共查询到20条相似文献,搜索用时 0 毫秒
1.
Z D Vorobets V I Kocherga N V Nesterenko L K Kurchenko 《Biokhimii?a (Moscow, Russia)》1988,53(8):1327-1333
A Ca2+-phospholipid-dependent protein kinase C was isolated from the soluble fraction of bovine brain, using hydrophobic chromatography on phenyl-Sepharose CL-4B and high performance liquid chromatography on a Mono Q column. The enzyme had a specific activity of 822 nmol 32P/mg protein/min with histone H1 as a substrate. Phosphorylation of pig myocardium sarcolemma protein substrates was stimulated by Ca2+ and phosphatidylserine; the optimal concentrations of these compounds were 10(-4) M and 200 micrograms/ml, respectively. The value of Km(app) for Ca2+ was 3.10(-6) M. An addition of exogenous dioleine increased the enzyme affinity for Ca2+ which led to a decrease of Ca2+ concentration necessary for the maximal activation to occur. The optimal concentration of ATP needed for sarcolemmal preparation phosphorylation was 0.3-0.4 mM, which seems to be due to the high activity of sarcolemmal ATPases. The proteins phosphorylated in sarcolemmal preparations were identified, using SDS polyacrylamide gel electrophoresis with subsequent autoradiography. The 250, 140, 67, 58, 25 and 11 kD proteins appeared to be phosphorylated in the greatest degree. Since in myocardial sarcolemma protein kinase C predominantly phosphorylates the same proteins as does the cAMP-dependent protein kinase, it was assumed that protein kinase C can also play a role in the regulation of Ca2+-transporting systems of sarcolemma. 相似文献
2.
Ca2+-calmodulin-dependent phosphorylation and passive transport of Ca2+ in the myocardial sarcolemma
Highly purified vesicles of rabbit myocardium sarcolemma with predominant inside-out orientation possess the Ca2+-calmodulin-dependent protein kinase activity. At optimal concentrations of calmodulin (0.5 microM) and Ca2+ (0.1 mM), the activity of protein kinase is 0.21 nmol 32P X min X mg of protein. The Km(app) value for ATP is 3.0 X 10(-6) M, V = 0.27 nmol 32P X mg of protein X min. Endogenous Ca2+-calmodulin-dependent protein kinase phosphorylates four protein substrates in sarcolemmal vesicles (Mr = 145, 22, 11.5, and 6-8 KD). Studies with passive efflux of Ca2+ from the SL vesicles showed that the Ca2+-calmodulin-dependent phosphorylation of protein components of sarcolemma inhibits this reaction. 相似文献
3.
The highly purified vesicles of myocardial sarcolemma oriented outward mainly by the cytoplasmic side are used to show that Ca2+-calmodulin-dependent phosphorylation inhibits passive Ca2+-transport, while R24571, a blocking agent of calmodulin-dependent processes, removes this inhibitory effect. Passive Ca2+ transport is also inhibited by nicardipin with Ki (5 X 10(-8) M) and Mg2+. Tetrodotoxin and tetraethylammonium exert no effect on Ca2+-transport. 相似文献
4.
The myocardial sarcolemma vesicles loaded with Na2+ can accumulate Ca2+ against the concentration gradient in exchange for Na2+; the rate of this process is about 10 nmole of Ca2+ per mg of protein per min. The cAMP-dependent phosphorylation of sarcolemmal preparations has no effect on the Na+/Ca2+ exchange. At the same time the cAMP-dependent phosphorylation of protein components of the sarcolemma causes inhibition of the passive Ca2+ efflux from the vesicles depending on the degree of membrane phosphorylation. 相似文献
5.
