首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
High density lipoprotein (HDL) mediates reverse transport of cholesterol from atheroma foam cells to the liver, but the mechanisms of hepatic uptake and trafficking of HDL particles are poorly understood. In contrast to its accepted role as a cell surface receptor, scavenger receptor class B type 1 (SR-BI) is shown to be an endocytic receptor that mediates HDL particle uptake and recycling, but not degradation, in both transfected Chinese hamster ovary cells and hepatocytes. Confocal microscopy of polarized primary hepatocytes shows that HDL particles enter both the endocytic recycling compartment and the apical canalicular region paralleling the movement of SR-BI. In polarized epithelial cells (Madin-Darby canine kidney) expressing SR-BI, HDL protein and cholesterol undergo selective sorting with recycling of HDL protein from the basolateral membrane and secretion of HDL-derived cholesterol through the apical membrane. Thus, HDL particles, internalized via SR-BI, undergo a novel process of selective transcytosis, leading to polarized cholesterol transport. A distinct process not mediated by SR-BI is involved in uptake and degradation of apoE-free HDL in hepatocytes.  相似文献   

2.
The scavenger receptor class B type I (SR-BI) binds to HDL and mediates the selective uptake of cholesterol esters from HDL to cells. SR-BII is an alternatively spliced product of the SR-BI gene that only differs in the C-terminal cytoplasmic domain. Previous studies with male mice demonstrated that SR-BII comprises about 12% of the total SR-BI/SR-BII present in liver. In the current studies we used a liver cell line, HepG2, and a rat estrogen replacement model to examine the effects of estrogen on the expression of SR-BII. HepG2 cells express SR-BI but not SR-BII. SR-BI/SR-BII - blocking antibodies demonstrated that HepG2 cells selectively internalize cholesterol esters in a SR-BI - dependent manner. Incubation of HepG2 cells with 10 pM of 17beta-estradiol for 12 h eliminated the expression of SR-BI and promoted the up-regulation of SR-BII. Radiolabeled HDL-binding studies demonstrated that 17beta-estradiol increased the number of HDL binding sites by 3-fold in HepG2 cells. However, 17beta-estradiol - treated cell internalized approximately 25% less cholesterol ester than vehicle-only-treated cells. The livers obtained from male rats and ovariectomized female rats contained SR-BI and a small amount of SR-BII. In contrast, the livers obtained from intact female rats and ovariectomized female rats receiving estrogen replacement contained SR-BII and a small amount of SR-BI. The amount of SR-BI and SR-BII in adrenal tissue was not affected by any of the experimental treatments.We conclude that estrogen up-regulates SR-BII in HepG2 cells and rat liver.  相似文献   

3.
Scavenger receptor, class B, type I (SR-BI) mediates selective uptake of high density lipoprotein (HDL) cholesteryl ester. SR-BI recognizes HDL, low density lipoprotein (LDL), exchangeable apolipoproteins, and protein-free lipid vesicles containing negatively charged phospholipids. Lipopolysaccharides (LPS) are highly glycosylated anionic phospholipids contributing to septic shock. Despite significant structural similarities between anionic phospholipids and LPS, the role of SR-BI in LPS uptake is unknown. Cla-1, the human SR-BI orthologue, was determined to be a LPS-binding protein and endocytic receptor mediating the binding and internalization of lipoprotein-free, monomerized LPS. LPS strongly competed with HDL, lipidfree apoA-I and apoA-II for HDL binding to the mouse RAW cells. Stably transfected HeLa cells expressing Cla-1-bound LPS with a Kd of about 16 microg/ml, and had a 3-4-fold increase in binding capacity and LPS uptake. Bodipy-labeled LPS uptake was found to initially accumulate in the plasma membrane and subsequently in a perinuclear region identified predominantly as the Golgi complex. Bodipy-LPS and Alexa-apoA-I had staining that colocalized on the cell surface and intracellularly indicating similar transport mechanisms. When associated with HDL, LPS uptake was increased in Cla-1 overexpressing HeLa cells by 5-10-fold. Cla-1-associated 3H-LPS uptake exceeded 125I-apolipoprotein uptake by 5-fold indicating a selective LPS uptake. Upon interacting with Cla-1 overexpressing HeLa cells, the complex (Bodipy-LPS/Alexa 488 apolipoprotein-labeled HDL) bound and was internalized as a holoparticle. Intracellularly, LPS and apolipoproteins were sorted to different intracellular compartments. With LPS-associated HDL, intracellular LPS co-localized predominantly with transferrin, indicating delivery to an endocytic recycling compartment. Our study reveals a close similarity between Cla-1-mediated selective LPS uptake and the recently described selective lipid sorting by rodent SR-BI. In summary, Cla-1 was found to bind and internalize monomerized and HDL-associated LPS, indicating that Cla-1 may play important role in septic shock by affecting LPS cellular uptake and clearance.  相似文献   

