首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein secretion in Pseudomonas aeruginosa.   总被引:24,自引:0,他引:24  
The Gram-negative bacterium Pseudomonas aeruginosa secretes many proteins into the extracellular medium. At least two distinct secretion pathways can be discerned. The majority of the exoproteins are secreted via a two-step mechanism. These proteins are first translocated across the inner membrane in a signal sequence-dependent fashion. The subsequent translocation across the outer membrane requires the products of at least 12 distinct xcp genes. The exact role of one of these proteins, the XcpA protein, has been resolved. It is a peptidase that is required for the processing of the precursors of four other Xcp proteins, thus allowing their assembly into the secretion apparatus. This peptidase is also required for the processing of the precursors of type IV pili subunits. Two other Xcp proteins, XcpR and XcpS, display extensive homology to proteins involved in pili biogenesis, which suggests that the assembly of the secretion apparatus and the biogenesis of type IV pili are related processes. The secretion of alkaline protease does not require the xcp gene products. This enzyme, which is encoded by the aprA gene, is not synthesized in a precursor form with an N-terminal signal sequence. Secretion across the two membranes probably takes place in one step at adhesion zones that may be constituted by three accessory proteins, designated AprD, AprE and AprF. The two secretion pathways found in P. aeruginosa appear to have disseminated widely among Gram-negative bacteria.  相似文献   

2.
The xcp genes are required for the secretion of most extracellular proteins by Pseudomonas aeruginosa. The products of these genes are essential for the transport of exoproteins across the outer membrane after they have reached the periplasm via a signal sequence-dependent pathway. To date, analysis of three xcp genes has suggested the conservation of this secretion pathway in many Gram-negative bacteria. Furthermore, the xcpA gene was shown to be identical to pilD, which encodes a peptidase involved in the processing of fimbrial (pili) subunits, suggesting a connection between pili biogenesis and protein secretion. Here the nucleotide sequences of seven other xcp genes, designated xcpR to -X, are presented. The N-termini of four of the encoded Xcp proteins display similarity to the N-termini of type IV pili, suggesting that XcpA is involved in the processing of these Xcp proteins. This could indeed be demonstrated in vivo. Furthermore, two other proteins, XcpR and XcpS, show similarity to the PilB and PilC proteins required for fimbriae assembly. Since XcpR and PilB display a canonical nucleotide-binding site, ATP hydrolysis may provide energy for both systems.  相似文献   

3.
The xcp gene products in Pseudomonas aeruginosa are required for the secretion of proteins across the outer membrane. Four of the Xcp proteins, XcpT, U, V and W, present sequence homology to the subunits of type IV pili at their N-termini, and they were therefore designated pseudopilins. In this study, we characterized the xcpX gene product, a bitopic cytoplasmic membrane protein. Remarkably, amino acid sequence comparisons also suggested that the XcpX protein resembles the pilins and pseudopilins at the N-terminus. We show that XcpX could be processed by the prepilin peptidase, PilD/XcpA, and that the highly conserved glycine residue preceding the hydrophobic segment could not be mutated without loss of the XcpX function. We, therefore, classified XcpX (GspK) as the fifth pseudopilin of the system.  相似文献   

4.
Xcp proteins constitute the secretory apparatus of Pseudomonas aeruginosa. Deduced amino acid sequence of xcp genes, expression, and subcellular localization revealed unexpected features. Indeed, most Xcp proteins are found in the cytoplasmic membrane although xcp mutations lead to periplasmic accumulation of exoproteins, indicating that the limiting step is translocation across the outer membrane. To understand the mechanism by which the machinery functions and the interactions between its components, it is valuable to know their membrane organization. We report data demonstrating the N(in)-C(out) topologies of three general secretion pathway components, the XcpP, -Y, and -Z proteins.  相似文献   

5.
In a search for factors that could contribute to the ability of the plant growth-stimulating Pseudomonas putida WCS358 to colonize plant roots, the organism was analyzed for the presence of genes required for pilus biosynthesis. The pilD gene of Pseudomonas aeruginosa, which has also been designated xcpA, is involved in protein secretion and in the biogenesis of type IV pili. It encodes a peptidase that processes the precursors of the pilin subunits and of several components of the secretion apparatus. Prepilin processing activity could be demonstrated in P. putida WCS358, suggesting that this nonpathogenic strain may contain type IV pili as well. A DNA fragment containing the pilD (xcpA) gene of P. putida was cloned and found to complement a pilD (xcpA) mutation in P. aeruginosa. Nucleotide sequencing revealed, next to the pilD (xcpA) gene, the presence of two additional genes, pilA and pilC, that are highly homologous to genes involved in the biogenesis of type IV pili. The pilA gene encodes the pilin subunit, and pilC is an accessory gene, required for the assembly of the subunits into pili. In comparison with the pil gene cluster in P. aeruginosa, a gene homologous to pilB is lacking in the P. putida gene cluster. Pili were not detected on the cell surface of P. putida itself, not even when pilA was expressed from the tac promoter on a plasmid, indicating that not all the genes required for pilus biogenesis were expressed under the conditions tested. Expression of pilA of P. putida in P. aeruginosa resulted in the production of pili containing P. putida PilA subunits.  相似文献   

