to tissue at that time. During recirculation, 2,3- and 2,5-DHBA levels increased by 2.5- and 2.8-fold, respectively. Levels of 2,3-DHBA remained elevated during 1 h of reperfusion, whereas the increase in 2,5-DHBA levels persisted for 2 h. The increases in 2,3- and 2,5-DHBA levels observed following hyperthermic ischemia were significantly higher (3.8- and fivefold, respectively). In contrast, no significant changes in DHBA levels were observed following hypothermic ischemia. The postischemic changes in DHBA content observed following local administration of salicylate were comparable to the results obtained with systemic administration, thus confirming that the hydroxyl radicals arose within brain parenchyma itself. These results provide evidence that hydroxyl radical levels are increased during postischemic recirculation, and this process is modulated by intraischemic brain temperature. Hence, these data suggest a possible mechanism for the effects of temperature on ischemic outcome and support a key role for free radical-induced injury in the development of ischemic damage.  相似文献   

5.
We used a flexibly mounted microdialysis technique to the hearts of rats and examined the protective effect of imidaprilat, an angiotensin-converting enzyme (ACE) inhibitor, on the production of hydroxyl free radical (*OH) generation. A microdialysis probe was implanted into the left ventricular myocardium, and dialysate norepinephrine (NE) concentrations were measured as an index of myocardial interstitial NE levels. Sodium salicylate in Ringer's solution (0.5 nmol/microl/min) was directly infused through a microdialysis probe to detect the generation of *OH reflected by the formation of dihydroxybenzoic acid (DHBA) in rat myocardium. When tyramine (1 mM) was directly infused through the microdialysis probe, the level of NE significantly increased in the dialysate and the level of NE increased by 128 +/- 43%. Imidaprilat (5, 25 and 50 microM) decreased the level of tyramine (1 mM)-induced NE in a concentration-dependent manner. Tyramine clearly produced an increase in *OH formation. In the presence of imidaprilat (50 microM), tyramine failed to increase both 2,3- and 2,5-dihydroxylation. Therefore, the effects of imidaprilat on the *OH generation in the sympathetic nerve blockaded hearts by reserpine treatment were not observed. Moreover, to examine the effect of imidaprilat on *OH formation by ischemia/reperfusion of the myocardium, the heart was subjected to myocardial ischemia for 15 min by occlusion of the left anterior descending coronary artery. When the heart was reperfused, elevation of NE and 2,3- and 2,5-DHBA in imidaprilat (50 microM)-pretreated animals was not observed in the heart dialysate. Imidaprilat 2.5 mg/kg i.p. pretreatment at 5 h before coronary occlusion significantly blunted the rise of serum creatine phosphokinase and improved the electrocardiogram 2 h after coronary occlusion. These results suggest that imidaprilat, an ACE inhibitor, is associated with cardioprotective effect due to the suppression of NE-induced *OH generation.  相似文献   

6.
The current study examined whether opening of the ATP-sensitive K(+) (K(ATP)) channel can induce hydroxyl free radical (OH) generation, as detected by increases in nonenzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) levels in the rat myocardium. When KCl (4-140mM) was administered to rat myocardium through microdialysis probe, the level of 2,3-DHBA increased gradually in a potassium ion concentration ([K(+)](o))-dependent manner. The [K(+)](o) for half-maximal effect of the level of 2,3-DHBA production (ED(50)) was 67.9microM. The maximum attainable concentration of the level of 2,3-DHBA (E(max)) was 0.171microM. Induction of glibenclamide (10microM) decreased OH formation. The half-maximal inhibitory effect (IC(50)) for glibenclamide against the [K(+)](o) (70mM)-evoked increase in 2,3-DHBA was 9.2microM. 5-Hydroxydecanoate (5-HD, 100microM), another K(ATP) channel antagonist, also decreased [K(+)](o)-induced OH formation. The IC(50) for 5-HD against the [K(+)](o) (70mM)-evoked increase in 2,3-DHBA was 107.2microM. The heart was subjected to myocardial ischemia for 15min by occlusion of left anterior descending coronary artery (LAD). When the heart was reperfused, the normal elevation of 2,3-DHBA in the heart dialysate was not observed in animals pretreated with glibenclamide (10microM) or 5-HD (100microM). These results suggest that opening of cardiac K(ATP) channels by depolarization evokes OH generation.  相似文献   