4.
Serum amyloid A is an acute phase protein that is carried in the plasma largely as an apolipoprotein of high density lipoprotein (HDL). In this study we investigated whether SAA is a ligand for the HDL receptor, scavenger receptor class B type I (SR-BI), and how SAA may influence SR-BI-mediated HDL binding and selective cholesteryl ester uptake. Studies using Chinese hamster ovary cells expressing SR-BI showed that (125)I-labeled SAA, both in lipid-free form and in reconstituted HDL particles, functions as a high affinity ligand for SR-BI. SAA also bound with high affinity to the hepatocyte cell line, HepG2. Alexa-labeled SAA was shown by fluorescence confocal microscopy to be internalized by cells in a SR-BI-dependent manner. To assess how SAA association with HDL influences HDL interaction with SR-BI, SAA-containing HDL was isolated from mice overexpressing SAA through adenoviral gene transfer. SAA presence on HDL had little effect on HDL binding to SR-BI but decreased (30-50%) selective cholesteryl ester uptake. Lipid-free SAA, unlike lipid-free apoA-I, was an effective inhibitor of both SR-BI-dependent binding and selective cholesteryl ester uptake of HDL. We have concluded that SR-BI plays a key role in SAA metabolism through its ability to interact with and internalize SAA and, further, that SAA influences HDL cholesterol metabolism through its inhibitory effects on SR-BI-mediated selective lipid uptake.  相似文献   

5.
Scavenger receptor, class B, type I (SR-BI) mediates binding and internalization of a variety of lipoprotein and nonlipoprotein ligands, including HDL. Studies in genetically engineered mice revealed that SR-BI plays an important role in HDL reverse cholesterol transport and protection against atherosclerosis. Understanding how SR-BI's function is regulated may reveal new approaches to therapeutic intervention in atherosclerosis and heart disease. We utilized a model cell system to explore pathways involved in SR-BI-mediated lipid uptake from and signaling in response to distinct lipoprotein ligands: the physiological ligand, HDL, and a model ligand, acetyl LDL (AcLDL). In Chinese hamster ovary-derived cells, murine SR-BI (mSR-BI) mediates lipid uptake via distinct pathways that are dependent on the lipoprotein ligand. Furthermore, HDL and AcLDL activate distinct signaling pathways. Finally, mSR-BI-mediated selective lipid uptake versus endocytic uptake are differentially regulated by protein kinase signaling pathways. The protein kinase C (PKC) activator PMA and the phosphatidyl inositol 3-kinase inhibitor wortmannin increase the degree of mSR-BI-mediated selective lipid uptake, whereas a PKC inhibitor has the opposite effect. These data demonstrate that SR-BI's selective lipid uptake activity can be acutely regulated by intracellular signaling cascades, some of which can originate from HDL binding to murine SR-BI itself.  相似文献   

6.
Hepatoma cell lines serve as a suitable model to study hepatic clearance of lipoprotein-associated cholesteryl esters (CEs). The present study aimed at investigating holoparticle-association of and selective CE-uptake from human high density lipoprotein subclass 3 (HDL3) by non-malignant adult (Chang-liver) and non-malignant fetal (WRL-68) epithelial cell lines as well as a hepatocellular carcinoma (HUH-7) cell line. Binding properties of 125I-HDL3 at 4 and 37 degrees C were similar for all three cell lines while degradation rates were highest for Chang-liver cells. Calculating the selective uptake of HDL3-associated CEs as the difference between [3H]CE- and 125I-HDL3 cell-association revealed that the selective lipid uptake and holoparticle-association was similar in Chang-liver while in WRL-68 and HUH-7 cells pronounced capacity for lipid tracer uptake in excess of holoparticle uptake was measured. Using RT-PCR, Northern and Western blot analysis, as well as immunocytochemical technique pronounced expression of scavenger receptor class B, type I (SR-BI) but not SR-BII (a splice variant of SR-BI less efficient for selective CE-uptake than SR-BI) could be identified in HUH-7 and WRL-68 cells. A polyclonal antiserum raised against SR-BI significantly decreased cell-association of [3H]CE-HDL3 in HUH-7 and WRL-68. The present findings suggest that the capacity for selective cholesteryl ester-uptake from high density lipoprotein by malignant and normal epithelial cells from the liver depends on expression of the scavenger receptor class B, type I.  相似文献   