Protein kinase C in vesicular preparations of the myocardium sarcolemma is shown to phosphorylate proteins with the molecular weight of 250, 140, 67, 58, 24 and 11 kD. The exogenic protein kinase C catalyzed phosphorylation of the sarcolemma preparations lowers the initial rate of the passive calcium transport from 0.56 down to 0.18 mmol per 1 mg second. Activation of endogenic protein kinase C by 4 beta-phorbol-12 beta-myristate-13 alpha-acetate is also accompanied by phosphorylation of vesicular preparations of sarcolemma and by inhibition of the passive calcium transport. Polymyxin B, being an inhibitor of protein kinase C, suppresses the phosphorylation and thus prevents the inhibitory action of phosphorylation on the passive calcium transport. 相似文献
6.
Closed vesiculate preparations of pig myometrium sarcolemma (predominantly with inside-out orientation) are characterized by passive permeability for Ca2+. The kinetics of Ca2+ release from the vesicles is exponential. Using the grapho-analytical subtraction method, the kinetic parameters of this reaction were determined. Myometrium sarcolemma contains endogenous Ca2+-calmodulin-dependent protein kinase and phosphoprotein phosphatase which is inhibited by sodium o-vanadate. The Ca2+-calmodulin-dependent phosphorylation stimulates passive Ca2+ release from sarcolemmal vesicles. In the course of phosphorylation the capacity of the pool providing for rapid Ca2+ release increases by 61%, the initial rate of Ca2+ release showing a 28% increase. Trifluoroperazine, an inhibitor of Ca2+-calmodulin-dependent processes, eliminates the activating effect of phosphorylation on the rate of Ca2+ release from sarcolemmal vesicles. 相似文献
7.
M D Kurski? L G Babich T P Kondratiuk S F Bychenok 《Ukrainski? biokhimicheski? zhurnal》1988,60(5):30-34
It is established that Ca2+ transport from the predominantly inverted vesicles of pig myometrium sarcolemma depends on the value of the membrane potential which is created on vesicles by the K+-valinomycin system. It is shown that variations in the membrane potential from -60 to +30 mV cause acceleration of the calcium transport from the vesicles, the maximal transport being observed at delta psi from 0 up to +30 mV. The endogenic and exogenic cAMP-dependent phosphorylation of plasma membrane proteins inhibits the passive transport of calcium at all the membrane potential values studied. A degree of potential-dependent Ca2+ transport inhibition correlates with the value of cAMP-dependent phosphorylation of sarcolemma proteins. 相似文献
8.
Vesicular sarcolemmal preparations isolated from rat hearts were characterized by high total ATPase (4.32 +/- 0.57 mumol/min per mg), adenylate cyclase (121 +/- 11 pmol/min per mg) and creatine kinase (1.73 +/- 0.35 mumol/min per mg) activities as well as Na-Ca exchange specific to sodium. ATPase activity was inhibited with digitoxigenin by 50-70% and was not changed by ouabain, ionophore A23187 or oligomycin. Sarcolemmal vesicles bound [3H]digitoxigenin and [3H]ouabain in isotonic medium in the presence of Pi and Mg2+. The number of binding sites for hydrophobic digitoxigenin (N = 237 pmol/mg) was several-times higher than that for hydrophilic ouabain (N = 32.7 pmol/mg). These data show that sarcolemmal preparations were not significantly contaminated by mitochondria and sarcoplasmic reticulum and consisted mostly of inside-out vesicles. Incubation of these vesicles with 45Ca2+ (0.5-10 mM) led to penetration of the latter into the vesicles with the following binding characteristics: number of binding sites (N = 20.5 +/- 4.6 nmol/mg, Kd approximately equal to 2.0 mM). Ca2+ binding to the inner surface of vesicles was proved by the following facts: (1) Ca2+ ionophore A23187 increased slightly total intravesicular Ca2+ content but markedly accelerated Ca2+ efflux along its concentration gradient; (2) gramicidin and osmotic shock showed a similar accelerating effect. Ca2+ efflux from the vesicles along its concentration gradient ([Ca2+]i/[Ca2+]e = 2.0 mM/0.1 microM) was inhibited by Mn2+, Co2+, and verapamil when they acted inside the vesicles. The rate of Ca2+ efflux was hyperbolically dependent on intravesicular Ca2+ concentration (Km approximately equal to 2.9 mM). These data reveal that Ca2+ efflux from sarcolemmal vesicles is controlled by Ca2+ binding to the sarcolemmal membrane. Ca2+ efflux from the vesicles was stimulated 1.7--times after incubation of vesicles with 0.2 mM MgATP or MgADP and 15-times after treatment with 0.2 mM adenylyl beta, gamma-imidodiphosphate. Enhancement in the rate of Ca2+ efflux correlated with the increase in the intravesicular Ca2+ content. ATP-stimulated Ca2+ efflux was suppressed by verapamil and was nonmonotonically dependent upon the transmembrane potential created by the K+ concentration gradient in the presence of valinomycin, Ca2+ efflux being slower at extreme values of membrane potential (+/- 80 mV). 相似文献
9.
