首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The substantial process of general DNA recombination consists of production of ssDNA, exchange of the ssDNA and its homologous strand in a duplex, and cleavage of branched DNA to maturate recombination intermediates. Ten genes of T4 phage are involved in general recombination and apparently encode all of the proteins required for its own recombination. Several proteins among them interact with each other in a highly specific manner based on a protein-protein affinity and constitute a multicomponent protein machine to create an ssDNA gap essential for production of recombinogenic ssDNA, a machine to supply recombinogenic ssDNA which has a free end, or a machine to transfer the recombinogenic single strand into a homologous duplex.  相似文献   

2.
The helical filament formed by RecA protein on single-stranded DNA plays an important role in homologous recombination and pairs with a complementary single strand or homologous duplex DNA. The RecA nucleoprotein filament also recognizes an identical single strand. The chimeric protein, RecAc38, forms a nucleoprotein filament that recognizes a complementary strand but is defective in recognition of duplex DNA, and is associated with phenotypic defects in repair and recombination. As described here, RecAc38 nucleoprotein filament is also defective in recognition of an identical strand, either when the filament has within it a single strand or duplex DNA. A model that postulates three DNA binding sites rationalizes these observations and suggests that the third binding site mediates non-Watson-Crick interactions that are instrumental in recognition of homology in duplex DNA.  相似文献   

3.
The initiation of DNA synthesis on forked DNA templates is a vital process in the replication and maintenance of cellular chromosomes. Two proteins that promote replisome assembly on DNA forks have so far been identified. In phage T4 development the gene 59 protein (gp59) assembles replisomes at D-loops, the sites of homologous strand exchange. Bacterial PriA protein plays an analogous function, most probably restarting replication after replication fork arrest with the aid of homologous recombination proteins, and PriA is also required for phage Mu replication by transposition. Gp59 and PriA exhibit similar DNA fork binding activities, but PriA also has a 3' to 5' helicase activity that can promote duplex opening for replisome assembly. The helicase activity allows PriA's repertoire of templates to be more diverse than that of gp59. It may give PriA the versatility to restart DNA replication without recombination on arrested replication forks that lack appropriate duplex openings.  相似文献   

4.
The genome of herpes simplex virus type-1 undergoes a high frequency of homologous recombination in the absence of a virus-encoded RecA-type protein. We hypothesized that viral homologous recombination is mediated by the combined action of the viral single strand DNA-binding protein (ICP8) and helicase-primase. Our results show that ICP8 catalyzes the formation of recombination intermediates (joint molecules) between circular single-stranded acceptor and linear duplex donor DNA. Joint molecules formed by invasion of a 3'-terminal strand displaces the non-complementary 5'-terminal strand, thereby creating a loading site for the helicase-primase. Helicase-primase acts on these joint molecules to promote ATP-dependent branch migration. Finally, we have reconstituted strand exchange by the synchronous action of ICP8 and helicase-primase. Based on these data, we present a recombination mechanism for a eukaryotic DNA virus in which a single strand DNA-binding protein and helicase cooperate to promote homologous pairing and branch migration.  相似文献   

5.
Circular dimer plasmids linearized with a restriction endonuclease undergo intramolecular recombination to yield recombinant circular monomers at high efficiency by a recA-independent mechanism in Escherichia coli recB recC sbcA mutants. The rate of this reaction is at least 1000-fold higher than the recombination rate observed for circular plasmid recombination substrates in the same mutants. Three potential models have been previously proposed to explain the recombination events observed. The validity of these models was tested in recA recB recC sbcA mutants using additional recombination substrates. These substrates, when linearized by incubation with an appropriate restriction enzyme, contain non-homologous adenovirus 2 DNA on one or both ends. The data indicate that terminal non-homology does not significantly affect the efficiency of recovering recombinants. In contrast to many recombination models proposed that involve the invasion of homologous duplex DNA by single-stranded DNA ends, the intramolecular recombination reaction studied here does not appear to involve direct pairing from the end(s) of the substrate DNA. Furthermore, the results are consistent with a model proposing that pairing and strand exchange occur between two homologous duplex regions within the linear dimer molecule.  相似文献   