7.
The high density lipoprotein (HDL) receptor Scavenger Receptor BII (SR-BII) is encoded by an alternatively spliced mRNA from the SR-BI gene and is expressed in various tissues. SR-BII protein differs from SR-BI only in the carboxyl-terminal cytoplasmic tail, which, as we showed previously, must contain a signal that confers predominant intracellular expression and rapid endocytosis of HDL. We have shown that SR-BII mediates HDL endocytosis through aclathrin-dependent, caveolae-independent pathway. Two candidate amino acid motifs were identified in the tail that could mediate association with clathrin-containing endocytic vesicles: a putative dileucine motif at position 492-493 and an overlapping tyrosine-based YXXZ motif starting at position 489. Although substitution of tyrosine at position 489 with alanine or histidine did not affect endocytosis, substitution L492A resulted in increased surface binding of HDL and reduced HDL particle endocytosis. Substitution L493A had a less dramatic effect. No other regions in the carboxyl-terminal tail appeared to contain motifs required for HDL endocytosis. Substitutions of leucine at position 492 with the hydrophobic amino acids valine or phenylalanine also reduced HDL endocytosis, stressing the importance of leucine at this position. Introducing the SR-BII YTPLL motif into the carboxyl-terminal cytoplasmic tail of SR-BI converted SR-BI into an endocytic receptor resembling SR-BII. These results demonstrated that SR-BII differs from SR-BI in subcellular localization and trafficking and suggest that the two isoforms differ in the manner in which they target ligands intracellularly.  相似文献   

8.
This study investigates the relationship between the high density lipoprotein (HDL) receptor (scavenger receptors, SR-BI and SR-BII), selective lipoprotein-cholesteryl ester uptake, and testosterone production in Leydig cells of control, hypocholesterolemic and gonadotrophic hormone (hCG) treated rats. Leydig cells from mature control rats show poor efficiency in incorporation of labeled HDL-cholesteryl esters into testosterone, poor selective uptake of lipoprotein lipids overall, and a dramatic reduction of circulating levels of lipoproteins has no apparent effect on testosterone production or expression of intracellular enzymes synthesizing cholesterol. Leydig cells from control rats show minimal levels of SR-BI and SR-BII. However, similarly aged rats treated with hCG for several days undergo changes consistent with hormone-desensitization. Despite the resulting low levels of testosterone production, SR-BI levels are dramatically increased, Leydig cells now efficiently internalize HDL-supplied cholesteryl esters by the selective cholesterol uptake process, and various other cholesterol-sensitive genes of the cells are up-regulated. Only SR-BII expression remains negligible and unchanged throughout this period. It is of interest that Leydig cell SR-BI of hCG-treated rats is localized in surface microvilli, but is present also in an elaborate and complex channel system within the cytoplasm of the cells. In summary, Leydig cells differ from other rat steroidogenic cells in not depending on exogenous lipoprotein-cholesterol during periods of normal steroid hormone production. However, trophic hormone desensitization is accompanied by increased Leydig cell SR-BI expression and increased selective HDL-cholesteryl ester uptake, presumably in preparation for renewed testosterone production.  相似文献   