7.
Acute effects of triiodothyronine (T3) on postischemic myocardial stunning and intracellular Ca2+ contents were studied in the isolated working hearts of streptozotocin-induced diabetic rats and age-matched controls. After two weeks of diabetes, serum T3 and T4 levels were decreased to 62.5% and 33.9% of control values. Basal preischemic cardiac performance did not differ between diabetic and control rats. In contrast, during reperfusion after 20-min ischemia, diabetic rats exhibited an impaired recovery of heart rate (at 30-min reperfusion 57.5% of baseline vs. control 88.5%), left ventricular (LV) systolic pressure (44.1% vs. 89.5%), and cardiac work (23.1% vs. 66.0%). When 1 and 100 nM T3 was added before ischemia, heart rate was recovered to 77.2% and 81.8% of baseline, LV systolic pressure to 68.3% and 81.9%, and cardiac work to 50.8% and 59.0%, respectively. Diabetic rat hearts showed a higher Ca2+ content in the basal state and a further increase after reperfusion (4.96+/-1.17 vs. control 3.78+/-0.48 micromol/g, p<0.01). In diabetic hearts, H+ release was decreased after reperfusion (5.24+/-2.21 vs. 8.70+/-1.41 mmol/min/g, p<0.05). T3 administration caused a decrease in the postischemic Ca2+ accumulation (lnM T3 4.66+/-0.41 and 100 nM T3 3.58+/-0.36) and recovered the H+ release (lnM T3 16.2+/-3.9 and 100 nM T3 11.6+/-0.9). T3 did not alter myocardial O2 consumption. Results suggest that diabetic rat hearts are vulnerable to postischemic stunning, and T3 protects the myocardial stunning possibly via inhibiting Ca2+ overload.  相似文献   

8.
The present study examined whether opening of an ATP-sensitive K(+) (K(ATP)) channel can induce hydroxyl free radical ((*)OH) generation in the rat myocardium. Sodium salicylate in Ringer's solution (0.5 nmol/microl/min) was infused directly through a microdialysis probe to detect the generation of (*)OH as reflected by the nonenzymatic formation of 2,3-dihydroxybenzoic acid (DHBA). Induction of cromakalim (100 microM), a K(ATP) channel opener, through the microdialysis probe significantly increased the level of 2,3-DHBA. Another K(ATP) channel opener, nicorandil, also increased the level of 2,3-DHBA. When iron(II) was administered to cromakalim-pretreated animals, a marked elevation of DHBA was observed, compared with iron(II) only-treated animals. A positive linear correlation between iron(II) and formation of (*)OH, trapped as DHBA in the dialysate, was shown (r(2) = 0.988). When corresponding experiments were performed with nicorandil-treated animals, a positive linear correlation between iron(II) and DHBA in the dialysate was shown (r(2) = 0.988). However, the presence of glibenclamide (1-50 microM) decreased the cromakalim-induced 2,3-DHBA formation in a concentration-dependent manner (IC(50) = 9.1 microM). 5-Hydroxydecanoate (5-HD; 100 microM), another K(ATP) channel antagonist, also decreased cromakalim-induced (*)OH formation. The IC(50) value for 5-HD against cromakalim-evoked increase in 2,3-DHBA was 107.2 microM. In the presence of glibenclamide (10 microM), the heart was subjected to myocardial ischemia for 15 min by occlusion of the left anterior descending coronary artery (LAD). When the heart was reperfused, the normal elevation of 2,3-DHBA in the heart dialysate was not observed in animals pretreated with glibenclamide (10 microM). When corresponding experiments were performed with 5-HD (100 microM) pretreated animals, the same results were obtained. These results suggest that opening of cardiac K(ATP) channels may cause (*)OH generation.  相似文献   

