首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work was designed to study the effect of different lipid sources on the activities of lipoprotein lipase and lipogenic enzymes in adipose tissue from rats fedad libitum or energy-controlled diets. Male Wistar rats were fed diets containing 40% of energy as fat (olive oil, sunflower oil, palm oil or beef tallow), for 4 wk. Underad libitum feeding no differences were found among dietary fat groups in final body weight, adipose tissue weights and total body fat. Under energy-controlled feeding, despite isoenergetic intake, rats fed the beef tallow diet gained significantly less weight than rats fed the other three diets. Beef tallow fed rats showed the lowest values for adipose tissue weights and total body fat. When rats had free access to food no effect of dietary lipid source on lipogenic enzyme activities was found. In contrast, under energy-controlled feeding rats fed the beef tallow diet showed significantly higher activities of glucose-6-phosphate dehydrogenase and fatty acid synthase than rats fed the other three diets. Heparin-releasable lipoprotein lipase activity in perirenal and subcutaneous adipose tissues was not different among rats fed olive oil, safflower oil, palm oil or beef tallow. When comparing both adipose tissue anatomical locations, significantly higher activities were found in subcutaneous than in perirenal fat pad independently of dietary fat. In conclusion, under our experimental protocol, lipogenesis in rat adipose tissue does not seem to be affected by dietary fat type.  相似文献   

2.
Visceral adipose tissue has been shown to have high lipolytic activity. The aim of this study was to examine whether free fatty acid (FFA) uptake into visceral adipose tissue is enhanced compared to abdominal subcutaneous tissue in vivo. Abdominal adipose tissue FFA uptake was measured using positron emission tomography (PET) and [18F]‐labeled 6‐thia‐hepta‐decanoic acid ([18F]FTHA) and fat masses using magnetic resonance imaging (MRI) in 18 healthy young adult males. We found that FFA uptake was 30% higher in visceral compared to subcutaneous adipose tissue (0.0025 ± 0.0018 vs. 0.0020 ± 0.0016 µmol/g/min, P = 0.005). Visceral and subcutaneous adipose tissue FFA uptakes were strongly associated with each other (P < 0.001). When tissue FFA uptake per gram of fat was multiplied by the total tissue mass, total FFA uptake was almost 1.5 times higher in abdominal subcutaneous than in visceral adipose tissue. In conclusion, we observed enhanced FFA uptake in visceral compared to abdominal subcutaneous adipose tissue and, simultaneously, these metabolic rates were strongly associated with each other. The higher total tissue FFA uptake in subcutaneous than in visceral adipose tissue indicates that although visceral fat is active in extracting FFA, its overall contribution to systemic metabolism is limited in healthy lean males. Our results indicate that subcutaneous, rather than visceral fat storage plays a more direct role in systemic FFA availability. The recognized relationship between abdominal visceral fat mass and metabolic complications may be explained by direct effects of visceral fat on the liver.  相似文献   

3.
Frequent sugar-sweetened beverage (SSB) intake has been consistently associated with increased adiposity and cardio-metabolic risk, whereas the association with diet beverages is more mixed. We examined how these beverages associate with regional abdominal adiposity measures, specifically visceral adipose tissue (VAT). In a cross-sectional analysis of 791 non-Hispanic white men and women aged 18-70 we examined how beverage consumption habits obtained from a food frequency questionnaire associate with overall and abdominal adiposity measures from MRI. With increasing frequency of SSB intake, we observed increases in waist circumference (WC) and the proportion of visceral to subcutaneous abdominal adipose tissue (VAT%), with no change in total body fat (TBF%) or BMI. Greater frequency of diet beverage intake was associated with greater WC, BMI, and TBF%, but was not associated with variation in visceral adiposity We conclude that increased frequency of SSB consumption is associated with a more adverse abdominal adipose tissue deposition pattern.  相似文献   