9.
This study has examined the dimeric/oligomeric forms of scavenger receptor class B type I (SR-BI) and its alternatively spliced form, SR-BII, in a diverse group of cells and tissues: i.e., normal and hormonally altered tissues of mice and rats as well as tissues of transgenic animals and genetically altered steroidogenic and nonsteroidogenic cells overexpressing the SR-B proteins. Using both biochemical and morphological techniques, we have seen that these dimeric and higher order oligomeric forms of SR-BI expression are strongly associated with both functional and morphological expression of the selective HDL cholesteryl ester uptake pathway. Rats and mice show some species differences in expression of SR-BII dimeric forms; this difference does not extend to the use of SR-B cDNA types for transfection purposes. In a separate study, cotransfection of HEK293 cells with cMyc and V5 epitope-tagged SR-BI permitted coprecipitation and quantitative coimmunocytochemical measurements at the electron microscope level, suggesting that much of the newly expressed SR-BI protein in stimulated cells dimerizes and that the SR-BI dimers are localized to the cell surface and specifically to microvillar or double membraned intracellular channels. These combined data suggest that SR-BI self-association represents an integral step in the selective cholesteryl ester uptake process.  相似文献   

10.
We analyzed the intracellular transport of HDL and its associated free sterol in polarized human hepatoma HepG2 cells. Using pulse-chase protocols, we demonstrated that HDL labeled with Alexa 488 at the apolipoprotein (Alexa 488-HDL) was internalized by a scavenger receptor class B type I (SR-BI)-dependent process at the basolateral membrane and became enriched in a subapical/apical recycling compartment. Most Alexa 488-HDL was rapidly recycled to the basolateral cell surface and released from cells. Within 30 min of chase at 37 degrees C, approximately 3% of the initial cell-associated Alexa 488-HDL accumulated in the biliary canaliculus (BC) formed at the apical pole of polarized HepG2 cells. Even less Alexa 488-HDL was transported to late endosomes or lysosomes. The fluorescent cholesterol analog dehydroergosterol (DHE) incorporated into Alexa 488-HDL was delivered to the BC within a few minutes, independent of the labeled apolipoprotein. This transport did not require metabolic energy and could be blocked by antibodies against SR-BI. The fraction of cell-associated DHE transported to the BC was comparable when cells were incubated with either Alexa 488-HDL containing DHE or with DHE bound to methyl-beta-cyclodextrin. We conclude that rapid, nonvesicular transport of sterol to the BC and efficient recycling of HDL particles underlies the selective sorting of sterol from HDLs in hepatocytes.  相似文献   

11.
The class B scavenger receptors SR-BI and CD36 exhibit a broad ligand binding specificity. SR-BI is well characterized as a HDL receptor that mediates selective cholesteryl ester uptake from HDL. CD36, a receptor for oxidized LDL, also binds HDL and mediates selective cholesteryl ester uptake, although much less efficiently than SR-BI. Apolipoprotein A-II (apoA-II), the second most abundant HDL protein, is considered to be proatherogenic, but the underlying mechanisms are unclear. We previously showed that apoA-II modulates SR-BI-dependent binding and selective uptake of cholesteryl ester from reconstituted HDL. To investigate the effect of apoA-II in naturally occurring HDL on these processes, we compared HDL without apoA-II (from apoA-II null mice) with HDLs containing differing amounts of apoA-II (from C57BL/6 mice and transgenic mice expressing a mouse apoA-II transgene). The level of apoA-II in HDL was inversely correlated with HDL binding and selective cholesteryl ester uptake by both scavenger receptors, particularly CD36. Interestingly, for HDL lacking apoA-II, the efficiency with which CD36 mediated selective uptake reached a level similar to that of SR-BI. These results demonstrate that apoA-II exerts a marked effect on HDL binding and selective lipid uptake by the class B scavenger receptors and establishes a potentially important relationship between apoA-II and CD36.  相似文献   

12.
Endocytic motifs in the carboxyl terminus of cystic fibrosis transmembrane conductance regulator (CFTR) direct internalization from the plasma membrane by clathrin-mediated endocytosis. However, the fate of such internalized CFTR has remained unknown. Internalized membrane proteins can be either targeted for degradation or recycled back to the plasma membrane. Using cell surface biotinylation and antibody uptake studies, we show that CFTR undergoes constitutive endocytosis and recycling back to the plasma membrane. Expression of dominant negative Rme-1 (a protein that regulates exit from the endosomal recycling compartment) in CFTR-expressing cells results in the expansion of recycling compartments. Transferrin, a marker for the endosomal recycling compartment, and CFTR accumulate in these enlarged recycling endosomes. Such accumulation leads to a loss of cell surface CFTR because it is prevented from being recycled back to the cell surface. In contrast, traffic of the low-density lipoprotein (LDL) is unaffected by the expression of dominant negative Rme-1. In addition, chimeras containing the extracellular domain of the transferrin receptor and the carboxyl terminal tail of CFTR also enter Rme-1-regulated recycling compartments and accumulate in these compartments containing dominant negative Rme-1, suggesting that in addition to endocytic signals, the carboxyl terminal tail of CFTR also contains intracellular traffic information.  相似文献   

