首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stabilizing effect of the coenzyme (NAD) on the structure of glyceraldehyde-3-phosphate dehydrogenase from lamprey and porcine muscles with respect to proteolysis and heat denaturation was studied. The process of heat denaturation was followed by the changes in specific activity of the enzymes; that of proteolysis--by the changes in specific activity and circular dichroism. It was shown that in both cases NAD at saturating concentration exerts a far weaker stabilizing effect on the structure of glyceraldehyde-3-phosphate dehydrogenase from lamprey muscle than on that of the porcine muscle enzyme. The coensyme-dependent stabilization of lamprey muscle glyceraldehyde-3-phosphate dehydrogenase does not differ from that of mammalian muscle enzyme. Possible interrelationship between the phenomenon observed and the molecular mechanism of thermal adaptation in the cold-blooded animals is discussed.  相似文献   

2.
A rapid and convenient procedure for isolating human glyceraldehyde-3-phosphate dehydrogenase from erythrocytes has been developed and yields enzyme with a specific activity of 33–52. The physical and catalytic properties of the enzyme are similar to those of rabbit muscle enzyme. Reassociation of freshly isolated human glyceraldehyde-3-phosphate dehydrogenase with washed erythrocyte membranes increases the specific activity and stability of the enzyme suggesting that enzyme-membrane interactions may have an important effect on the conformation and catalytic activity. That the human enzyme behaves as a dimer of dimers, similar to the behavior or rabbit muscle glyceraldehyde-3-phosphate dehydrogenase, is suggested by its half-of-the-sites reactivity toward 4-iodoacetamido-1-naphthol. The human enzyme binds nicotinamide hypoxanthine dinucleotide, a structural analog of NAD+, with negative cooperativity, further indicating its similarity to rabbit muscle enzyme.  相似文献   

3.
A homogeneous multimeric protein isolated from the green alga, Scenedesmus obliquus, has both latent phosphoribulokinase activity and glyceraldehyde-3-phosphate dehydrogenase activity. The glyceraldehyde-3-phosphate dehydrogenase was active with both NADPH and NADH, but predominantly with NADH. Incubation with 20 mM dithiothreitol and 1 mM NADPH promoted the coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, accompanied by a decrease in the glyceraldehyde-3-phosphate dehydrogenase activity linked to NADH. The multimeric enzyme had a Mr of 560,000 and was of apparent subunit composition 8G6R. R represents a subunit of Mr 42,000 conferring phosphoribulokinase activity and G a subunit of 39,000 responsible for the glyceraldehyde-3-phosphate dehydrogenase activity. On SDS-PAGE the Mr-42,000 subunit comigrates with the subunit of the active form of phosphoribulokinase whereas that of Mr-39,000 corresponds to that of NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. The multimeric enzyme had a S20,W of 14.2 S. Following activation with dithiothreitol and NADPH, sedimenting boundaries of 7.4 S and 4.4 S were formed due to the depolymerization of the multimeric protein to NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (4G) and active phosphoribulokinase (2R). It has been possible to isolate these two enzymes from the activated preparation by DEAE-cellulose chromatography. Prolonged activation of the multimeric protein by dithiothreitol in the absence of nucleotide produced a single sedimenting boundary of 4.6 S, representing a mixture of the active form of phosphoribulokinase and an inactive dimeric form of glyceraldehyde-3-phosphate dehydrogenase. Algal thioredoxin, in the presence of 1 mM dithiothreitol and 1 mM NADPH, stimulated the depolymerization of the multimeric protein with resulting coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. Light-induced depolymerization of the multimeric protein, mediated by reduced thioredoxin, is postulated as the mechanism of light activation in vivo. Consistent with such a postulate is the presence of high concentrations of the active forms of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase in extracts from photoheterotrophically grown algae. By contrast, in extracts from the dark-grown algae the multimeric enzyme predominates.  相似文献   