6.
Type IV pilins and pseudopilins are found in various prokaryotic envelope protein complexes, including type IV pili and type II secretion machineries of gram-negative bacteria, competence systems of gram-positive bacteria, and flagella and sugar-binding structures in members of the archaeal kingdom. The precursors of these proteins have highly conserved N termini, consisting of a short, positively charged leader peptide, which is cleaved off by a dedicated peptidase during maturation, and a hydrophobic stretch of approximately 20 amino acid residues. Which pathway is involved in the inner membrane translocation of these proteins is unknown. We used XcpT, the major pseudopilin from the type II secretion machinery of Pseudomonas aeruginosa, as a model to study this process. Transport of an XcpT-PhoA hybrid was shown to occur in the absence of other Xcp components in P. aeruginosa and in Escherichia coli. Experiments with conditional sec mutants and reporter-protein fusions showed that this transport process involves the cotranslational signal recognition particle targeting route and is dependent on a functional Sec translocon.  相似文献   

7.
Pseudomonas aeruginosa is an opportunistic gram-negative pathogen equipped with multiple secretion systems. The type II secretion machinery (Xcp secreton) is involved in the release of toxins and enzymes. The Xcp secreton is a multiprotein complex, and most of its components share homology with proteins involved in type IV pili biogenesis. Among them, the XcpT-X pseudopilins possess characteristics of the major constituent of the type IV pili, the pilin PilA. We have shown previously that XcpT can be assembled in a multifibrillar structure that was called the pseudopilus. By using two different microscopic approaches, we show here that the pseudopili are preferentially isolated fibers rather than tight bundles. Moreover, none of the other four pseudopilins are able to form a pseudopilus, suggesting that the assembly of such a structure is a unique property of XcpT. Moreover, we show that 5 of the 12 Xcp proteins are not required for pseudopilus biogenesis, whereas they are for type II secretion. Most interestingly, we showed that one pseudopilin, XcpX, controls the assembly of XcpT into a pseudopilus. Indeed, when the number of XcpX subunits increases, the length of the pseudopilus decreases. Conversely, in the absence of XcpX, the pseudopilus length is abnormally long. Our results indicate that XcpT and XcpX directly interact with each other. Furthermore, this interaction induces a clear destabilization of XcpT. The interaction between XcpT and XcpX could be part of the molecular mechanism underlying the dynamic control of pseudopilus elongation, which could be crucial for type II-dependent protein secretion.  相似文献   

8.
D N Nunn  S Lory 《Journal of bacteriology》1993,175(14):4375-4382
Four components of the apparatus of extracellular protein secretion of Pseudomonas aeruginosa, Xcpt, -U, -V, and -W (XcpT-W), are synthesized as precursors with short N-terminal leader peptides that share sequence similarity with the pilin subunit of this organism. A specialized leader peptidase/methylase, product of the pilD gene, has been shown to cleave the leader peptide from prepilin and to methylate the N-terminal phenylalanine of the mature pilin. Antibodies were prepared against XcpT-W and used to purify each of these proteins. Sequence analysis of XcpT-W has shown that these proteins, like mature pilin, contain N-methylphenylalanine as the N-terminal amino acid. Analysis of cellular fractions from wild-type and pilD mutant strains of P. aeruginosa showed that the precursor forms of XcpT-W are located predominantly in the bacterial inner membrane, and their localization is not altered after PilD-mediated removal of the leader sequence. These studies demonstrate that the biogenesis of the apparatus of extracellular protein secretion and that of type IV pili share a requirement for PilD. This bifunctional enzyme, acting in the inner membrane, cleaves the leader peptides from precursors of pilins and XcpT-W and subsequently methylates the amino group of the N-terminal phenylalanine of each of its substrates.  相似文献   