9.
Preexisting hyperglycemia is associated with enhanced reperfusion injury in the postischemic rat brain. The goal of this study was to evaluate whether the hyperglycemic exacerbation of brain injury is associated with enhanced generation of hydroxyl radicals in rats subjected to middle cerebral artery occlusion (2 h), followed by reperfusion (2 h). Magnetic resonance images revealed the exacerbation of focal brain injury in hyperglycemic rats. The salicylate trapping method was used in conjunction with microdialysis to continuously estimate hydroxyl radical production by measurement of the stable adducts 2,3- and 2,5-dihydroxybenzoic acid (DHBA) during ischemia/reperfusion. In normoglycemic rats, from a mean baseline level of 130 nmol/l, 2,3-DHBA levels surged to peak levels of 194 nmol/l 45 min into ischemia and to 197 nmol/l 15–30 min into the reperfusion period, returning to baseline by 2 h into reperfusion. A similar temporal profile was observed in hyperglycemic rats, except that absolute 2,3-DHBA levels were higher (165 nmol/l at baseline, 317 nmol/l peak during ischemia, 333 nmol/l peak during reperfusion), and levels remained significantly high (p < .05) throughout the reperfusion period. These results suggest that hydroxyl radical is an important contributor to the exacerbation of neuronal and cerebrovascular injury after focal ischemia/reperfusion in hyperglycemic rats.  相似文献   

10.
Salicylic acid was used as a probe for .OH formed during reperfusion of the ischemic myocardium. .OH adds to the phenolic ring of salicylate to yield dihydroxybenzoic acid species. The two principal dihydroxybenzoic acids formed are the 2,3- and 2,5-derivatives and can be isolated and quantitated using HPLC combined with electrochemical detection. In these experiments, dihydroxybenzoic acids were detectable in the f molar range. Rat hearts were perfused in the Langendorff mode with Krebs-Henseleit buffer containing 100 microM salicylate. Following 20 min of global ischemia a 173% increase in tissue content of 2,5-dihydroxybenzoic acid was detected after 2.5 min of reperfusion. The duration of ischemia did not significantly affect tissue content of 2,5-dihydroxybenzoic acid peaked at 250 to 300% of control within 2.5 min of reperfusion. The inclusion of 100 microM salicylate in the perfusion buffer had no effect on myocardial function during the duration of the experiments. The results indicate that salicylate can be used as a very sensitive probe for .OH in the isolated ischemic heart.  相似文献   

11.
Ringer's solution containing salicylic acid (5 nmol/microliters/min) was infused directly through an intracranial microdialysis probe to detect the generation of hydroxyl radicals (.OH) reflected by the formation of dihydroxybenzoic acids (DHBA) in the caudate nucleus of anesthetized rats. Brain dialysate was assayed for dopamine, 2,3-, and 2,5-DHBA by a high-pressure liquid chromatography-electrochemical (HPLC-EC) procedure. 1-Methyl-4-phenylpyridinium ions (MPP+, 0 to 150 nmol) increased dose-dependently the release of dopamine and the formation of DHBA. A positive linear correlation between the release of dopamine and the formation of 2,3- or 2,5-DHBA was observed (R2 = .98). The present results demonstrate the validity of the use of not only 2,3-DHBA but also 2,5-DHBA as an in vivo index of oxidative damage generated by reactive .OH radicals. In conclusion, the present study demonstrates a novel use of intracranial microdialysis of salicylic acid to assess the oxidative damage elicited by .OH in living brain.  相似文献   