4.
An aryl azide derivative of glucosamine, N-(4-iodoazidosalicyl)-2-amido-2-deoxy-D-glucopyranose (GlcNAs), was synthesized as a potential photoaffinity label for the facilitative hexose carrier. The derivative inhibited hexose uptake into intact human erythrocytes half-maximally at 3.5 mM and was itself slowly transported into cells. However, photolysis of iodinated GlcNAs with leaky erythrocyte ghosts produced appreciable labeling on gel electrophoresis only of Band 6, which is glyceraldehyde-3-phosphate dehydrogenase. Band 6 photolabeling in leaky ghosts by GlcNAs was: saturable, due mostly to the aryl azide moiety, inhibited by agents with known affinity for the enzyme including sulfhydryl reagents and the enzyme substrate glyceraldehyde-3-phosphate, and not inhibited by the free-radical scavenger p-aminobenzoic acid. Moreover, GlcNAs also inhibited erythrocyte glyceraldehyde-3-phosphate dehydrogenase activity in a dose-dependent fashion in the dark and more potently following irradiation. In resealed ghosts, Band 6 labeling was decreased by D-glucose, reflecting inhibition of carrier-mediated uptake of the agent. GlcNAs appears to be a specific photoaffinity label for erythrocyte glyceraldehyde-3-phosphate dehydrogenase, and therefore potentially useful for studies of enzyme activity, compartmentation, or membrane association.  相似文献   

5.
Summary Hypotonic human erythrocyte ghosts, devoid of the original glyceraldehyde-3-phosphate dehydrogenase content of the red cell, bind added glyceraldehyde-3-phosphate dehydrogenases, isolated from human erythrocytes, rabbit and pig muscle, as well as rabbit muscle aldolase. There are only slight differences in the affinities towards the various glyceraldehyde-3-phosphate dehydrogenases. On the other hand, glyceraldehyde-3-phosphate dehydrogenases are bound much stronger than aldolase; in an equimolar mixture the former can prevent the binding of the latter, or replace previously bound aldolase at the membrane surface. Binding is always accompanied by the partial inactivation of enzymes, which can be reverted by desorption. Unwashed ghosts rich in hemoglobin seem to have a more pronounced inactivating effect on bound glyceraldehyde-3-phosphate dehydrogenase. In isotonic media ghosts, whether white or unwashed, reseal and do not interact with the enzymes.  相似文献   

6.
The thioredoxin/thioredoxin reductase system has been studied as regenerative machinery for proteins inactivated by oxidative stress in vitro and in cultured endothelial cells. Mammalian glyceraldehyde-3-phosphate dehydrogenase was used as the main model enzyme for monitoring the oxidative damage and the regeneration. Thioredoxin and its reductase purified from bovine liver were used as the regenerating system. The physiological concentrations (2-14 microM) of reduced thioredoxin, with 0.125 microM thioredoxin reductase and 0.25 mM NADPH, regenerated H2O2-inactivated glyceraldehyde-3-phosphate dehydrogenase and other mammalian enzymes almost completely within 20 min at 37 degrees C. Although the treatment of endothelial cells with 0.2-12 mM H2O2 for 5 min resulted in a marked decrease in the activity of glyceraldehyde-3-phosphate dehydrogenase, it had no effect on the activities of thioredoxin and thioredoxin reductase. Essentially all of the thioredoxin in endothelial cells at control state was in the reduced form and 70-85% remained in the reduced form even after the H2O2 treatment. The inactivated glyceraldehyde-3-phosphate dehydrogenase in a cell lysate prepared from the H2O2-treated endothelial cells was regenerated by incubating the lysate with 3 mM NADPH at 37 degrees C and the antiserum raised against bovine liver thioredoxin inhibited the regeneration. The inhibition of thioredoxin reductase activity by 13-cis-retinoic acid resulted in a decrease in the regeneration of glyceraldehyde-3-phosphate dehydrogenase in the H2O2-treated endothelial cells. The present findings provide evidence that thioredoxin is involved in the regeneration of proteins inactivated by oxidative stress in endothelial cells.  相似文献   