9.
The general secretory pathway of Pseudomonas aeruginosa is required for the transport of signal peptide-containing exoproteins across the cell envelope. After completion of the Sec-dependent translocation of exoproteins across the inner membrane and cleavage of the signal peptide, the Xcp machinery mediates translocation across the outer membrane. This machinery consists of 12 components, of which XcpQ (GspD) is the sole outer membrane protein. XcpQ forms a multimeric ring-shaped structure, with a central opening through which exoproteins could pass to reach the medium. Surprisingly, all of the other Xcp proteins are located in or are associated with the cytoplasmic membrane. This study is focused on the characteristics of one such cytoplasmic membrane protein, XcpP. An xcpP mutant demonstrated that the product of this gene is indeed an essential element of the P. aeruginosa secretion machinery. Construction and analysis of truncated forms of XcpP made it possible to define essential domains for the function of the protein. Some of these domains, such as the N-terminal transmembrane domain and a coiled-coil structure identified at the C terminus of XcpP, may be involved in protein-protein interaction during the assembly of the secretory apparatus.  相似文献   

10.
11.
Pseudomonas aeruginosa is able to translocate proteins across both membranes of the cell envelope. Many of these proteins are transported via the type II secretion pathway and adopt their tertiary conformation in the periplasm, which implies the presence of a large transport channel in the outer membrane. The outer membrane protein, XcpQ, which is involved in transport of folded proteins across the outer membrane of P . aeruginosa , was purified as a highly stable homomultimer. Insertion and deletion mutagenesis of xcpQ revealed that the C-terminal part of XcpQ is sufficient for the formation of the multimer. However, linker insertions in the N-terminal part can disturb complex formation completely. Furthermore, complex formation is strictly correlated with lethality, caused by overexpression of xcpQ . Electron microscopic evaluation of the XcpQ multimers revealed large, ring-shaped structures with an apparent central cavity of 95 Å. Purified PilQ, a homologue of XcpQ involved in the biogenesis of type IV pili, formed similar structures. However, the apparent cavity formed by PilQ was somewhat smaller, 53 Å. The size of this cavity could allow for the transport of intact type IV pili.  相似文献   

12.
The xcp genes are required for protein secretion by Pseudomonas aeruginosa. They are involved in the second step of the process, i.e. the translocation across the outer membrane, after the exoproteins have reached the periplasm in a signal peptide dependent fashion. The nucleotide sequence of a 2.5 kb DNA fragment containing xcp genes showed at least two complete open reading frames, potentially encoding proteins with molecular weights of 41 and 19 kd. Products with these apparent molecular weights were identified after expression of the DNA fragment in vitro and in vivo. Subcloning and complementation experiments showed that both proteins are required for secretion. The two products are located in the inner membrane and share highly significant homologies with the PulL and PulM proteins which are required for the specific secretion of pullulanase in Klebsiella pneumoniae. These homologies reveal the existence of a common mechanism for protein secretion in Pseudomonas aeruginosa and Klebsiella pneumoniae.  相似文献   

13.
Type IV pili (Tfps) are filamentous surface appendages expressed by Gram-negative microorganisms and play numerous roles in bacterial cell biology. Tfp biogenesis machineries are highly conserved and resemble protein secretion and DNA uptake systems. Although components of Tfp biogenesis systems have been identified, it is not known how they interact to form these machineries. Using the bundle-forming pilus (BFP) of enteropathogenic Escherichia coli as a model Tfp system, we provide evidence of a cytoplasmic membrane subassembly of the Tfp assembly machine composed of putative cytoplasmic nucleotide-binding and cytoplasmic membrane proteins. A combination of genetic, biochemical and biophysical approaches revealed interactions among putative cytoplasmic nucleotide-binding proteins BfpD and BfpF and cytoplasmic membrane proteins BfpC and BfpE of the BFP biogenesis machine. The polytopic membrane protein BfpE appears to be a central component of this subassembly as it interacts with BfpC, BfpD and BfpF. We report that BFP biogenesis probably requires interactions among BfpC, BfpD and BfpE, whereas BFP retraction requires interaction of the PilT-like putative ATPase BfpF with a conserved domain of BfpE. BfpE is the first protein that is not a member of the PilT family to be implicated in Tfp retraction. Furthermore, we found that the putative ATPases BfpD and BfpF play antagonistic roles in BFP biogenesis and retraction, respectively, by interacting with distinct domains of the BFP biogenesis machine.  相似文献   