13.
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) by the liver. Hepatic lipase (HL) promotes this lipid uptake independent from lipolysis. The role of SR-BI in this HL-mediated increase in selective CE uptake was explored. Baby hamster kidney (BHK) cells were transfected with the SR-BI cDNA yielding cells with SR-BI expression, whereas no SR-BI was detected in control cells. These cells were incubated in medium containing 125I [3H]cholesteryl oleyl ether-labeled HDL3 (d = 1.125-1.21 g/ml) and HL was absent or present. Tetrahydrolipstatin (THL) blocked lipolysis. In control BHK cells and in BHK cells with SR-BI, HDL3 selective CE uptake (3H-125I) was detectable and SR-BI promoted this uptake. In both cell types, HL mediated an increase in selective CE uptake from HDL3. Quantitatively, this HL effect was similar in control BHK cells and in BHK cells with SR-BI. These results suggest that HL promotes selective uptake independent from SR-BI. To investigate the role of cell surface proteoglycans on the HL-mediated HDL3 uptake, proteoglycan deficiency was induced by heparinase digestion. Proteoglycan deficiency decreased the HL-mediated promotion of selective CE uptake. In summary, the stimulating HL effect on HDL selective CE uptake is independent from SR-BI and lipolysis. Proteoglycans are a requisite for the HL action on selective uptake. Results suggest that (a) pathway(s) distinct from SR-BI mediate(s) selective CE uptake from HDL.  相似文献   

14.
Classically, the polymeric immunoglobulin receptor and its ligand, IgA, are thought to be sorted from basolateral early endosomes into transcytotic vesicles that directly fuse with the apical plasma membrane. In contrast, we have found that in MDCK cells IgA is delivered from basolateral endosomes to apical endosomes and only then to the apical cell surface. When internalized from the basolateral surface of MDCK cells IgA is found to accumulate under the apical plasma membrane in a compartment that is accessible to two apically added membrane markers: anti-secretory component Fab fragments, and avidin internalized from the biotinylated apical pole of the cell. This accumulation occurs in the presence of apical trypsin, which prevents internalization of the ligand from the apical cell surface. Using a modification of the diaminobenzidine density-shift assay, we estimate that approximately 80% of basolaterally internalized IgA resides in the apical endosomal compartment. In addition, approximately 50% of basolaterally internalized transferrin, a basolateral recycling protein, has access to this apical endosomal compartment and is efficiently recycled back to the basolateral surface. Microtubules are required for the organization of the apical endosomal compartment and it is dispersed in nocodazole-treated cells. Moreover, this compartment is largely inaccessible to fluid-phase markers added to either pole of the cell, and therefore seems analogous to the recycling endosome described in nonpolarized cells. We propose a model in which transcytosis is not a specialized pathway that uses unique transcytotic vesicles, but rather combines portions of pathways used by non- transcytosing molecules.  相似文献   

15.
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) by the liver. LPL promotes this selective lipid uptake independent of lipolysis. In this study, the role of SR-BI in the mechanism of this LPL-mediated increase in selective CE uptake was explored. Baby hamster kidney (BHK) cells were transfected with the SR-BI cDNA, and significant SR-BI expression could be detected in immunoblots, whereas no SR-BI was visualized in control cells. Y1-BS1 murine adrenocortical cells were cultured without or with adrenocorticotropic hormone, and cells with no detectable or with SR-BI were obtained. These cells incubated without or with LPL in medium containing 125I/[3H]cholesteryl oleyl ether- labeled HDL3; tetrahydrolipstatin inhibited the catalytic activity of LPL. In BHK and in Y1-BS1 cells without or with SR-BI expression, apparent HDL3 selective CE uptake ([3H]CEt - 125I) was detectable. Cellular SR-BI expression promoted HDL3 selective CE uptake by approximately 250-1,900%. In BHK or Y1-BS1 cells, LPL mediated an increase in apparent selective CE uptake. Quantitatively, this stimulating LPL effect was very similar in control cells and in cells with SR-BI expression. The uptake of radiolabeled HDL3 was also investigated in human embryonal kidney 293 (HEK 293) cells that are an established SR-BI-deficient cell model. LPL stimulated [3H]cholesteryl oleyl ether uptake from labeled HDL3 by HEK 293 cells substantially, showing that LPL can induce selective CE uptake from HDL3 independent of SR-BI. To explore the role of cell surface proteoglycans on lipoprotein uptake, we induced proteoglycan deficiency by heparinase treatment. Proteoglycan deficiency decreased the LPL-mediated promotion of HDL3 selective CE uptake. In summary, evidence is presented that the stimulating effect of LPL on HDL3 selective CE uptake is independent of SR-BI and lipolysis. However, cell surface proteoglycans are required for the LPL action on selective CE uptake. It is suggested that pathways distinct from SR-BI mediate selective CE uptake from HDL.  相似文献   