7.
Concentrations of m-Cl-peroxy benzoic acid (CPBA) higher than 0.1 mM decrease the ATP-content of Saccharomyces cerevisiae in the presence of glucose in 1 min to less than 10% of the initial value. In the absence of glucose, 1.0 mM CPBA is necessary for a similar effect. After the rapid loss of ATP in the first min in the presence of glucose caused by 0.2 mM CPBA, the ATP-content recovers to nearly the initial value after 10 min. Aerobic glucose consumption and ethanol formation from glucose are both completely inhibited by 1.0 mM CPBA. Assays of the activities of nine different enzymes of the glycolytic pathway as well as analysis of steady state concentrations of metabolites suggest that glyceraldehyde-3-phosphate dehydrogenase is the most sensitive enzyme of glucose fermentation. Phosphofructokinase and alcohol dehydrogenase are slightly less sensitive. Incubation for 1 or 10 min with concentrations of 0.05 to 0.5 mM CPBA causes a) inhibition of glyceraldehyde-3-phosphate dehydrogenase, b) decrease of the ATP-content and c) a decrease of the colony forming capacity. From these findings it is concluded that the disturbance of the ATP-producing glycolytic metabolism by inactivation of glyceraldehyde-3-phosphate dehydrogenase may be an explanation for cell death caused by CPBA.Abbreviations CPBA m-Chloro-peroxy benzoic acid - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - F-1,6-P2 frnctose-1,6-bisphosphate - DAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - 2PGA 2-phosphoglycerate - PEP phosphoenol pyruvate - Pyr pyruvate - EtOH ethanol - PFK phosphofructokinase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - ADH alcohol dehydrogenase Dedicated to Prof. Dr. Wolfgang Gerok at the occasion of his 60th birthday  相似文献   

8.
The DNA-binding protein P8 from transformed hamster fibroblasts (line NIL-1-hamster sarcoma virus) has been purified to homogeneity by DNA-cellulose and phosphocellulose chromatography. The molecular weight of dissociated P8 is 36000, the same as that reported for the subunits of glyceraldehyde-3-phosphate dehydrogenase, and the mobility of these proteins in polyacrylamide gels is identical. The amino acid composition of P8 is very similar to that of glyceraldehyde-3-phosphate dehydrogenase. When assayed for glyceraldehyde-3-phosphate dehydrogenase activity the P8 preparation had a specific activity of 54.6 units/mg, a value comparable to that of the crystalline enzyme from several sources. Furthermore, serum prepared against P8 crossreacts with glyceraldehyde-3-phosphate dehydrogenase from hamster muscle. These results show that P8 is glyceraldehyde-3-phosphate dehydrogenase. The interaction of P8 from transformed fibroblasts and glyceraldehyde-3-phosphate dehydrogenase from hamster and rabbit muscle with DNA has been studied using a Millipore filtration technique. These proteins have affinity for single-stranded DNA but not for double-stranded DNA.  相似文献   

9.
Abstract— Cat sciatic nerves were exposed to iodoacetate for a period of 5–10 min and after washing out the iodoacetate, the enzymes, glyceraldehyde-3-phosphate dehydrogenase ( d -glyceraldehyde-3-phosphate: NAD oxidoreductase (phosphorylating); EC 1.2.1.12) and lactate dehydrogenase ( l -lactate: NAD oxidoreductase; EC 1.1.1.27) were extracted from the high-speed supernatant fraction of nerve homogenates. Concentrations of iodoacetate as low as 2.5 m m could completely block activity of glyceraldehyde-3-phosphate dehydrogenase but had no effect on lactate dehydrogenase. These findings are in accord with the classical concept shown earlier for muscle that iodoacetate blocks glycolysis by its action on glyceraldehyde-3-phosphate dehydrogenase. A complete block of activity of the enzyme was found after treatment with 2 to 5 m m -iodoacetate for a period of 10 min and such blocks were irreversible for at least 3 h. Glyceraldehyde-3-phosphate dehydrogenase activity was NAD specific, with NADP unable to substitute for NAD. The results are discussed in relation to the effect of iodoacetate in blocking glycolysis and in turn the fast axoplasmic transport of materials in mammalian nerve.  相似文献   

10.
Yeast glyceraldehyde-3-phosphate dehydrogenase (glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) immobilized on CNBr-activated Sepharose 4-B has been subjected to dissociation to obtain matrix-bound dimeric species of the enzyme. Hybridization was then performed using soluble glyceraldehyde-3-phosphate dehydrogenase isolated from rat skeletal muscle. Immobilized hybrid tetramers thus obtained were demonstrated to exhibit two distinct pH-optima of activity characteristic of the yeast and muscle enzymes, respectively. The results indicate that under appropriate conditions the activity of each of the dimers composing the immobilized hybrid tetramer can be studied separately.  相似文献   