6.
Data are presented on a triplex type with two parallel homologous strands for which triplex formation is almost as strong as duplex formation at least for some sequences and even at pH 7 and 0.2 M NaCl. The evidence mainly rests upon comparing thermodynamic properties of similar systems. A paperclip oligonucleotide d(A12C4T12C4A12) with two linkers C4 obviously can form a triplex with parallel back-folded adenine strand regions, because the single melting transition of this complex splits in two transitions by introducing mismatches only in the third strand region. Respectively, a hairpin duplex d(A12C4T12) and a single strand d(A12) form a triplex as a 1:1 complex in which the second adenine strand is parallel oriented to the homologous one in the Watson-Crick paired duplex. In this system the melting temperature T(m) of the triplex is practically the same as that of the duplex d(A12)-d(T12), at least within a complex concentration range of 0.2-4.0 microM. The melting behaviour of complexes between triplex stabilizing ligand BePI and the system hairpin duplex plus single strand supports the triplex model. Non-denaturing gel electrophoresis suggests the existence of a triplex for a system in which five of the twelve A-T*A base triads are substituted by C-G*C base triads. The recognition between any substituted Watson-Crick base pair (X-Y) in the hairpin duplex d(A4XA7C4T7YT4) and the correspondingly replaced base (Z) in the third strand d(A4ZA7) is mutually selective. All triplexes with matching base substitutions (Z = X) have nearly the same stability (T(m) values from 29 to 33.5 degrees C), whereas triplexes with non-matching substitutions (Z not equal X) show a clearly reduced stability (T(m) values from 15 to 22 degrees C) at 2microM equimolar oligonucleotide concentration. Most nucleic acid triple helices hitherto known are limited to homopurine-homopyrimidine sequences in the target duplex. A stable triplex formation is demonstrated for inhomogeneous sequences tolerating at least 50% pyrimidine content in the homologous strands. On the basis of the surprisingly similar thermodynamic parameters for duplex and triplex, and of the fact that this triplex type seems to be more stable than many other natural DNA triplexes known, and on the basis of semiempirical and molecule mechanical calculations, we postulate bridging interactions of the third strand with the two other strands in the triplex according to the recombination motif. This triplex, denoted by us 'recombination-like form', tolerates heterogeneous base sequences.  相似文献   

7.
The role of the bacteriophage T4 gene 32 protein in homologous pairing   总被引:2,自引:0,他引:2  
The gene 32 protein of the bacteriophage T4 is required for efficient genetic recombination in infected Eschericia coli cells and strongly stimulates in vitro pairing catalyzed by the phage uvsX protein, a RecA-like strand transferase. This helix-destabilizing factor is known to bind tightly and cooperatively to single-stranded DNA and to interact specifically with the uvsX protein as well as other phage gene products. However, its detailed role in homologous pairing is not well understood. I show here that when the efficiency of uvsX protein-mediated pairing is examined at different gene 32 protein and duplex DNA concentrations, a correlation between the two is found, suggesting that the two interact in a functionally important manner during the reaction. These and other data are consistent with a model in which the gene 32 protein binds to the strand displaced from the recipient duplex during pairing, thereby stabilizing the heteroduplex product. An alternative model in which the gene 32 protein replaces UvsX on the invading strand, thereby freeing the strand transferase to bind to the displaced strand, is also considered.  相似文献   

8.
A fundamental problem in homologous recombination is how homology between DNAs is recognized. In all current models, a recombination protein loads onto a single strand of DNA and scans another duplex for homology. When homology is found, a synaptic complex is formed, leading to strand exchange and a heteroduplex. A novel technique based on strand cleavage by the Auger radiodecay of iodine 125, allows us to determine the distances between (125)I on the incoming strand and the target sugars of the duplex DNA strands in an Escherichia coli RecA protein-mediated synaptic complex. Analysis of these distances shows that the complex represents a post-strand exchange intermediate in which the heteroduplex is located in the center, while the outgoing strand forms a relatively wide helix intertwined with the heteroduplex and located in its minor groove. The structure implies that homology is recognized in the major groove of the duplex.  相似文献   