Vesicular preparations of sarcolemma isolated from rat myocardium possessed high ATPase (4.32 +/0 0.57 micromole/min per mg), adenylate cyclase (121 +/- 11 pmole/min per mg) and creatine kinase (1.74 +/- 0.35 micromole/min per mg) activities and a Na-Ca exchange activity specific for sodium. The ATPase activity was inhibited by digitoxigenin by 50-70% and was not changed by ouabain, EGTA, ionophore A23187 and oligomycin, thus showing the absence of mitochondrial and sarcoplasmic reticulum contaminations in the sarcolemmal preparations. The preparations consisted mostly of closed inside-out vesicles. The preparation was used to study the mechanism of Ca2+ penetration across the sarcolemmal membrane. For this purpose the vesicles were load with 45Ca2+, which relatively slowly diffused from the medium into the vesicles, and which was bound to the binding sites inside the vesicles (n = 20.5 +/- 4.6 nmoles per mg of protein, Kd approximately equal to 1.8 +/- 0.21 mM). The transmembrane movement of Ca2+ was demonstrated by the following findings: 1) the ionophore A23187 only insignificantly increased the total vesicular Ca2+ content, but strongly accelerated Ca2+ efflux from the vesicles along its concentration gradient; 2) gramicidin and osmotic shock caused a similar acceleration of Ca2+ efflux. Ca2+ efflux from these vesicles along Ca2+ concentration gradient was studied under conditions, when the extravesicular Ca2+ content was lowered due to its binding to EGTA and by dilution. The gradient of Ca2+ concentration was from 2.0 mM inside to approximately 0.1 micro M outside. The rate of 45Ca2+ efflux depended hyperbolically on the intravesicular Ca2+ efflux from the vesicles was inhibited by Mn2+, Co2+ and verapamil when they acted from the inside of the vesicles. An increase in ionophore A23187 concentration increased the efflux of Ca2+ hyperbolically and enhanced only the maximal rate of the efflux. It is concluded that the passive permeability of Ca2+ across the sarcolemmal membrane along its concentration gradient is controlled by Ca2+ binding to the membrane. 相似文献
10.
Using a potential-sensitive fluorescent probe diS-C3-(5), the formation of the membrane (K+-diffusion) potential, delta psi, in the myometrium sarcolemmal vesicular fraction was demonstrated. The magnitude of this potential corresponds to that calculated according to the Nernst equation, is time-stable (characteristic dissociation time--3-5 min) and temperature-dependent and is generated upon the substitution of the anion (Cl- for gluconate-) and the compensating cation (Na+ for Tris+, choline+). The change in delta psi from -61 to 0 mV leads to the activation of passive Ca2+ efflux from the vesicles (with choline+ as the compensating cation in the dilution medium). At the same value of the potential, i. e., -61 mV, the substitution of choline in the dilution medium for Na+ or Li+ stimulates the passive release of Ca2+. Co2+, Mn2+ and D-600 suppress this process by 15-20% in depolarized vesicles which points to the inhibition of Ca2+ release with an alteration of the membrane potential value from 0 to -61 mV (20%). The potential-dependent component of passive Ca2+ transport is characterized by saturation with the substrate (Km = 0.5 mM). The dependence of Ca2+ flux release from the sarcolemmal vesicles on the membrane potential value (-60-+27 mV) is bell-shaped and qualitatively relative to the volt-amper characteristics of the steady state Ca2+ flux in single smooth muscle cells. Analysis of experimental results revealed that the potential-dependent component of passive Ca2+ transport in myometrium sarcolemmal vesicles is determined by the non-activated Ca2+ conductivity of plasma membrane. 相似文献
11.