14.
Pseudomonas aeruginosa exports a number of hydrolytic enzymes and toxins using the type II or general secretion pathway, found in a variety of Gram-negative bacteria and requiring the functions of at least 12 gene products (XcpP–Z and PilD/XcpA in P. aeruginosa ). A number of these gene products are homologues of components of the type IV pilus biogenesis system, including four proteins, XcpT–W, which are highly similar to the pilin subunit in their size, localization and post-translational modifications. These proteins, in addition to the pilin subunit, are cleaved and methylated by the PilD/XcpA prepilin peptidase, but their interactions with other components of the export apparatus are unclear. Using a medium developed for the selection of export-proficient P. aeruginosa strains, we have isolated temperature-sensitive mutations in the xcpT gene and extragenic suppressors for one of the mutants. These suppressors fall into two classes, one that maps outside of the xcpP–Z gene cluster and may define additional cellular functions that are required for export, and a second that maps to the xcpR gene product and indicates a potential protein–protein interaction connecting two different cellular compartments and required for the assembly or function of the export apparatus.  相似文献   

15.
Aeromonas hydrophila secretes several extracellular proteins that are associated with virulence including an enterotoxin, a protease, and the hole-forming toxin, aerolysin. These degradative enzymes and toxins are exported by a conserved pathway found in many Gram-negative bacteria. In Pseudomonas aeruginosa this export pathway and type IV pilus biogenesis are dependent on the product of the pilD gene. PilD is a bifunctional enzyme that processes components of the extracellular secretory pathway as well as a type IV prepilin. An A. hydrophila genomic library was transferred into a P. aeruginosa pilD mutant that is defective for type IV pilus biogenesis. The A. hydrophila pilD homologue, tapD , was identified by its ability to complement the pilD mutation in P. aeruginosa . Transconjugants containing tapD were sensitive to the type IV pilus-specific phage, PO4. Sequence data revealed that tapD is part of a cluster of genes ( tapABCD ) that are homologous to P. aeruginosa type IV pilus biogenesis genes ( pilABCD ). We showed that TapB and TapC are functionally homologous to P. aeruginosa PilB and PilC, the first such functional complementation of pilus assembly demonstrated between bacteria that express type IV pili. In vitro studies revealed that TapD has both endopeptidase and N -methyltransferase activities using P. aeruginosa prepilin as substrate. Furthermore, we show that tapD is required for extracellular secretion of aerolysin and protease, indicating that tapD may play an important role in the virulence of A. hydrophila  相似文献   

16.
A total of 37 separate mutants containing single and multiple amino acid substitutions in the leader and amino-terminal conserved region of the Type IV pilin from Pseudomonas aeruginosa were generated by oligonucleotide-directed mutagenesis. The effect of these substitutions on the secretion, processing, and assembly of the pilin monomers into mature pili was examined. The majority of substitutions in the highly conserved amino-terminal region of the pilin monomer had no effect on piliation. Likewise, substitution of several of the residues within the six amino acid leader sequence did not affect secretion and leader cleavage (processing), including replacement of one or both of the positively charged lysine residues with uncharged or negatively charged amino acids. One characteristic of the Type IV pili is the presence of an amino-terminal phenylalanine after leader peptide cleavage which is N-methylated prior to assembly of pilin monomers into pili. Substitution of the amino-terminal phenylalanine with a number of other amino acids, including polar, hydrophobic, and charged residues, did not affect proper leader cleavage and subsequent assembly into pili. Amino-terminal sequencing showed that the majority of substitute residues were also methylated. Substitution of the glycine residue at the -1 position to the cleavage site resulted in the inability to cleave the prepilin monomers and blocked the subsequent assembly of monomers into pili. These results indicate that despite the high degree of conservation in the amino-terminal sequences of the Type IV pili, N-methylphenylalanine at the +1 position relative to the leader peptide cleavage site is not strictly required for pilin assembly. N-Methylation of the amino acids substituted for phenylalanine was shown to have taken place in four of the five mutants tested, but it remains unclear as to whether pilin assembly is dependent on this modification. Recognition and proper cleavage of the prepilin by the leader peptidase appears to be dependent only on the glycine residue at the -1 position. Cell fractionation experiments demonstrated that pilin isolated from mutants deficient in prepilin processing and/or assembly was found in both inner and outer membrane fractions, indistinguishable from the results seen with the wild type.  相似文献   