4.
5.
This study examined the postprandial lipemia of two groups of men displaying similar age, body weight, and regional fat distribution, but characterized by either low (n = 11) or high (n = 15) alpha(2)-adrenergic sensitivity of subcutaneous abdominal adipocytes. In addition to fat cell lipolysis, adipose tissue lipoprotein lipase (AT-LPL) as well as postheparin plasma LPL activities were measured in the fasting state. Fasting AT-LPL and PH-LPL activities were similar in both groups. Maximal adipose cell lipolysis induced by isoproterenol (beta-adrenergic agonist) as well as the beta-adrenergic sensitivity did not differ between both groups of men. The selective alpha(2)-adrenergic agonist UK-14304 promoted a similar antilipolytic response in subcutaneous abdominal adipocytes from both groups. However, the alpha(2)-adrenergic sensitivity, defined as the dose of UK-14304 that produced half-maximal inhibition of lipolysis (IC(50)), was significantly different between groups (P < 0.0001). Men with low versus high subcutaneous abdominal fat cell alpha(2)-adrenergic sensitivity showed higher fasting TG levels. In the whole group, a positive relationship was observed between log-transformed IC(50) UK-14304 values of subcutaneous adipocytes and fasting TG levels (r = 0.39, P < 0.05), suggesting that a low abdominal adipose cell alpha(2)-adrenergic sensitivity is associated with high TG levels. After the consumption of a high-fat meal, subjects with low subcutaneous abdominal adipose cell alpha(2)-adrenergic sensitivity showed higher TG levels in total, medium, and small triglyceride-rich lipoprotein (TRL) fractions at 0- to 6-h time points than men with high adipocyte alpha(2)-adrenergic sensitivity (P values ranging from 0.01 to 0.05). Stepwise regression analysis showed that the fasting TG concentration was the only variable retained as a significant predictor of the area under the curve of TG levels in total TRL fractions (73% of variance) among independent variables such as body weight, percent body fat, visceral and subcutaneous abdominal adipose tissue accumulation measured by CT, as well as subcutaneous abdominal fat cell alpha(2)-adrenoceptor sensitivity.Taken together, these results indicate that a reduced antilipolytic sensitivity of subcutaneous abdominal adipocytes to catecholamines may increase fasting TG levels, which in turn play a role in the etiology of an impaired postprandial TRL clearance in men.  相似文献   

6.
Objective: To examine the patterns of growth of visceral fat, subcutaneous abdominal fat, and total body fat over a 3‐ to 5‐year period in white and African American children. Research Methods and Procedures: Children (mean age: 8.1 ± 1.6 years at baseline) were recruited from Birmingham, Alabama, and those with three or more repeated annual measurements were included in the analysis (N = 138 children and 601 observations). Abdominal adipose tissue (visceral and subcutaneous) was measured using computed tomography. Total body fat and lean tissue mass were measured by DXA. Random growth curve modeling was performed to estimate growth rates of the different body fat compartments. Results: Visceral fat and total body fat both exhibited significant growth effects before and after adjusting for subcutaneous abdominal fat and lean tissue mass, respectively, and for gender, race, and baseline age (5.2 ± 2.2 cm2/yr and 1.9 ± 0.8 kg/yr, respectively). After adjusting for total body fat, the growth of subcutaneous abdominal fat was not significant. Whites showed a higher visceral fat growth than did African Americans (difference: 1.9 ± 0.8 cm2/yr), but there was no ethnic difference for growth of subcutaneous abdominal fat or total body fat. There were no gender differences found for any of the growth rates. Discussion: Growth of visceral fat remained significant after adjusting for growth of subcutaneous abdominal fat, implying that the acquisition of the two abdominal fat compartments may involve different physiologic mechanisms. In contrast, growth of subcutaneous abdominal fat was explained by growth in total body fat, suggesting that subcutaneous fat may not be preferentially deposited in the abdominal area during this phase of growth. Finally, significantly higher growth of visceral fat in white compared with African American children is consistent with cross‐sectional findings.  相似文献   