Danylovych IuV 《Ukrainski? biokhimicheski? zhurnal》2003,75(4):57-63
The influence of nitrite-anions physiological concentration on Ca2+ input into vesicles was investigated when using the "outside-out" vesicles of myometrial plasmalemma and 45Ca2+. It was established that nitrite-anions increased Ca(2+)-permeability of plasmalemma and increased the affinity of cation-transport system. The effects are probably connected with reversible modification of glutamate residues that bound and transported Ca2+ within the membrane. These findings showed that nitrite-anions are competitive activators of the passive calcium transport. On the other hand the decrease of Ca2+ affinity for the transport system under transmembrane proton scattering by the membrane, by rapid dissipation of transmembrane delta pH. It may be possible that the dissipation of transmembrane proton gradient changed the conformation of calcium transport system that calls the difference of kinetic mechanism of NO2- action in case of delta pH = 0 and delta pH = 1.5 on vesicle membranes. 相似文献
12.
To evaluate the effects of freezing and thawing on Ca2+ transport and permeability, inside-out red cell membrane vesicles (IORCMV) are examined. Exposure to the cryoprotectant Me2SO as well as different cooling regimes on unprotected and cryoprotected vesicles do not affect the membrane Ca2+ transport. However, freezing and thawing increase the membrane permeability to sucrose. 相似文献
13.
Danylovych IuV 《Ukrainski? biokhimicheski? zhurnal》2002,74(3):58-64
The effect of some chemical modifying agents of the sarcolemma surface--dicyclohexicarbodiimide, trinitrobenzolsulphuric acid, dithiotreitol and nitrit-anions on passive transsarcolemmic accumulation of Ca2+ by the pig myometrium sarcolemma property oriented vesicules was studied. The comparative analysis of these substances action under proton transmembrane gradient dispersion is presented. The significance of surface amino-, carboxy groups and disulphide membrane bounds in Ca2+ transport mechanisms as a corresponding aspect to some contemporary ideas about Ca(2+)-channel has been defined. The hypothesis is made that the proton transmembrane gradient dissipation leads to dislocation of carboxyl groups and disulphid bounds in relation to the membrane surface resulting in increasing Ca(2+)-permeability of the sarcolemma. The increase of sarcolemma permeability for Ca2+ under the action of 10 nM NO-2 was demonstrated. On the base of experimental data the supposition was made that NO-2 modified amino- and carboxylate groups of the sarcolemma surface. Under the chemical modification of these groups the nitrit-anions inhibit transsarcolemmic Ca2+ movement. NO-2 is not a result of sarcolemma surface SH-groups oxidation, while possibly NO2- protects some functionally important disulphide bridges of Ca(2+)-channel from their chemical restoration. 相似文献
14.
Ca2+-ATPase activity and Ca2+ uptake in inside-out vesicles from human red cell membranes are changed in parallel by p-nitrophenylphosphate. This indicates that, unlike the Ca2+ pump of sarcoplasmic reticulum, the Ca2+ pump of the red cell membrane does not utilize p-nitrophenylphosphate hydrolysis to drive Ca2+ transport. 相似文献
15.
