共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome cohesion and segregation in mitosis and meiosis 总被引:9,自引:0,他引:9
Frank Uhlmann 《Current opinion in cell biology》2001,13(6):754-761
The faithful segregation of the genetic material into daughter cells during cell division is crucial for the production of healthy progeny. Sister chromatid cohesion and separation are fundamental to this process. Progress has been made in our molecular understanding of cohesion and mechanisms for the dissolution of cohesion have been uncovered. 相似文献
2.
New topoisomerase essential for chromosome segregation in E. coli 总被引:50,自引:0,他引:50
The nucleotide sequence of the parC gene essential for chromosome partition in E. coli was determined. The deduced amino acid sequence was homologous to that of the A subunit of gyrase. We found another new gene coding for about 70 kd protein. The gene was sequenced, and the deduced amino acid sequence revealed that the gene product was homologous to the gyrase B subunit. Mutants of this gene were isolated and showed the typical Par phenotype at nonpermissive temperature; thus the gene was named parE. Enhanced relaxation activity of supercoiled plasmid molecules was detected in the combined crude cell lysates prepared from the ParC and ParE overproducers. A topA mutation defective in topoisomerase I could be compensated by increasing both the parC and the parE gene dosage. It is suggested that the parC and parE genes code for the subunits of a new topoisomerase, named topo IV. 相似文献
3.
The localization of SeqA, thymidylate synthase, DnaB (helicase) and the DNA polymerase components alpha and tau, has been studied by immunofluorescence microscopy. The origin has been labelled through GFP-LacI bound near oriC. SeqA was located in the cell centre for one replication factory (RF) and at 1/4 and 3/4 positions in pre-divisional cells harbouring two RFs. The transition of central to 1/4 and 3/4 positions of SeqA appeared abrupt. Labelled thymidylate synthetase was found all over the cell, thus not supporting the notion of a dNTP-synthesizing complex exclusively localized near the RF. More DnaB, alpha and tau foci were found than expected. We have hypothesized that extra foci arise at pre-replication assembly sites, where the number of sites equals the number of origins, i.e. the number of future RFs. A reasonable agreement was found between predicted and found foci. In the case of multifork replication the number of foci appeared consistent with the assumption that three RFs are grouped into a higher-order structure. The RF is probably separate from the foci containing SeqA and the hemi-methylated SeqA binding sites because these foci did not coincide significantly with DnaB as marker of the RF. Co-labelling of DnaB and oriC revealed limited colocalization, indicating that DnaB did not yet become associated with oriC at a pre-replication assembly site. DnaB and tau co-labelled in the cell centre, though not at presumed pre-replication assembly sites. By contrast, alpha and tau co-labelled consistently suggesting that they are already associated before replication starts. 相似文献
4.
Espéli O Borne R Dupaigne P Thiel A Gigant E Mercier R Boccard F 《The EMBO journal》2012,31(14):3198-3211
Initiation of chromosome segregation in bacteria is achieved by proteins acting near the origin of replication. Here, we report that the precise choreography of the terminus region of the Escherichia coli chromosome is also tightly controlled. The segregation of the terminus (Ter) macrodomain (MD) involves the structuring factor MatP. We characterized that migration of the Ter MD from the new pole to mid-cell and its subsequent persistent localization at mid-cell relies on several processes. First, the replication of the Ter DNA is concomitant with its recruitment from the new pole to mid-cell in a sequential order correlated with the position on the genetic map. Second, using a strain carrying a linear chromosome with the Ter MD split in two parts, we show that replisomes are repositioned at mid-cell when replication of the Ter occurs. Third, we demonstrate that anchoring the Ter MD at mid-cell depends on the specific interaction of MatP with the division apparatus-associated protein ZapB. Our results reveal how segregation of the Ter MD is integrated in the cell-cycle control. 相似文献
5.