7.
Two protocols were performed to study meal fatty acid metabolism. In protocol 1, 14 patients scheduled for elective intra-abdominal surgery (11 undergoing bariatric surgery for severe obesity) consumed a meal containing [3H]triolein in the evening before surgery. This allowed us to measure adipose tissue lipid specific activity (SA) in mesenteric and omental, deep and superficial abdominal subcutaneous adipose tissue. Intra-abdominal adipose tissue lipid SA was greater than subcutaneous lipid SA. There were no significant differences between mesenteric and omental or between deep and superficial abdominal subcutaneous adipose tissue. In protocol 2, meal fatty acid oxidation and uptake into subcutaneous and omental adipose tissue ([3H]triolein) were measured in six normal, healthy volunteers. Meal fatty acid oxidation (3H2O generation) plus that remaining in plasma ( approximately 1%) plus uptake into upper body subcutaneous, lower body subcutaneous, and visceral fat allowed us to account for 98 +/- 6% of meal fatty acids 24 h after meal ingestion. We conclude that omental fat is a good surrogate for visceral fat and that abdominal subcutaneous fat depots are comparable with regard to meal fatty acid metabolic studies. Using [3H]triolein, we were able to account for virtually 100% of meal fatty acids 24 h after meal ingestion. These results support the meal fatty acid tracer model as a way to study the metabolic fate of dietary fat.  相似文献   

8.
9.
10.
Individual compartments of abdominal adiposity and lipid content within the liver and muscle are differentially associated with metabolic risk factors, obesity and insulin resistance. Subjects with greater intra-abdominal adipose tissue (IAAT) and hepatic fat than predicted by clinical indices of obesity may be at increased risk of metabolic diseases despite their "normal" size. There is a need for accurate quantification of these potentially hazardous depots and identification of novel subphenotypes that recognize individuals at potentially increased metabolic risk. We aimed to calculate a reference range for total and regional adipose tissue (AT) as well as ectopic fat in liver and muscle in healthy subjects. We studied the relationship between age, body-mass, BMI, waist circumference (WC), and the distribution of AT, using whole-body magnetic resonance imaging (MRI), in 477 white volunteers (243 male, 234 female). Furthermore, we used proton magnetic resonance spectroscopy (MRS) to determine intrahepatocellular (IHCL) and intramyocellular (IMCL) lipid content. The anthropometric variable which provided the strongest individual correlation for adiposity and ectopic fat stores was WC in men and BMI in women. In addition, we reveal a large variation in IAAT, abdominal subcutaneous AT (ASAT), and IHCL depots not fully predicted by clinically obtained measurements of obesity and the emergence of a previously unidentified subphenotype. Here, we demonstrate gender- and age-specific patterns of regional adiposity in a large UK-based cohort and identify anthropometric variables that best predict individual adiposity and ectopic fat stores. From these data we propose the thin-on-the-outside fat-on-the-inside (TOFI) as a subphenotype for individuals at increased metabolic risk.  相似文献   

11.
Rapid infant weight gain is associated with increased abdominal adiposity, but there is no published report of the relationship of early infant growth to differences in specific adipose tissue depots in the abdomen, including visceral adipose tissue (VAT). In this study, we tested the associations of birth weight, infant weight gain, and other early life traits with VAT, abdominal subcutaneous adipose tissue (ASAT), and other body composition measures using magnetic resonance imaging (MRI) and dual‐energy X‐ray absorptiometry in middle adulthood (mean age = 46.5 years). The sample included 233 appropriate for gestational age singleton white children (114 males) enrolled in the Fels Longitudinal Study. Multivariate‐adjusted general linear models were used to test the association of infant weight gain (from 0 to 2 years), maternal BMI, gestational age, parity, maternal age, and other covariates with adulthood body composition. Compared to infants with slow weight gain, rapid weight gain was associated with elevated risk of obesity (adjusted odds ratio = 4.1, 95% confidence interval = 1.4, 11.1), higher total body fat (+7 kg, P = 0.0002), percent body fat (+5%, P = 0.0006), logVAT mass (+0.43 kg, P = 0.02), logASAT mass (+0.47 kg, P = 0.001), and percent abdominal fat (+5%, P = 0.03). There was no evidence that the increased abdominal adipose tissue was due to a preferential deposition of VAT. In conclusion, rapid infant weight gain is associated with increases in both VAT and ASAT, as well as total adiposity and the risk of obesity in middle adulthood.  相似文献   

12.

Aims

Visceral adipose tissue measured by CT or MRI is strongly associated with an adverse metabolic risk profile. We assessed whether similar associations can be found with ultrasonography, by quantifying the strength of the relationship between different measures of obesity and indices of glucose metabolism in a population at high risk of type 2 diabetes.