Studies on the vesicular fraction of myometrium sarcolemma showed that in the absence of initial Ca2+ gradient the vesicles activity accumulate Ca2+ by utilizing the energy of the antiport-directed Na+ gradient. Monensin (50 microM) suppresses practically completely the Ca2+ transport. The amount of Ca2+ entering the vesicles against the concentration gradient diminishes with a decrease in the oppositely directed Na+ gradient. Cd2+ (5 mM) causes a complete inhibition of active Ca2+ transport, whereas Mn2+ and Mg2+ inhibit this process by 85% and 35%, respectively; amiloride (500 microM) is fairly ineffective. In the absence of initial Ca2+ and Na+ gradients valinomycin (0.05-1 microM) does not affect the changes in Ca2+ concentration in the intravesicular volume both with and without K+ gradient. Under conditions of initial equilibrium for Ca2+ and Na+ the magnitude and sign of the membrane potential for the K(+)-valinomycin system have no effect on Ca2+ transport regardless of value of absolute Na+ concentration inside and outside the vesicles. Depolarization of membrane vesicles does not interfere with the Na(+)-driven active Ca2+ transport into the sarcolemma which is dependent on the energy of the Na+ gradient. Using calibration curves, it was shown that the physiologically significant (6-fold) Na+ gradient increases Ca2+ concentration in the intravesicular volume from 100 to 160-170 microM. Ac active potential-independent Ca2+ transport through the smooth muscle sarcolemma requires about one third (0.3 kcal/mol) of the Na+ gradient; energy the remainder is dissipated. It is concluded that in smooth muscles the Na+ gradient can provide the active transsarcolemmal transport of Ca2+. 相似文献
16.
The sarcoplasmic reticulum and sarcolemma together form a passive Ca2+ trap in colonic smooth muscle
In smooth muscle, active Ca(2+) uptake into regions of sarcoplasmic reticulum (SR) which are closely apposed to the sarcolemma has been proposed to substantially limit the increase in the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) following Ca(2+) influx, i.e. the 'superficial buffer barrier hypothesis'. The present study has re-examined this proposal. The results suggest that the SR close to the sarcolemma acts as a passive barrier to Ca(2+) influx limiting [Ca(2+)](c) changes; for this, SR Ca(2+) pump activity is not required. In single voltage-clamped colonic myocytes, sustained opening of the ryanodine receptor (RyR) (and depletion of the SR) using ryanodine increased the amplitude of depolarisation-evoked Ca(2+) transients and accelerated the rate of [Ca(2+)](c) decline following depolarisation. These results could be explained by a reduction in the Ca(2+) buffer power of the cytosol taking place when RyR are opened (i.e. the SR is 'leaky'). Indeed, determination of the Ca(2+) buffer power confirmed it was reduced by approximately 40%. Inhibition of the SR Ca(2+) pump (with thapsigargin) also depleted the SR of Ca(2+) but did not reduce the Ca(2+) buffer power or increase depolarisation-evoked Ca(2+) transients and slowed (rather than accelerated) Ca(2+) removal. However, thapsigargin prevented the ryanodine-induced increase in [Ca(2+)](c) decline following depolarisation. Together, these results suggest that when the SR was rendered 'leaky' (a) more of the Ca(2+) entering the cell reached the bulk cytoplasm and (b) Ca(2+) was removed more quickly at the end of cell activation. Under physiological circumstances in the absence of blocking drugs, it is proposed that the SR limits the [Ca(2+)](c) increase following influx without the need for active Ca(2+) uptake. The SR and sarcolemma may form a passive physical barrier to Ca(2+) influx, a Ca(2+) trap, which limits the [Ca(2+)](c) rise occurring during depolarisation by about 50% and from which the ion only slowly escapes into the main part of the cytoplasm. 相似文献
17.
Basing on the data available in literature and authors' investigations the mechanism of local alkalization of the myoplasm by proton efflux attended by Ca2+ influx is mic reticulum and may be the main link in the process of electrochemical coupling in the skeletal and cardiac muscle cells. Experimental evidence for participation of Ca2(+)-ATPase in the passive transport of calcium through sarcoplasmic membrane is given. 相似文献
18.