16.
Previous reports attributed cholesteryl ester transfer protein (CETP)-mediated HDL cholesteryl ester (CE) selective uptake to the CETP-mediated transfer of CE from HDL to newly secreted apolipoprotein B-containing lipoproteins, which are then internalized by the LDL receptor (LDL-R). CETP has also been implicated in the remodeling of HDL, which renders it a better substrate for selective uptake by scavenger receptor class B type I (SR-BI). However, CETP-mediated selective uptake of HDL3-derived CE was not diminished in LDL-R null adipocytes, SR-BI null adipocytes, or in the presence of the receptor-associated protein. We found that monensin treatment or energy depletion of the SW872 liposarcoma cells with 2-deoxyglucose and NaN3 had no effect on CETP-mediated selective uptake, demonstrating that endocytosis is not required. This is supported by data indicating that CETP transfers CE into a compartment from which it can be extracted by unlabeled HDL. CETP could also mediate the selective uptake of HDL3-derived triacylglycerol (TG) and phospholipid (PL). The CETP-specific kinetics for TG and CE uptake were similar, and both reached saturation at approximately 5 microg/ml HDL. In contrast, CETP-specific PL uptake did not attain saturation at 5 microg/ml HDL and was approximately 6-fold greater than the uptake of CE. We propose two possible mechanisms to account for the role of CETP in selective uptake.  相似文献   

17.
Hepatic lipase (HL) plays a major role in high-density lipoprotein (HDL) metabolism both as a lipolytic enzyme and as a ligand. To investigate whether HL enhances the uptake of HDL-cholesteryl ester (CE) via the newly described scavenger receptor BI (SR-BI), we measured the effects of expressing HL and SR-BI on HDL-cell association as well as uptake of 125I-labeled apoA-I and [3H]CE-HDL, by embryonal kidney 293 cells. As expected, HDL cell association and CE selective uptake were increased in SR-BI transfected cells by 2- and 4-fold, respectively, compared to controls (P < 0.001). Cells transfected with HL alone or in combination with SR-BI expressed similar amounts of HL, 20% of which was bound to cell surface proteoglycans. HL alone increased HDL cell association by 2-fold but had no effect on HDL-CE uptake in 293 cells. However, in cells expressing SR-BI, HL further enhanced the selective uptake of CE from HDL by 3-fold (P < 0.001). To determine whether the lipolytic and/or ligand function of HL are required in this process, we generated a catalytically inactive form of HL (HL-145G). Cells co-transfected with HL-145G and SR-BI increased their HDL cell association and HDL-CE selective uptake by 1.4-fold compared to cells expressing SR-BI only (P < 0.03). Heparin abolished the effect of HL-145G on SR-BI-mediated HDL-CE selective uptake.Thus, the enhanced uptake of HDL-CE by HL is mediated by both its ligand role, which requires interaction with proteoglycans, and by lipolysis with subsequent HDL particle remodeling. These results establish HL as a major modulator of SR-BI mediated selective uptake of HDL-CE.  相似文献   