9.
Two proteins encoded by bacteriophage T7, the gene 2.5 single-stranded DNA binding protein and the gene 4 helicase, mediate homologous DNA strand exchange. Gene 2.5 protein stimulates homologous base pairing of two DNA molecules containing complementary single-stranded regions. The formation of a joint molecule consisting of circular, single-stranded M13 DNA, annealed to homologous linear, duplex DNA having 3'- or 5'-single-stranded termini of approximately 100 nucleotides requires stoichiometric amounts of gene 2.5 protein. In the presence of gene 4 helicase, strand transfer proceeds at a rate of > 120 nucleotides/s in a polar 5' to 3' direction with respect to the invading strand, resulting in the production of circular duplex M13 DNA. Strand transfer is coupled to the hydrolysis of a nucleoside 5'-triphosphate. The reaction is dependent on specific interactions between gene 2.5 protein and gene 4 protein.  相似文献   

10.
To relate the roles of Escherichia coli SSB in recombination in vivo and in vitro, we have studied the mutant proteins SSB-1 and SSB-113, the variant SSBc produced by chymotryptic cleavage, the partially homologous variant F SSB (encoded by the E. coli sex factor), and the protein encoded by gene 32 of bacteriophage T4. All of these, with the exception of SSB-1, augmented both the initial rate of homologous pairing and strand exchange promoted by RecA protein. From these and related observations, we conclude that SSB stimulates the initial formation of joint molecules by nonspecifically promoting the binding of RecA protein to single-stranded DNA; that SSB plays no role in synapsis of the RecA nucleoprotein filament with duplex DNA; that stimulation of strand exchange by SSB is similarly nonspecific; and that all members of the class of proteins represented by SSB, F SSB, and gene 32 protein may play equivalent roles in making single-stranded DNA more accessible to RecA protein.  相似文献   

11.
A single, phased nucleosome assembled on a 240 by DNA duplex molecule blocked Escherichia coli RecA protein-promoted strand transfer of the complementary strand of the duplex onto a homologous single-stranded circle. However, when a four-armed cruciform structure was coupled to either end of the duplex the barrier to strand transfer was overcome and joint molecules were efficiently formed. Micrococcal nuclease digestion indicated that the nucleosome was dissociated by the juxtaposition of the cruciform. We interpret these results to mean that cruciform structures can act over a distance to destabilize adjacent nucleosomes and suggest that, as a consequence, the chromatin structure surrounding a crossed strand recombination intermediate might be disrupted, enabling other recombination events to initiate or the process of branch migration to proceed.  相似文献   

12.
An enzyme catalyzing homologous pairing of DNA chains has been extensively purified from mitotic yeast. The most highly purified fractions are enriched for a polypeptide with a molecular mass of approximately 120 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Protein-dependent pairing of single-stranded DNAs requires a divalent cation (Mg2+ or Ca2+) but proceeds rapidly in the absence of any nucleoside triphosphates. The kinetics of reassociation are extremely rapid, with more than 60% of the single-stranded DNA becoming resistant to S1 nuclease within 1 min at a ratio of 1 protein monomer/50 nucleotides. The results of enzyme titration and DNA challenge experiments suggest that this protein does not act catalytically during renaturation but is required stoichiometrically. The protein promotes formation of joint molecules between linear M13 replicative form DNA (form III) containing short single-stranded tails and homologous single-stranded M13 viral DNA. Removal of approximately 50 nucleotides from the ends of the linear duplex using either exonuclease III (5' ends) or T7 gene 6 exonuclease (3' ends) activates the duplex for extensive strand exchange. Electron microscopic analysis of product molecules suggests that the homologous circular DNA initially associates with the single-stranded tails of the duplexes, and the heteroduplex region is extended with displacement of the noncomplementary strand. The ability of this protein to pair and to promote strand transfer using either exonuclease III or T7 gene 6 exonuclease-treated duplex substrates suggests that this activity promotes heteroduplex extension in a nonpolar fashion. The biochemical properties of the transferase are consistent with a role for this protein in heteroduplex joint formation during mitotic recombination in Saccharomyces cerevisiae.  相似文献   