Colchicine promotes a change in chromosome structure without loss of sister chromatid cohesion in prometaphase I-arrested bivalents 总被引:1,自引:0,他引:1
In somatic cells colchicine promotes the arrest of cell division at prometaphase, and chromosomes show a sequential loss of sister chromatid arm and centromere cohesion. In this study we used colchicine to analyse possible changes in chromosome structure and sister chromatid cohesion in prometaphase I-arrested bivalents of the katydid Pycnogaster cucullata. After silver staining we observed that in colchicine-arrested prometaphase I bivalents, and in contrast to what was found in control bivalents, sister kinetochores appeared individualised and sister chromatid axes were completely separated all along their length. However, this change in chromosome structure occurred without loss of sister chromatid arm cohesion. We also employed the MPM-2 monoclonal antibody against mitotic phosphoproteins on control and colchicine-treated spermatocytes. In control metaphase I bivalents this antibody labelled the tightly associated sister kinetochores and the interchromatid domain. By contrast, in colchicine-treated prometaphase I bivalents individualised sister kinetochores appeared labelled, but the interchromatid domain did not show labelling. These results support the notion that MPM-2 phosphoproteins, probably DNA topoisomerase IIalpha, located in the interchromatid domain act as "chromosomal staples" associating sister chromatid axes in metaphase I bivalents. The disappearance of these chromosomal staples would induce a change in chromosome structure, as reflected by the separation of sister kinetochores and sister axes, but without a concomitant loss of sister chromatid cohesion. 相似文献
6.
7.
Revenkova E Eijpe M Heyting C Hodges CA Hunt PA Liebe B Scherthan H Jessberger R 《Nature cell biology》2004,6(6):555-562
Sister chromatid cohesion ensures the faithful segregation of chromosomes in mitosis and in both meiotic divisions. Meiosis-specific components of the cohesin complex, including the recently described SMC1 isoform SMC1 beta, were suggested to be required for meiotic sister chromatid cohesion and DNA recombination. Here we show that SMC1 beta-deficient mice of both sexes are sterile. Male meiosis is blocked in pachytene; female meiosis is highly error-prone but continues until metaphase II. Prophase axial elements (AEs) are markedly shortened, chromatin extends further from the AEs, chromosome synapsis is incomplete, and sister chromatid cohesion in chromosome arms and at centromeres is lost prematurely. In addition, crossover-associated recombination foci are absent or reduced, and meiosis-specific perinuclear telomere arrangements are impaired. Thus, SMC1 beta has a key role in meiotic cohesion, the assembly of AEs, synapsis, recombination, and chromosome movements. 相似文献
8.
KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase 下载免费PDF全文
Bigot S Saleh OA Lesterlin C Pages C El Karoui M Dennis C Grigoriev M Allemand JF Barre FX Cornet F 《The EMBO journal》2005,24(21):3770-3780
Bacterial chromosomes are organized in replichores of opposite sequence polarity. This conserved feature suggests a role in chromosome dynamics. Indeed, sequence polarity controls resolution of chromosome dimers in Escherichia coli. Chromosome dimers form by homologous recombination between sister chromosomes. They are resolved by the combined action of two tyrosine recombinases, XerC and XerD, acting at a specific chromosomal site, dif, and a DNA translocase, FtsK, which is anchored at the division septum and sorts chromosomal DNA to daughter cells. Evidences suggest that DNA motifs oriented from the replication origin towards dif provide FtsK with the necessary information to faithfully distribute chromosomal DNA to either side of the septum, thereby bringing the dif sites together at the end of this process. However, the nature of the DNA motifs acting as FtsK orienting polar sequences (KOPS) was unknown. Using genetics, bioinformatics and biochemistry, we have identified a family of DNA motifs in the E. coli chromosome with KOPS activity. 相似文献
9.
Chromosome synapsis and genetic recombination: their roles in meiotic chromosome segregation 总被引:31,自引:0,他引:31
G S Roeder 《Trends in genetics : TIG》1990,6(12):385-389
Chromosome synapsis and genetic recombination ensure the faithful segregation of chromosomes at meiosis I by establishing physical connections between homologs. Recent observations suggest that recombination may also play a role in the homology search process that precedes synapsis. 相似文献
10.
The organization of the Escherichia coli chromosome has been defined genetically as consisting of four insulated macrodomains and two less constrained regions. Here we have examined the movement of chromosomal loci by tracking fluorescent markers in time-lapse microscopy during a complete cell cycle. Analysing the positioning, the segregation pattern and the motility of markers allowed us to show that the dynamic behaviour of loci belonging to various macrodomains and less constrained regions is radically different. In macrodomains constraints on mobility are apparent whereas in non-structured regions, markers exhibited a greater motility that may explain their ability to interact with flanking macrodomains. Following replication, duplicated markers belonging to macrodomains show a colocalization step and this landmark is not apparent in non-structured regions. Chromosome segregation occurs in three steps: first, the origin-proximal half of the chromosome consisting of the Ori macrodomain and the two non-structured region segregates concomitantly in a short period of time. Second, the Right and Left macrodomains segregate progressively following the genetic map. Third, the Ter macrodomain is rapidly segregated before division, after a significant period of colocalization. Macrodomain territories defined as cellular spaces occupied by the different macrodomains can be identified. 相似文献
11.