Methods

A cross-sectional analysis of 1342 participants of the ADDITION-PRO study. We measured visceral adipose tissue and subcutaneous adipose tissue with ultrasonography, anthropometrics and body fat percentage by bioelectrical impedance. Indices of glucose metabolism were derived from a three point oral glucose tolerance test. Linear regression of obesity measures on indices of glucose metabolism was performed.

Results

Mean age was 66.2 years, BMI 26.9kg/m2, subcutaneous adipose tissue 2.5cm and visceral adipose tissue 8.0cm. All measures of obesity were positively associated with indicators of glycaemia and inversely associated with indicators of insulin sensitivity. Associations were of equivalent magnitude except for subcutaneous adipose tissue and the visceral/subcutaneous adipose tissue ratio, which showed weaker associations. One standard deviation difference in BMI, visceral adipose tissue, waist circumference, waist/height ratio and body fat percentage corresponded approximately to 0.2mmol/l higher fasting glucose, 0.7mmol/l higher 2-hr glucose, 0.06-0.1% higher HbA1c, 30 % lower HOMA index of insulin sensitivity, 20% lower Gutt’s index of insulin sensitivity, and 100 unit higher Stumvoll’s index of beta-cell function. After adjustment for waist circumference visceral adipose tissue was still significantly associated with glucose intolerance and insulin resistance, whereas there was a trend towards inverse or no associations with subcutaneous adipose tissue. After adjustment, a 1cm increase in visceral adipose tissue was associated with ~5% lower insulin sensitivity (p≤0.0004) and ~0.18mmol/l higher 2-hr glucose (p≤0.001).

Conclusion

Visceral and subcutaneous adipose tissue assessed by ultrasonography are significantly associated with glucose metabolism, even after adjustment for other measures of obesity.  相似文献   

13.
Men with noninsulin-dependent diabetes mellitus (type 2 DM) provide a different subcutaneous body fat distribution and a concentration of fatness on the upper trunk compared with healthy subjects. However, subcutaneous fat distribution is always measured in an inaccurate and/or very simplified way (e.g., by caliper), and to date, there exists no study reporting on the exact and complete subcutaneous adipose tissue distribution of type 2 DM men. A new optical device, the LIPOMETER, enables the nonivasive, quick, and safe determination of the thickness of subcutaneous adipose tissue layers at any given site of the human body. The specification of 15 evenly distributed body sites allows the precise measurement of subcutaneous body fat distribution, so-called subcutaneous adipose tissue topography (SAT-Top). SAT-Tops of 21 men with clinically proven type 2 DM (mean age of 57.5 +/- 6.7 years) and 111 healthy controls of similar age (mean age 59.0 +/- 5.4 years) were measured. In this paper, we describe the precise SAT-Top differences of these two groups and we present the multidimensional SAT-Top information condensed in a two-dimensional factor value plot. In type 2 DM men, especially in the upper trunk, SAT-Top is significantly increased (up to +50.7% at the neck) compared with their healthy controls. One hundred eleven of the 132 individuals (84.1%) are correctly classified (healthy or type 2 DM) by their subcutaneous fat pattern by stepwise discriminant analysis.  相似文献   