12.
The purpose of this study was to evaluate flow heterogeneity and impaired reflow during reperfusion after 60-min global no-flow ischemia in the isolated rabbit heart. Radiolabeled microspheres were used to measure relative flow in small left ventricular (LV) segments in five ischemia + reperfused hearts and in five nonischemic controls. Relative flow heterogeneity was expressed as relative dispersion (RD) and computed as standard deviation/mean. In postischemic vs. preischemic hearts, RD was increased for the whole LV (0.92 +/- 0.41 vs. 0.37 +/- 0.07, P < 0.05) as well as the subendocardium (Endo) and subepicardium considered separately (1.28 +/- 0.74 vs. 0.30 +/- 0.09 and 0.69 +/- 0.22 vs. 0.38 +/- 0.08; P < 0.05 for both comparisons, respectively) during early reperfusion. During late reperfusion, the increased RD for the whole LV and Endo remained significant (0.70 +/- 0.22 vs. 0.37 +/- 0.07 and 1.06 +/- 0.55 vs. 0.30 +/- 0.09; P < 0.05 for both comparisons, respectively). In addition to the increase in postischemic flow heterogeneity, there were some regions demonstrating severely impaired reflow, indicating that regional ischemia can persist despite restoration of normal global flow. Also, the relationship between regional and global flow was altered by the increased postischemic flow heterogeneity, substantially reducing the significance of measured global LV reflow. These observations emphasize the need to quantify regional flow during reperfusion after sustained no-flow ischemia in the isolated rabbit heart.  相似文献   

13.
Garlic has been claimed to be effective against diseases, in the pathophysiology of which oxygen free radicals (OFRs) have been implicated. Effectiveness of garlic could be due to its ability to scavenge OFRs. However, its antioxidant activity is not known. We investigated the ability of allicin (active ingredient of garlic) contained in the commercial preparation Garlicin to scavenge hydroxyl radicals (·OH) using high pressure liquid chromatographic (HPLC) method. ·OH was generated by photolysis of H2O2 (1.25–10 moles/ml) with ultraviolet light and was trapped with salicylic acid which is hydroxylated to produce ·OH adduct products 2,3- and 2,5-dihydroxybenzoic acid (DHBA). H2O2 produced a concentration-dependent ·OH as estimated by ·OH adduct products 2,3-DHBA and 2,5-DHBA. Allicin equivalent in Garlicin (1.8, 3.6, 7.2, 14.4, 21.6, 28.8 and 36 g) produced concentration-dependent decreases in the formation of 2,3-DHBA and 2,5-DHBA. The inhibition of formation of 2,3-DHBA and 2,5-DHBA with 1.8 g/ml was 32.36% and 43.2% respectively while with 36.0 g/ml the inhibition was approximately 94.0% and 90.0% respectively. The decrease in ·OH adduct products was due to scavenging of ·OH and not by scavenging of formed ·OH adduct products. Allicin prevented the lipid peroxidation of liver homogenate in a concentration-dependent manner. These results suggest that allicin scavenges ·OH and Garlicin has antioxidant activity.  相似文献   

14.
To determine if greater amounts of hydroxyl radical (*OH) are formed by dopamine (DA) denervation and treatment with L-dihydroxyphenylalanine (L-DOPA), the neostriatum was DA denervated (99% reduction in DA content) by 6-hydroxydopamine treatment (134microg icv, desipramine pretreatment) of neonatal rats. At 10 weeks the peripherally restricted dopa decarboxylase inhibitor carbidopa (12.5mg/kg i.p.) was administered 30min before vehicle, L-DOPA (60mg/kg i.p.), or the known generator of reactive oxygen species, 6-hydroxydopa (6-OHDOPA) (60mg/kg i.p.); and this was followed 30min later (and 15 min before termination) by the spin trap, salicylic acid (8micromoles icv). By means of a high performance liquid chromatographic method with electrochemical detection, we found a 4-fold increase in the non-enzymatically formed spin trap product, 2,3-dihydroxybenzoic acid (2,3-DHBA), with neither L-DOPA nor 6-OHDOPA having an effect on 2,3-DHBA content of the neostriatum. Basal content of 2,5-DHBA, the enzymatically formed spin trap product, was 4-fold higher vs. 2,3-DHBA in the neostriatum of untreated rats, while L-DOPA and 6-OHDOPA each reduced formation of 2,5-DHBA. We conclude that DA innervation normally suppresses *OH formation, and that the antiparkinsonian drug L-DOPA has no effect (2,3-DHBA) or slightly reduces (2,5-DHBA) *OH formation in the neostriatum, probably by virtue of its bathing the system of newly formed *OH.  相似文献   