Deghorain M Pagès C Meile JC Stouf M Capiaux H Mercier R Lesterlin C Hallet B Cornet F 《PloS one》2011,6(7):e22164
Background
The FtsK DNA-translocase controls the last steps of chromosome segregation in E. coli. It translocates sister chromosomes using the KOPS DNA motifs to orient its activity, and controls the resolution of dimeric forms of sister chromosomes by XerCD-mediated recombination at the dif site and their decatenation by TopoIV.Methodology
We have used XerCD/dif recombination as a genetic trap to probe the interaction of FtsK with loci located in different regions of the chromosome. This assay revealed that the activity of FtsK is restricted to a ∼400 kb terminal region of the chromosome around the natural position of the dif site. Preferential interaction with this region required the tethering of FtsK to the division septum via its N-terminal domain as well as its translocation activity. However, the KOPS-recognition activity of FtsK was not required. Displacement of replication termination outside the FtsK high activity region had no effect on FtsK activity and deletion of a part of this region was not compensated by its extension to neighbouring regions. By observing the fate of fluorescent-tagged loci of the ter region, we found that segregation of the FtsK high activity region is delayed compared to that of its adjacent regions.Significance
Our results show that a restricted terminal region of the chromosome is specifically dedicated to the last steps of chromosome segregation and to their coupling with cell division by FtsK. 相似文献12.
Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize 总被引:2,自引:0,他引:2
With the advent of engineered minichromosome technology in plants, an understanding of the properties of small chromosomes is desirable. Twenty-two minichromosomes of related origin but varying in size are described that provide a unique resource to study such behavior. Fourteen minichromosomes from this set could pair with each other in meiotic prophase at frequencies between 25 and 100%, but for the smaller chromosomes, the sister chromatids precociously separated in anaphase I. The other eight minichromosomes did not pair with themselves, and the sister chromatids divided equationally at meiosis I. In plants containing one minichromosome, the sister chromatids also separated at meiosis I. In anaphase II, the minichromosomes progressed to one pole or the other. The maize (Zea mays) Shugoshin protein, which has been hypothesized to protect centromere cohesion in meiosis I, is still present at anaphase I on minichromosomes that divide equationally. Also, there were no differences in the level of phosphorylation of Ser-10 of histone H3, a correlate of cohesion, in the minichromosomes in which sister chromatids separated during anaphase I compared with the normal chromosomes. These analyses suggest that meiotic centromeric cohesion is compromised in minichromosomes depending on their size and cannot be maintained by the mechanisms used by normal-sized chromosomes. 相似文献
13.
14.
A mechanism for the segregation of chromosomes and minichromosomes into daughter cells during division of Escherichia coli is presented. It is based on the idea that the cell envelope contains a large number of sites capable of binding to the chromosomal replication origin, oriC, and that a polymerizing DNA strand becomes attached to one of the sites at initiation of a round of replication. The attachment sites are distributed throughout the actively growing cell envelope, i.e. lateral envelope and septum, but not in the existing cell poles. This asymmetric distribution of oriC attachment sites accounts for the experimentally observed non-random chromosome and minichromosome segregation, and for the variation in the degree of non-random segregation with cell strain and growth rate. The multi-site attachment concept also accounts for the unstable maintenance of minichromosomes. 相似文献
15.
16.
《Biophysical journal》2021,120(22):5107-5123
Segregation of the replicating chromosome from a single to two nucleoid bodies is one of the major processes in growing bacterial cells. The segregation dynamics is tuned by intricate interactions with other cellular processes such as growth and division, ensuring flexibility in a changing environment. We hypothesize that the internal stochasticity of the segregation process may be the source of cell-to-cell phenotypic variability, in addition to the well-established gene expression noise and uneven partitioning of low copy number components. We compare dividing cell lineages with filamentous cells, where the lack of the diffusion barriers is expected to reduce the impact of other factors on the variability of nucleoid segregation dynamics. The nucleoid segregation was monitored using time-lapse microscopy in live E. coli cells grown in linear grooves. The main characteristics of the segregation process, namely, the synchrony of partitioning, rates of separation, and final positions, as well as the variability of these characteristics, were determined for dividing and filamentous lineages growing under the same conditions. Indeed, the gene expression noise was considerably homogenized along filaments as determined from the distribution of CFP and YFP stochastically expressed from the chromosome. We find that 1) the synchrony of nucleoid partitioning is progressively decreasing during consecutive cell cycles, but to a significantly lesser degree in filamentous than in dividing cells; 2) the mean partitioning rate of nucleoids is essentially the same in dividing and filamentous cells, displaying a substantial variability in both; and 3) nucleoids segregate to the same distances in dividing and filamentous cells. Variability in distances is increasing during successive cell cycles, but to a much lesser extent in filamentous cells. Our findings indicate that the variability of the chromosome segregation dynamics is reduced upon removal of boundaries between nucleoids, whereas the remaining variability is essentially inherent to the nucleoid itself. 相似文献
17.
Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects 下载免费PDF全文
Posttranslational modifications of core histones contribute to driving changes in chromatin conformation and compaction. Herein, we investigated the role of histone deacetylation on the mitotic process by inhibiting histone deacetylases shortly before mitosis in human primary fibroblasts. Cells entering mitosis with hyperacetylated histones displayed altered chromatin conformation associated with decreased reactivity to the anti-Ser 10 phospho H3 antibody, increased recruitment of protein phosphatase 1-delta on mitotic chromosomes, and depletion of heterochromatin protein 1 from the centromeric heterochromatin. Inhibition of histone deacetylation before mitosis produced defective chromosome condensation and impaired mitotic progression in living cells, suggesting that improper chromosome condensation may induce mitotic checkpoint activation. In situ hybridization analysis on anaphase cells demonstrated the presence of chromatin bridges, which were caused by persisting cohesion along sister chromatid arms after centromere separation. Thus, the presence of hyperacetylated chromatin during mitosis impairs proper chromosome condensation during the pre-anaphase stages, resulting in poor sister chromatid resolution. Lagging chromosomes consisting of single or paired sisters were also induced by the presence of hyperacetylated histones, indicating that the less constrained centromeric organization associated with heterochromatin protein 1 depletion may promote the attachment of kinetochores to microtubules coming from both poles. 相似文献
18.
Genetic and morphological characterization of an Escherichia coli chromosome segregation mutant. 下载免费PDF全文
The temperature-sensitive nucleoid segregation mutant of Escherichia coli, PAT32, formerly described as a parA mutant, has been shown to carry a mutation near 66 min on the genetic map. Fine mapping with phages from the collection of Kohara et al. is consistent with its being a parC allele. Observation by fluorescence microscopy revealed the formation, at a nonpermissive temperature, of filaments containing one or two large nucleoids and of normal-size anucleate cells. There was also a significant loss of viability. 相似文献
19.
Chromosome segregation was analyzed in three substrains of Escherichia coli B/r growing at various rates. The cultures were pulse labeled with [14C]thymidine and bound to the bottom surface of a nitrocellulose membrane filter, and the radioactivity in newborn cells released from the surface during continuous elution with growth medium was measured. Since there was a fixed orientation in the release of newborn cells, the time course of the change in radioactivity per effluent cell could be used to investigate the orientation of chromosome segregation. If the radioactive deoxyribonucleic acid strands were partitioned at random between the progenies remaining attached to the membrane filter and those released into the effluent, the radioactivity per cell would decrease twofold after each generation of elution. The decrease in radioactivity was less than twofold at C + D min of elution and larger than twofold one generation later, indicating that chromosome segregation was nonrandom. 相似文献
20.
A single calcium flux triggers chromosome replication, segregation and septation in bacteria: a model 总被引:7,自引:0,他引:7
Abrupt changes in the concentration of intracellular calcium, through the mediation of calmodulin, is presumed to play an essential role in many molecular processes in eukaryotes including triggering cell cycle events. Although early studies failed to establish any role for calcium in the growth of bacteria, recent studies have demonstrated that bacteria have several calcium transport systems, and an intracellular concentration of free calcium identical to that of higher organisms, which appears to fluctuate during the cell cycle. Moreover, calmodulin-like proteins have been reported in bacteria, and the growth of E. coli is sensitive to calmodulin inhibitors. In this article we propose that a single flux of calcium, abruptly raising the intracellular concentration of free calcium, is responsible for the triggering in bacteria of the major cell cycle events, initiation of DNA replication, chromosome partition and cell division. We predict that major roles in this process will involve a bacterial calmodulin-like protein and a primitive cytoskeleton. The mechanism of triggering different cell cycle events by a single calcium flux is discussed. 相似文献