14.
The primary purpose of this study was to investigate the viability of magnetic resonance imaging (MRI) as a means of measuring the body composition of rodents. To do so we compared adipose tissue (AT) volumes measured by MRI with those obtained by X-ray computerized tomography (CT) in a group of rats (n = 17) varying in weight (465-815 g) and percent body fat (5.4-31.1%), with the latter determined by chemical analysis. For both MRI and CT, AT volumes (cm3) per transverse slice (3-mm thickness, 21-mm centers) were determined using a computer-based image analysis system that permitted detailed comparisons of both visceral and subcutaneous AT depots. Total AT volumes were calculated using a linear interpolation of AT areas obtained on consecutive slices. Correlation coefficients between MRI and CT for visceral [r = 0.98, standard error of estimate (SEE) = 6.8 cm3], subcutaneous (r = 0.98, SEE = 6.5 cm3), and total AT volumes (r = 0.99, SEE = 9.0 cm3) were highly significant (P less than 0.001). Both MRI- and CT-predicted AT mass (assuming fat density = 0.90 g/ml) correlated strongly with chemically extracted lipid (grams) values (r = 0.98, SEE 9.6 g and r = 0.99, SEE = 6.9 g, respectively). Post hoc Scheffé contrasts demonstrated that the mean AT and lipid mass values derived by the three methods were not significantly different (P = 0.01). No systematic differences were observed because the regression lines derived for either MRI or CT vs. chemical analysis were not significantly different from the identity line.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Obesity prevalence is reaching pandemic proportions becoming a major public health threat for many industrialized nations. It is especially worrying as it causes a higher risk of premature death due to associated diseases such as type 2 diabetes, cardiovascular disease, and some cancers. Current evidence shows biological and genetic differences between adipose tissues depending on its anatomical location. Particularly, upper body/visceral fat distribution in obesity is closely linked to metabolic complications. In this report, we characterize for the first time the secretome of rat adipose tissue explants from different anatomical localizations and its differential analysis. Visceral, subcutaneous, and gonadal fat specific secretomes and differentially secreted proteins among the three fat depots were analyzed by 2-DE and MS. Reference maps for location-specific adipose tissue secretomes are shown and the 45 most significant differences are listed. Identified proteins include classical adipokines and novel secreted proteins. Interestingly, our results show that the type of proteins and their role in different biological processes diverge significantly when comparing the set of proteins identified from visceral, subcutaneous and gonadal fat explants. This study emphasizes and supports the differential role of adipose tissue in accordance to its anatomical localization.  相似文献   

16.
Objective: The aim of this study was to compare the relative importance of computed tomography‐measured abdominal fat compartment areas, including adipose tissue located posterior to the subcutaneous Fascia, in predicting plasma lipid‐lipoprotein alterations. Research Methods and Procedures: Areas of visceral as well as subcutaneous deep and superficial abdominal adipose tissue were measured by computed tomography in a sample of 66 healthy women, ages 37 to 60 years, for whom a detailed lipid‐lipoprotein profile was available. Results: Strong significant associations were observed between visceral adipose tissue area and most variables of the lipid‐lipoprotein profile (r = ?0.25, p < 0.05 to 0.62, p < 0.0001). Measures of hepatic lipoprotein synthesis such as very‐low‐density lipoprotein‐triglyceride and cholesterol content as well as total and very‐low‐density lipoprotein‐apolipoprotein B levels were also strongly associated with visceral adipose tissue area (r = 0.57, 0.57, 0.61, and 0.62, respectively, p < 0.0001). Significant associations were found between these variables and the deep subcutaneous adipose tissue area or DXA‐measured total body fat mass. However, the correlation coefficients were of lower magnitude compared to those with visceral adipose tissue area. Multivariate regression analyses demonstrated that visceral adipose tissue area was the strongest predictor of lipid‐lipoprotein profile variables (7% to 48% explained variance, 0.02 ≥ p ≤ 0.0001). Discussion: Although previous studies have generated controversial data as to which abdominal adipose tissue compartment was more closely associated with insulin resistance, our results suggest that visceral adipose tissue area is a stronger correlate of other obesity‐related outcomes such as lipid‐lipoprotein alterations.  相似文献   

17.
Polymorphisms near the melanocortin‐4 receptor (MC4R) gene locus are associated with body weight. Recent studies have shown that they influence insulin sensitivity and incidence of the metabolic syndrome. Thus, we hypothesized that the candidate single‐nucleotide polymorphism (SNP) rs17782313 near MC4R additionally influences body fat distribution and its change during lifestyle intervention. To test this, 343 German subjects were genotyped for SNP rs17782313. Body composition was assessed using magnetic resonance technique. Subjects were characterized by an oral glucose tolerance test (OGTT). A subgroup of 242 subjects participated in a 9‐month lifestyle intervention. In the overall cohort, the C allele was associated with a higher BMI (P = 0.0013), but had no impact on glucose tolerance or insulin sensitivity (all P ≥ 0.10). There was an effect of the SNP on total body fat (P = 0.022) and nonvisceral fat (P = 0.017), but not on liver fat and visceral fat (all P ≥ 0.33). In the subgroup undergoing lifestyle intervention, SNP rs17782313 had no impact on changes in body weight or fat distribution. Despite an association with BMI and nonvisceral adipose tissue, the SNP rs17782313 did not influence visceral adipose tissue. Thus, this candidate SNP for human obesity may preferentially affect the accumulation of subcutaneous adipose tissue. Furthermore, the variation near MC4R has no effect on success of weight loss during lifestyle intervention.  相似文献   