11.
In the course of studying mammalian erythrocytes we noted prominent differences in the red cells of the rat. Analysis of ghosts by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis showed that membranes of rat red cells were devoid of band 6 or the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12). Direct measurements of this enzyme showed that glyceraldehyde-3-phosphate dehydrogenase activity in rat erythrocytes was about 25% of that in human cells; all of the glyceraldehyde-3-phosphate dehydrogenase activity in rat erythrocytes was within the cytoplasm and none was membrane bound; and in the human red cell, about 1/3 of the enzyme activity was within the cytoplasm and 2/3 membrane bound. The release of glyceraldehyde-3-phosphate dehydrogenase from fresh rat erythrocytes immediately following saponin lysis was also determined using the rapid filtration technique recently described. The extrapolated zero-time intercepts of these reactions confirmed that, in the rat erythrocyte, none of the cellular glyceraldehyde-3-phosphate dehydrogenase was membrane bound. Failure of rat glyceraldehyde-3-phosphate dehydrogenase to bind to the membranes of the intact rat erythrocyte seems to be due to cytoplasmic metabolites which interact with the enzyme and render it incapable of binding to the membrane.  相似文献   

12.
Mild oxidation of glyceraldehyde-3-phosphate dehydrogenase in the presence of hydrogen peroxide leads to oxidation of some of the active site cysteine residues to sulfenic acid derivatives, resulting in the induction of acylphosphatase activity. The reduced active sites of the enzyme retain the ability to oxidize glyceraldehyde-3-phosphate yielding 1,3-diphosphoglycerate, while the oxidized active sites catalyze irreversible cleavage of 1,3-diphosphoglycerate. It was assumed that the oxidation of glyceraldehyde-3-phosphate dehydrogenase by different physiological oxidants must accelerate glycolysis due to uncoupling of the reactions of oxidation and phosphorylation. It was shown that the addition of hydrogen peroxide to the mixture of glycolytic enzymes or to the muscle extract increased production of lactate, decreasing the yield of ATP. A similar effect was observed in the presence of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase catalyzing irreversible oxidation of glyceraldehyde-3-phosphate into 3-phosphoglycerate. A role of glyceraldehyde-3-phosphate dehydrogenase in regulation of glycolysis is discussed.  相似文献   

13.
Binding of glyceraldehyde 3-phosphate to glyceraldehyde-3-phosphate dehydrogenase, the membrane protein known as Band 6, causes shifts in the 31P nuclear magnetic resonance spectrum of the substrate (Fossel, E.T. and Solomon, A.K (1977) Biochim. Biophys. Acta 464, 82--92). We have studied the resonance shifts produced by varying the sodium/potassium ratio, at constant ionic strength, in order to examine the relationship between the cation transport system and glyceraldehyde-3-phosphate dehydrogenase. Alteration of the potassium concentration at the extracellular face of the vesicle affects the conformation of glyceraldehyde-3-phosphate dehydrogenase at the cytoplasmic face, thus showing that a conformation changed induced by a change in extracellular potassium can be transmitted across the membrane. Alterations of the sodium concentration at the cytoplasmic face also affect the enzyme conformation, whereas sodium changes at the extracellular face are without effect. In contrast, there is no sidedness difference in the effect of potassium concentrations. The half-values for these effects are like those for activation of the red cell (Na4 + K+)-ATPase. We have also produced ionic concentration gradients across the vesicle similar to those Glynn and Lew (1970) J. Physiol. London 207, 393--402) found to be effective in running the cation pump backwards to produce adenosine triphosphate in the human red cell. The sodium/potassium concentration dependence of this process in red cells is mimicked by 31P resonance shifts in the (glyceraldehyde 3-phosphate/glyceraldehyde-3-phosphate dehydrogenase/inside out vesicle) system. These experiments provide strong support for the existence of a functional linkage between the membrane (Na+ + K+)-ATPase and the glyceraldehyde-3-phosphate dehydrogenase at the cytoplasmic face.  相似文献   