13.
A novel type of triple-stranded DNA structure was proposed by several groups to play a crucial role in homologous recognition between single- and double-stranded DNA molecules. In this still putative structure a duplex DNA was proposed to co-ordinate a homologous single strand in its major groove side. In contrast to the well-characterized pyrimidine-purine-pyrimidine triplexes in which the two like strands are antiparallel and which are restricted to poly-pyrimidine-containing stretches, the homology-specific triplexes would have like strands in parallel orientation and would not be restricted to any particular sequence provided that there is a homology between interacting DNA molecules. For many years the stereo-chemical possibility of forming homology-dependent three- or four-stranded DNA structures during the pairing stage of recombination reactions was seriously considered in published papers. However, only recently has there been a marked increase in the number of papers that have directly tested the formation of triple-stranded DNA structures during the actual pairing stage of the recombination reaction. Unfortunately the results of these tests are not totally clear cut; while some laboratories presented experimental evidence consistent with the formation of triplexes, others studying the same or very similar systems offered alternative explanations. The aim of this review is to present the current state of the central question in the mechanism of homologous recombination, namely, what kind of DNA structure is responsible for DNA homologous recognition. Is it a novel triplex structure or just a classical duplex?  相似文献   

14.
Partial purification and characterization of a recombinase from human cells   总被引:27,自引:0,他引:27  
P Hsieh  M S Meyn  R D Camerini-Otero 《Cell》1986,44(6):885-894
We describe the partial purification and characterization of a human recombinase activity from RPMI 1788 B lymphoblasts. Stoichiometric amounts of recombinase carry out a strand transfer reaction between linear duplex DNA and homologous circular single-strand DNA. The product of strand transfer by the recombinase is a joint molecule composed of a single-strand circle joined to one end of the linear duplex molecule by a region of DNA heteroduplex at least 150 bp long. Formation of DNA heteroduplexes is accompanied by strand displacement. Strand invasion initiates at the ends of the linear duplex. Finally, strand displacement by human recombinase exhibits polarity and proceeds in a 3' to 5' direction. This is the first demonstration of a strand transfer activity from a high eukaryote. We discuss similarities between our recombinase and the RecA and rec1 recombination proteins from E. coli and Ustilago maydis, respectively.  相似文献   

15.
16.
RAD51 is the central strand exchange recombinase in somatic homologous recombination, providing genomic stability and promoting resistance to DNA damage. An important tool for mechanistic studies of RAD51 is the D-loop or strand assimilation assay, which measures the ability of RAD51-coated single-stranded DNA (ssDNA) to search for, invade and exchange ssDNA strands with a homologous duplex DNA target. As cancer cells generally overexpress RAD51, the D-loop assay has also emerged as an important tool in oncologic drug design programs for targeting RAD51. Previous studies have adapted the traditional gel-based D-loop assay by using fluorescence-based substrates, which in principle allow for use in high-throughput screening platforms. However, these existing D-loop methods depend on linear oligonucleotide DNA duplex targets, and these substrates enable recombinase-independent ssDNA annealing that can obscure the recombinase-dependent strand assimilation signal. This compelled us to fundamentally re-design this assay, using a fluorescent target substrate that consists of a covalently closed linear double-hairpin dsDNA. This new microplate-based method represents a fast, inexpensive and non-radioactive alternative to existing D-loop assays. It provides accurate kinetic analysis of strand assimilation in high-throughput and performs well with human RAD51 and Escherichia coli RecA protein. This advance will aid in both mechanistic studies of homologous recombination and drug screening programs.  相似文献   