15.
We examined the effect of fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, on the production of hydroxyl radical (*OH) generation via nitric oxide synthase (NOS) activation by an in vivo microdialysis technique. The microdialysis probe was implanted in the left ventricular myocardium of anesthetized rats and tissue was perfused with Ringer's solution through the microdialysis probe at a rate of 1 microl/min. Sodium salicylate in Ringer's solution (0.5 nmol/microl/min) was infused directly through a microdialysis probe to detect the generation of *OH. Induction of [K(+)](o) (70 mM) or tyramine (1 mM), significantly increased the formation of *OH trapped as 2,3-dihydroxybenzoic acid (DHBA). The application of N(G)-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor, significantly decreased the K(+) depolarization-induced *OH formation, but the effect of tyramine significantly increased the level of 2,3-DHBA. When fluvastatin (100 microM), an inhibitor of low-density lipoprotein (LDL) oxidation, was administered to L-NAME-pretreated animals, both KCl and tyramine failed to increase the level of 2,3-DHBA formation. The effect of fluvastatin may be unrelated to K(+) depolarization-induced *OH generation. To examine the effect of fluvastatin on ischemic/reperfused rat myocardium, the heart was subjected to myocardial ischemia for 15 min by occlusion of the left anterior descending coronary artery (LAD). When the heart was reperfused, a marked elevation of the level of 2,3-DHBA was observed. However, in the presence of fluvastatin (100 microM), the elevation of 2,3-DHBA was not observed in ischemia/reperfused rat heart. Fluvastatin, orally at a dose of 3 mg/kg/day for 4 weeks, significantly blunted the rise of serum creatine phosphokinase and improved the electrocardiogram 2 h after coronary occlusion. These results suggest that fluvastatin is associated with a cardioprotective effect due to the suppression of noradrenaline-induced *OH generation by inhibiting LDL oxidation in the heart.  相似文献   

16.
Purpurogallin (PPG) has been used as an additive to edible and non-edible oils or fats to retard oxidation. Its antioxidant mechanism is not known. We investigated the ability of PPG to scavenge exogenously generated hydroxyl radicals (·OH) using a sensitive high pressure liquid chromatographic (HPLC) method. ·OH was generated by photolysis of H2O2 (1.25–10 moles) with UV light and was trapped with salicylic acid (500 nmoles). Salicylic acid is hydroxylated to produce ·OH adduct products 2,3-and 2,5-dihydroxybenzoic acid (DHBA). H2O2 produced concentration-dependent ·OH as estimated by generation of 2,3- and 2,5-DHBA. PPG (100, 200, 300, 400, 500 and 600 nmoles) produced concentration-dependent decreases in ·OH adduct products (approximately 70% inhibition with 600 nmoles of PPG). It did not affect the peak of standard 2,3- and 2,5-DHBA indicating that the decrease in the adduct product generated by H2O2 is due to scavenging of ·OH. These results indicate that photolysis of H2O2 by UV light produces ·OH and that PPG scavenges ·OH.  相似文献   

17.
Hydroxyl radical-scavenging property of indomethacin   总被引:1,自引:0,他引:1  
The ability of indomethacin to scavenge hydroxyl radical (.OH) using high pressure liquid chromatography (HPLC) was investigated. .OH radical was generated by photolysis of H2O2 (1.5–10 mmoles/L) with UV light and was trapped with salicyclic acid (500 nmoles). H2O2 produced .OH in a concentration-dependent manner as estimated by .OH adduct products 2,3- and 2,5-dihydroxybenzoic acid (DHBA). Indomethacin in increasing concentrations (5–600 moles/L) produced increasing inhibition of generation of 2,3-DHBA (7–67%) and of 2,5-DHBA (7–77%). The results indicate that indomethacin scavenges .OH in a concentration-dependent manner.  相似文献   