14.
Ca2+-induced fusion of phospholipid vesicles (phosphatidylcholine/phosphatidic acid, 9:1 mol/mol) prepared by ethanolic injection was followed by five different procedures: resonance energy transfer, light scattering, electron microscopy, intermixing of aqueous content, and gel filtration through Sepharose 4-B. The five methods gave concordant results, showing that vesicles containing only 10% phosphatidic acid can be induced to fuse by millimolar concentrations of Ca2+. When the fusing capability of several soluble proteins was assayed, it was found that concanavalin A, bovine serum albumin, ribonuclease, and protease were inactive. On the other hand, lysozyme, L-lactic dehydrogenase, and muscle and yeast glyceraldehyde-3-phosphate dehydrogenase were capable of inducing vesicle fusion. Glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle, the most extensively studied protein, proved to be very effective: 0.1 microM was enough to induce complete intermixing of bilayer phospholipid vesicles. Under conditions used in this work, fusion was accompanied by leakage of internal contents. The fusing capability of glyceraldehyde-3-phosphate dehydrogenase was not affected by 5 mM ethylenediaminetetraacetic acid. The Ca2+ concentration in the medium, as determined by atomic absorption spectroscopy, was 5 ppm. Heat-denatured enzyme was incapable of inducing fusion. We conclude that glyceraldehyde-3-phosphate dehydrogenase is a soluble protein inherently endowed with the capability of fusing phospholipid vesicles.  相似文献   

15.
Rabbit antibodies to rat skeletal muscle glyceraldehyde-3-phosphate dehydrogenase, as well as monovalent Fab fragments of these antibodies were coupled to CNBr-activated Sepharose 4B. Rat skeletal muscle glyceraldehyde-3-phosphate dehydrogenase was then immobilized on a matrix by non-covalent binding to specific antibodies. Immobilized enzyme retains approximately 90% catalytic activity of the soluble dehydrogenase; pH optimum of activity and the Km value observed are changed as compared to the enzyme in solution. Glyceraldehyde-3-phosphate dehydrogenase immobilized on specific antibodies is shown to undergo adenine nucleotide-induced dissociation into dimers. The immobilized dimeric form of the enzyme thus obtained is catalytically active and capable of reassociating with the dimers of apoglyceraldehyde-3-phosphate dehydrogenase added in solution to the suspension of Sepharose.  相似文献   

16.
Glyceraldehyde-3-phosphate dehydrogenase was found to bind in vitro to purified, human erythrocyte glucose transporter reconstituted into vesicles. Mild tryptic digestion of the glucose transporter totally inactivated the binding, suggesting that the cytoplasmic domain of the transporter is involved in the binding to glyceraldehyde-3-phosphate dehydrogenase. The binding was abolished in the presence of antisera raised against the purified glucose transporter, further supporting specificity of this interaction. The binding was reversible with a dissociation constant (Kd) of 3.3 x 10(-6) M and a total capacity (Bt) of approximately 30 nmol/mg of protein indicating a stoichiometry of one enzyme-tetramer per accessible transporter. The binding was sensitive to changes in pH showing an optimum at around pH 7.0. KCl and NaCl inhibited the binding in a simple dose-dependent manner with Ki of 40 and 20 mM, respectively. The binding was also inhibited by NAD+ with an estimated Ki of 3 mM. ATP, on the other hand, enhanced the binding by up to 3-fold in a dose-dependent manner with an apparent Ka of approximately 6 mM. The binding was not affected by D-glucose or cytochalasin B. The binding did not affect either the glucose or cytochalasin B in binding affinities or the transport activity of the transporter. However, the enzyme was inactivated totally upon binding to the transporter. Based on these findings, we suggest that a significant portion of glyceraldehyde-3-phosphate dehydrogenase in human erythrocytes exists as an inactive form via an ATP-dependent, reversible association with glucose transporter, and that this association may exert regulatory intervention on nucleotide metabolism in vitro.  相似文献   

17.
The NADP-dependent glycerol-3-phosphate dehydrogenase activity in liver, heart and skeletal muscle of rat was studied. The activity is found when glyceraldehyde-3-phosphate or ribose-5-phosphate in the presence of ATP are taken as substrates. The data obtained confirm that NADP-dependent glycerol-3-phosphate dehydrogenase exists in skeletal muscle and demonstrate that it is found in heart muscle as well.  相似文献   