18.
Recently, vaspin was identified as an adipokine with insulin-sensitizing effects, which is predominantly secreted from visceral adipose tissue in a rat model of type 2 diabetes. In this study, we examined whether vaspin mRNA expression is a marker of visceral obesity and correlates with anthropometric and metabolic parameters in paired samples of visceral and subcutaneous adipose tissue from 196 subjects with a wide range of obesity, body fat distribution, insulin sensitivity, and glucose tolerance. Vaspin mRNA expression was only detectable in 23% of the visceral and in 15% of the subcutaneous (SC) adipose tissue samples. Vaspin mRNA expression was not detectable in lean subjects (BMI<25) and was more frequently detected in patients with type 2 diabetes. No significant correlations were found between visceral vaspin gene expression and visceral fat area or SC vaspin expression. However, visceral vaspin expression significantly correlates with BMI, % body fat, and 2 h OGTT plasma glucose. Subcutaneous vaspin mRNA expression is significantly correlated with WHR, fasting plasma insulin concentration, and glucose infusion rate during steady state of an euglycemic-hyperinsulinemic clamp. Multivariate linear regression analysis revealed % body fat as strongest predictor of visceral vaspin and insulin sensitivity as strongest determinant of SC vaspin mRNA expression. In conclusion, our data indicate that induction of human vaspin mRNA expression in adipose tissue is regulated in a fat depot-specific manner and could be associated with parameters of obesity, insulin resistance, and glucose metabolism.  相似文献   

19.
Women suffering from type-2 diabetes mellitus (non-insulin-dependent diabetes mellitus [NIDDM]) have more total body fat and upper body obesity compared with healthy controls. However, the standard measurement methods have disadvantages such as radiological burden, lack of precision, or high time consumption. A new optical device, the Lipometer, enables the noninvasive, quick, and save determination of the thickness of subcutaneous adipose tissue layers at any given site of the human body. The specification of 15 evenly distributed body sites allows the precise measurement of subcutaneous body fat distribution, so-called subcutaneous adipose tissue topography (SAT-Top). SAT-Tops of 20 women with clinically proven NIDDM and 122 healthy controls matched by age group were measured. In this paper, we describe the precise SAT-Top differences of these two groups and present the multidimensional SAT-Top information condensed in a two-dimensional factor plot and in a response plot of an artificial neural network. NIDDM women provide significantly lower leg SAT-Top and significantly higher upper trunk SAT-Top development ("apple"-type) compared with their healthy controls.  相似文献   

20.
The aim of this study was to investigate the role of dietary macronutrient content on adiposity parameters and adipocyte hypertrophy/hyperplasia in subcutaneous and visceral fat depots from Wistar rats using combined histological and computational approaches. For this purpose, male Wistar rats were distributed into 4 groups and were assigned to different nutritional interventions: Control group (chow diet); high-fat group, HF (60% E from fat); high-fat-sucrose group, HFS (45% E from fat and 17% from sucrose); and high-sucrose group, HS (42% E from sucrose). At day 35, rats were sacrificed, blood was collected, tissues were weighed and fragments of different fat depots were kept for histological analyses with the new softwareAdiposoft. Rats fed with HF, HFS and HS diets increased significantly body weight and total body fat against Control rats, being metabolic impairments more pronounced on HS rats than in the other groups. Cellularity analyses usingAdiposoft revealed that retroperitoneal adipose tissue is histologically different than mesenteric and subcutaneous ones, in relation to bigger adipocytes. The subcutaneous fat pad was the most sensitive to the diet, presenting adipocyte hypertrophy induced by HF diet and adipocyte hyperplasia induced by HS diet. The mesenteric fat pad had a similar but attenuated response in comparison to the subcutaneous adipose tissue, while retroperitoneal fat pad only presented adipocyte hyperplasia induced by the HS diet intake after 35 days of intervention. These findings provide new insights into the role of macronutrients in the development of hyperplastic obesity, which is characterized by the severity of the clinical features. Finally, a new tool for analyzing histological adipose samples is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号