18.
A comparative study of the generation of hydroxyl radicals (OH*) in the hypertrophic myocardium of SHR-SP rats (n = 8) and in the myocardium of WKY (n = 5) and Wistar (n = 12) rats was performed using the microdialysis technique. The experiments were carried out on anesthetized open-chest male rats (ketamine intraperitoneally, 10 mg/kg) with artificial ventilation. The amount of OH* produced was estimated by high-performance liquid chromatography with electrochemical detection using as a marker 2,3-dihydroxybenzoic acid (2,3-DHBA), a product of the reaction of the hydroxyl radical with salicylic acid added to the perfusate. The quantity of 2,3-DHBA in the dialysate was estimated by the external standard method and expressed in percent of the 2,3-DHBA concentration in the perfusion fluid. The mean baseline value of 2,3-DHBA in dialysate samples in SHR-SP rats (157 +/- 22%, n = 8) was significantly higher than in Wistar (90 +/- 15%, n = 12, p = 0.0001) and Wistar-Kyoto rats (106 +/- 12%, n = 5, p = 0.005). The basal 2,3-DHBA level in SHR-SP rats was positively correlated (r = 0.831, n = 7, p < 0.05) with the degree of hypertrophy of the left ventricle expressed as the ratio of the left ventricle weight to the body weight. The data presented demonstrate that the hypertrophy of the left ventricle in SHR-SP rats is accompanied by the elevation of the level of free oxygen radicals.  相似文献   

19.
Hydroxyl free radicals react with salicylate to form 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA). Utilizing the technique of high pressure liquid chromatography with electrochemical detection (LCED), it is possible to detect DHBAs at the level of femtomoles. Since salicylate is relatively non-toxic, we have administered it as a trapping agent in a first attempt to examine the use of the LCED method as a sensitive measure of in vivo OH production. Utilizing adriamycin administration as a model to induce oxygen free radical tissue damage, we found that the level of DHBAs present in drug treated rats versus controls was increased 100-fold in heart and muscle, 30-fold in lung, and 3- and 4-fold in brain and blood, respectively. These first observations support the theory that adriamycin induced OH in tissue and indicates that the LCED method may prove to be useful to measure oxygen free radical production in vivo.  相似文献   

20.
Activated oxygen species produced during merocyanine 540 (MC540)-mediated photosensitization have been examined by electron spin resonance (ESR) spin trapping and by trapping reactive intermediates with salicylic acid using HPLC with electrochemical detection (HPLC-EC) for product analysis. Visible light irradiation of MC540 associated with dilauroylphosphatidylcholine liposomes in the presence of the spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) gave an ESR spectrum characteristic of the DMPO-hydroxyl radical spin adduct (DMPO/.OH). Addition of ethanol or methanol produced additional hyperfine splittings due to the respective hydroxyalkyl radical adducts, indicating the presence of free.OH.DMPO/.OH formation was not significantly inhibited by Desferal, catalase, or superoxide dismutase (SOD). Production of DMPO/.OH was strongly inhibited by azide and enhanced in samples prepared with deuterated phosphate buffer (PB-D2O), suggesting that singlet molecular oxygen (1O2) was an important intermediate. When MC540-treated liposomes were irradiated in the presence of salicylic acid (SA), HPLC-EC analysis indicated almost exclusive formation of 2,5-dihydroxybenzoic acid (2,5-DHBA), with production of very little 2,3-DHBA, in contrast to .OH generated by uv photolysis of H2O2, which gave nearly equimolar amounts of the two products. 2,5-DHBA production was enhanced in PB-D2O and inhibited by azide, again consistent with 1O2 intermediacy. 2,5-DHBA formation was significantly reduced in samples saturated with N2 or argon, and such samples showed no D2O enhancement. Ethanol had no effect on 2,5-DHBA production, even when present in large excess. Catalase and SOD also had no effect, and only a small inhibition was observed with Desferal. DMPO inhibited 2,5-DHBA production in a concentration-dependent fashion and enhanced formation of 2,3-DHBA. We propose that 1O2 reacts with DMPO to give an intermediate which decays to form DMPO/.OH and free.OH, and that the reaction between 1O2 and SA preferentially forms the 2,5-DHBA isomer. This latter process may provide the basis for a sensitive analytical method to detect 1O2 intermediacy. Singlet oxygen appears to be the principle activated oxygen species produced during MC540-mediated photosensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号