18.
During batch growth of Lactococcus lactis subsp. lactis NCDO 2118 on various sugars, the shift from homolactic to mixed-acid metabolism was directly dependent on the sugar consumption rate. This orientation of pyruvate metabolism was related to the flux-controlling activity of glyceraldehyde-3-phosphate dehydrogenase under conditions of high glycolytic flux on glucose due to the NADH/NAD+ ratio. The flux limitation at the level of glyceraldehyde-3-phosphate dehydrogenase led to an increase in the pool concentrations of both glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate and inhibition of pyruvate formate lyase activity. Under such conditions, metabolism was homolactic. Lactose and to a lesser extent galactose supported less rapid growth, with a diminished flux through glycolysis, and a lower NADH/NAD+ ratio. Under such conditions, the major pathway bottleneck was most probably at the level of sugar transport rather than glyceraldehyde-3-phosphate dehydrogenase. Consequently, the pool concentrations of phosphorylated glycolytic intermediates upstream of glyceraldehyde-3-phosphate dehydrogenase decreased. However, the intracellular concentration of fructose-1,6-bisphosphate remained sufficiently high to ensure full activation of lactate dehydrogenase and had no in vivo role in controlling pyruvate metabolism, contrary to the generally accepted opinion. Regulation of pyruvate formate lyase activity by triose phosphates was relaxed, and mixed-acid fermentation occurred (no significant production of lactate on lactose) due mostly to the strong inhibition of lactate dehydrogenase by the in vivo NADH/NAD+ ratio.  相似文献   

19.
Partial purification and in vitro inactivation of glucose-6-phosphate dehydrogenase from the yeast Saccharomyces cerevisiae in the Fe2+/H2O2 oxidation system were conducted. At the protein concentration 1.5 mg/ml, the enzyme lost 50% of activity within 5 minutes of incubation in presence of 2 mM hydrogen peroxide and 3 mM ferrous sulphate. The inactivation extent depended on time and concentrations of FeSO4 and H2O2. EDTA, ADP and ATP at concentration 0.5 mM enhanced inactivation. At the same time, the presence of 0.5 mM NADPH, 1 mM glucose-6-phosphate, 10 mM mannitol, 30 mM dimethylsulphoxide or 20 mM urea diminished this process. In comparison with native enzyme, index S(0,5) of the partially inactivated enzyme for glucose-6-phosphate was 2.1-fold higher, but for NADP it was 1,6-fold lower. Maximal activity of the partially inactivated enzyme was 3-5-fold lower than that of native one.  相似文献   

20.
Binding of glyceraldehyde 3-phosphate to glyceraldehyde-3-phosphate dehydrogenase, the membrane protein known as Band 6, causes shifts in the 31P nuclear magnetic resonance spectrum of the substrate (Fossel, E.T. and Solomon, A.K. (1977) Biochim. Biophys. Acta 464, 82–92). We have studied the resonance shifts produced by varying the sodium/potassium ratio, at constant ionic strength, in order to examine the relationship between the cation transport system and glyceraldehyde-3-phosphate dehydrogenase. Alteration of the potassium concentration at the extracellular face of the vesicle affects the conformation of glyceraldehyde-3-phosphate dehydrogenase at the cytoplasmic face, thus showing that a conformation change induced by a change in extracellular potassium can be transmitted across the membrane. Alterations of the sodium concentration at the cytoplasmic face also affect the enzyme conformation, whereas sodium changes at the extracellular face are without effect. In contrast, there is no sidedness difference in the effect of potassium concentrations. The half-values for these effects are like those for activation of the red cell (Na+ + K+)-ATPase. We have also produced ionic concentration gradients across the vesicle similar to those Glynn and Lew ((1970) J. Physiol. London 207, 393–402) found to be effective in running the cation pump backwards to produce adenosine triphosphate in the human red cell. The sodium/potassium concentration dependence of this process in red cells is mimicked by 31P resonance shifts in the (glyceraldehyde 3-phosphate/glyceraldehyde-3-phosphate dehydrogenase/inside out vesicle) system. These experiments provide strong support for the existence of a functional linkage between the membrane (Na+ + K+)-ATPase and the glyceraldehyde-3-phosphate dehydrogenase at the cytoplasmic face.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号