17.
The type II secretion pathway of Pseudomonas aeruginosa is involved in the extracellular release of various toxins and hydrolytic enzymes such as exotoxin A and elastase. This pathway requires the function of a macromolecular complex called the Xcp secreton. The Xcp secreton shares many features with the machinery involved in type IV pilus assembly. More specifically, it involves the function of five pilin-like proteins, the XcpT-X pseudopilins. We show that, upon overexpression, the XcpT pseudopilin can be assembled in a pilus, which we call a type II pseudopilus. Image analysis and filtering of electron micrographs indicated that these appendages are composed of individual fibrils assembled together in a bundle structure. Our observations thus revealed that XcpT has properties similar to those of type IV pilin subunits. Interestingly, the assembly of the type II pseudopilus is not exclusively dependent on the Xcp machinery but can be supported by other similar machineries, such as the Pil (type IV pilus) and Hxc (type II secretion) systems of P. aeruginosa. In addition, heterologous pseudopilins can be assembled by P. aeruginosa into a type II pseudopilus. Finally, we showed that assembly of the type II pseudopilus confers increased bacterial adhesive capabilities. These observations confirmed the ability of pseudopilins to form a pilus structure and raise questions with respect to their function in terms of secretion and adhesion, two crucial biological processes in the course of bacterial infections.  相似文献   

18.
Enteropathogenic Escherichia coli expresses a type IV fimbria known as the bundle-forming pilus (BFP) that is required for autoaggregation and localized adherence (LA) to host cells. A cluster of 14 genes is sufficient to reconstitute BFP biogenesis in a laboratory strain of E. coli. We have undertaken a systematic mutagenesis of the individual genes to determine the effect of each mutation on BFP biogenesis and LA. Here we report the construction and analysis of nonpolar mutations in six genes of the bfp cluster, bfpG, bfpB, bfpC, bfpD, bfpP, and bfpH, as well as the further analysis of a previously described bfpA mutant strain that is unable to express bundlin, the pilin protein. We found that mutations in bfpB, which encodes an outer membrane protein; bfpD, which encodes a putative nucleotide-binding protein; and bfpG and bfpC, which do not have sequence homologues in other type IV pilus systems, do not affect prebundlin expression or processing but block both BFP biogenesis and LA. The mutation in bfpP, the prepilin peptidase gene, does not affect prebundlin expression but blocks signal sequence cleavage of prebundlin, BFP biogenesis, and LA. The mutation in bfpH, which is predicted to encode a lytic transglycosylase, has no effect on prebundlin expression, prebundlin processing, BFP biogenesis, or LA. For each mutant for which altered phenotypes were detected, complementation with a plasmid containing the corresponding wild-type allele restored the wild-type phenotypes. We also found that association of prebundlin or bundlin with sucrose density flotation gradient fractions containing both inner and outer membrane proteins does not require any accessory proteins. These studies indicate that many bfp gene products are required for biogenesis of functional type IV pili but that mutations in the individual genes do not lead to the identification of new phases of pilus assembly.  相似文献   

19.
Recent advances in the structure and assembly of the archaeal flagellum   总被引:4,自引:0,他引:4  
Archaeal motility occurs through the rotation of flagella that are distinct from the flagella found on bacteria. The differences between the two structures include the multi-flagellin nature of the archaeal filament, the widespread posttranslational modification of the flagellins and the presence of a short signal peptide on each flagellin that is cleaved by a specific signal peptidase prior to the incorporation of the mature flagellin into the flagellar filament. Research has revealed similarities between the archaeal flagellum and the type IV pilus, including the presence of similar unusual signal peptides on the flagellins and pilins, similarities in the amino acid sequences of the major structural proteins themselves, as well as similarities between potential assembly and processing components. The recent suggestion that type IV pili are part of a family of cell surface complexes, coupled with the similarities between type IV pili and archaeal flagella, raise questions about the evolution of these systems and possible inclusion of archaeal flagella into this surface complex family.  相似文献   

20.
Type IV pili: paradoxes in form and function   总被引:3,自引:0,他引:3  
Type IV pili are filaments on the surfaces of many Gram-negative bacteria that mediate an extraordinary array of functions, including adhesion, motility, microcolony formation and secretion of proteases and colonization factors. Their prominent display on the surfaces of many bacterial pathogens, their vital role in virulence, and their ability to elicit an immune response make Type IV pilus structures particularly relevant for study as targets for component vaccines and therapies. Structural studies of the pili and components of the pilus assembly apparatus have proven extremely challenging, but new approaches and methods have produced important breakthroughs that are advancing our understanding of pilus functions and their complex assembly mechanism. These structures provide insights into the biology of Type IV pili as well as that of the related bacterial secretion and archaeal flagellar systems. This review will summarize the most recent structural advances on Type IV pili and their assembly components and highlight their significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号