18.
The scavenger receptor class B, type I (SR-BI) mediates the cellular selective uptake of cholesteryl esters and other lipids from high-density lipoproteins (HDL) and low-density lipoproteins (LDL). This process, unlike classical receptor-mediated endocytosis, does not result in lipoprotein degradation. Instead, the lipid depleted particles are released into the medium. Here we show that selective lipid uptake mediated by murine SR-BI can be uncoupled from the endocytosis of HDL or LDL particles. We found that blocking selective lipid uptake by incubating cells with the small chemical inhibitors BLT-1 or BLT-4 did not affect endocytosis of HDL. Similarly, blocking endocytosis by hyperosmotic sucrose or K+ depletion did not prevent selective lipid uptake from HDL or LDL. These findings suggest that mSR-BI-mediated selective uptake occurs at the cell surface upon the association of lipoproteins with mSR-BI and does not require endocytosis of HDL or LDL particles.  相似文献   

19.
Scavenger receptor (SR)-BI is the first molecularly defined receptor for high density lipoprotein (HDL) and it can mediate the selective uptake of cholesteryl ester into cells. To elucidate the molecular mechanisms by which SR-BI facilitates lipid uptake, we examined the connection between lipid donor particle binding and lipid uptake using kidney COS-7 cells transiently transfected with SR-BI. We systematically compared the uptake of [(3)H]cholesteryl oleoyl ether (CE) and [(14)C]sphingomyelin (SM) from apolipoprotein (apo) A-I-containing reconstituted HDL (rHDL) particles and apo-free lipid donor particles. Although both types of lipid donor could bind to SR-BI, only apo-containing lipid donors exhibited preferential delivery of CE over SM (i.e. nonstoichiometric lipid uptake). In contrast, apo-free lipid donor particles (phospholipid unilamellar vesicles, lipid emulsion particles) gave rise to stoichiometric lipid uptake due to interaction with SR-BI. This apparent whole particle uptake was not due to endocytosis, but rather fusion of the lipid components of the lipid donor with the cell plasma membrane; this process is perhaps mediated by a fusogenic motif in the extracellular domain of SR-BI. The interaction of apoA-I with SR-BI not only prevents fusion of the lipid donor with the plasma membrane but also allows the optimal selective lipid uptake. A comparison of rHDL particles containing apoA-I and apoE-3 showed that while both particles bound equally well to SR-BI, the apoA-I particle gave approximately 2-fold greater CE selective uptake. Catabolism of all major HDL lipids can occur via SR-BI with the relative selective uptake rate constants for CE, free cholesterol, triglycerides (triolein), and phosphatidylcholine being 1, 1.6, 0.7, and 0.2, respectively. It follows that a putative nonpolar channel created by SR-BI between the bound HDL particle and the cell plasma membrane is better able to accommodate the uptake of neutral lipids (e.g. cholesterol) relative to polar phospholipids.  相似文献   

20.
Previous studies have suggested that HDL retroendocytosis may play a role in scavenger receptor class B type I (SR-BI)-dependent selective lipid uptake in a cell-specific manner. To investigate this possibility, we developed methods to quantitatively measure HDL uptake and resecretion in fibroblast (COS-7) and hepatocyte (HepG2) cells expressing exogenous SR-BI. Approximately 17% and 24% of HDL associated in an SR-BI-dependent manner with COS-7 and HepG2 cells, respectively, accumulates intracellularly after a 10 min incubation. To determine whether this intracellular HDL undergoes retroendocytosis, we developed a pulse-chase assay whereby internalized biotinylated (125)I-HDL(3) secreted from cells is quantitatively precipitated from cell supernatants using immobilized streptavidin. Our results show a rapid secretion of a portion of intracellular HDL from both cell types (representing 4-7% of the total cell-associated HDL) that is almost complete within 30 min (half-life approximately 10 min). In COS-7 cells, the calculated rate of HDL secretion ( approximately 0.5 ng HDL/mg/min) was >30-fold slower than the rate of SR-BI-dependent selective cholesteryl ester (CE) uptake ( approximately 17 ng HDL/mg/min), whereas the rate of release of HDL from the cell surface ( approximately 19 ng HDL/mg/min) was similar to the rate of selective CE uptake. Notably, the rate of SR-BI-dependent HDL resecretion in COS-7 and HepG2 cells was similar. BLT1, a compound that inhibits selective CE uptake, does not alter the amount of SR-BI-mediated HDL retroendocytosis in COS-7 cells. From these data, we conclude that HDL retroendocytosis in COS-7 and HepG2 cells is similar and that the vast majority of SR-BI-dependent selective uptake occurs at the cell surface in both cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号