The nature of downhill Ca2+ net-transport into human erythrocytes was investigated using the experimental models of Ca2+ pump inhibition by vanadate and of intracellular chelation of Ca2+ by quin2. Ca2+ uptake by erythrocytes loaded with 0.5 mM vanadate and suspended in 145 mM Na+ -5 mM K+ media was reduced by about 60% when medium K+ was raised to 80 mM. Organic and inorganic Ca2+ entry blockers such as nifedipine (10(-5) M), verapamil (10(-4) M), diltiazem (10(-4) M), Co2+ (1.5 mM) and Cu2+ (0.1 mM) as well as the K+ channel blocker quinidine (1mM) inhibited Ca2+ uptake in 145 mM Na+ -5 mM K+ media by 60-75%. Flunarizine was less effective. In vanadate-loaded cells suspended in 70 mM Na+ -80 mM K+ media, in contrast, flunarizine exerted a dose-dependent inhibition of Ca2+ uptake by up to 80% at 10(-5) M, the other blockers being ineffective (except for verapamil at 10(-4) M). A similar pattern of inhibition was seen in quin2-loaded erythrocytes. The different susceptibility towards inhibitors may indicate that passive Ca2+ uptake by vanadate-loaded erythrocytes suspended in 145 mM Na+ -5 mM K+ media, on the one hand, and by vanadate-loaded erythrocytes suspended in 70 mM Na+ -80 mM K+ media as well as by quin2-loaded erythrocytes, on the other hand, is mediated by two different transport components. 相似文献
19.
M D Kurski? V I Kocherga N V Nesterenko Z D Vorobets L K Kurchenko 《Biokhimii?a (Moscow, Russia)》1988,53(6):960-964
Highly purified pig myocardium sarcolemma vesicles possess the Ca2+,Mg2+-ATPase activity (4.1 mumol Pi/mg protein/hour) and induce the ATP-dependent accumulation of 45Ca2+ (6.0 nmol/mg protein/min). This reaction is not stimulated by oxalate; Ca2+ are released from the vesicles by saponin and Na+ treatment, which suggests that Ca2+ transport against the concentration gradient is induced by myocardium sarcolemma vesicles and not by sarcoplasmic reticulum fragments. The phorbol ester possessing a biological activity of a growth-promoting factor and activating membrane-bound protein kinase C stimulates the Ca2+,Mg2+-ATPase activity and the ATP-dependent accumulation of Ca2+, whereas its counterpart devoid of biological activity does not influence Ca2+ transport. Polymixin B, a specific inhibitor of protein kinase C, prevents the activating effect of phorbol esters on Ca2+ accumulation inside the vesicles. It is suggested that the ATP-dependent transport of Ca2+ in myocardium sarcolemma is controlled by Ca2+-phospholipid-dependent phosphorylation catalyzed by protein kinase C. 相似文献
20.
The effect of membrane potential on passive Ca2+ transport in isolated cardiac sarcolemmal vesicles was investigated. The membrane potentials were induced by creating potassium gradients across the vesicular membranes in the presence of valinomycin. The fluorescence changes in the voltage-sensitive dye, dis-C3(5), were consistent with the induction of potassium equilibrium potentials. The rate of 45Ca2+ efflux from inside-out vesicles was considerably greater at 0 than at -80 or +55 mV; prepolarization of the membrane to +90 mV did not enhance the 45Ca2+ efflux upon subsequent depolarization. The voltage-dependent 45Ca2+ efflux increased with a rise in internal Ca2+ concentration and exhibited a saturation effect. Furthermore, evaluation of the rate of 45Ca2+ efflux over a wide range of membrane potentials produced a profile similar to that of current-voltage relationships for single calcium channels in isolated cardiomyocytes. It is concluded that the voltage-dependent Ca2+ efflux from the vesicles occurs via Ca2+-channels. 相似文献