17.
Xiao J  Lee AM  Singleton SF 《Biopolymers》2006,81(6):473-496
The Escherichia coli RecA protein is the prototype of a class of proteins playing a central role in genomic repair and recombination in all organisms. The unresolved mechanistic strategy by which RecA aligns a single strand of DNA with a duplex DNA and mediates a DNA strand switch is central to understanding its recombinational activities. Toward a molecular-level understanding of RecA-mediated DNA strand exchange, we explored its mechanism using oligonucleotide substrates and the intrinsic fluorescence of 6-methylisoxanthopterin (6MI). Steady- and presteady-state spectrofluorometric data demonstrate that the reaction proceeds via a sequential four-step mechanism comprising a rapid, bimolecular association step followed by three slower unimolecular steps. Previous authors have proposed multistep mechanisms involving two or three steps. Careful analysis of the differences among the experimental systems revealed a previously undiscovered intermediate (N1) whose formation may be crucial in the kinetic discrimination of homologous and heterologous sequences. This observation has important implications for probing the fastest events in DNA strand exchange using 6MI to further elucidate the molecular mechanisms of recombination and recombinational repair.  相似文献   

18.
Purified human Rad51 protein (hRad51) catalyses ATP-dependent homologous pairing and strand transfer reactions, characteristic of a central role in homologous recombination and double-strand break repair. Using single-stranded circular and partially homologous linear duplex DNA, we found that the length of heteroduplex DNA formed by hRad51 was limited to approximately 1.3 kb, significantly less than that observed with Escherichia coli RecA and Saccharomyces cerevisiae Rad51 protein. Joint molecule formation required the presence of a 3' or 5'-overhang on the duplex DNA substrate and initiated preferentially at the 5'-end of the complementaryx strand. These results are consistent with a preference for strand transfer in the 3'-5' direction relative to the single-stranded DNA. The human single-strand DNA-binding protein, hRP-A, stimulated hRad51-mediated joint molecule formation by removing secondary structures from single-stranded DNA, a role similar to that played by E. coli single-strand DNA-binding protein in RecA-mediated strand exchange reactions. Indeed, E. coli single-strand DNA-binding protein could substitute for hRP-A in hRad51-mediated reactions. Joint molecule formation by hRad51 was stimulated or inhibited by hRad52, dependent upon the reaction conditions. The inhibitory effect could be overcome by the presence of hRP-A or excess heterologous DNA.  相似文献   

19.
Homologous recombination is one of the major pathways for repair of DNA double-strand breaks (DSBs). Important proteins in this pathway are Rad51 and Rad54. Rad51 forms a nucleoprotein filament on single-stranded DNA (ssDNA) that mediates pairing with and strand invasion of homologous duplex DNA with the assist of Rad54. We estimated that the nucleus of a mouse embryonic stem (ES) cells contains on average 4.7x10(5) Rad51 and 2.4x10(5) Rad54 molecules. Furthermore, we showed that the amount of Rad54 was subject to cell cycle regulation. We discuss our results with respect to two models that describe how Rad54 stimulates Rad51-mediated DNA strand invasion. The models differ in whether Rad54 functions locally or globally. In the first model, Rad54 acts in cis relative to the site of strand invasion. Rad54 coats the Rad51 nucleoprotein filament in stoichiometric amounts and binds to the target duplex DNA at the site that is homologous to the ssDNA in the Rad51 nucleoprotein filament. Subsequently, it promotes duplex DNA unwinding. In the second model, Rad54 acts in trans relative to the site of strand invasion. Rad54 binds duplex DNA distant from the site that will be unwound. Translocation of Rad54 along the duplex DNA increases superhelical stress thereby promoting duplex DNA unwinding.  相似文献   

20.
Mazloum N  Zhou Q  Holloman WK 《Biochemistry》2007,46(24):7163-7173
Brh2 is the Ustilago maydis ortholog of the BRCA2 tumor suppressor. It functions in repair of DNA by homologous recombination by controlling the action of Rad51. A critical aspect in the control appears to be the recruitment of Rad51 to single-stranded DNA regions exposed as lesions after damage or following a disturbance in DNA synthesis. In previous experimentation, Brh2 was shown to nucleate formation of the Rad51 nucleoprotein filament that becomes the active element in promoting homologous pairing and DNA strand exchange. Nucleation was found to be initiated at junctions of double-stranded and single-stranded DNA. Here we investigated the DNA binding specificity of Brh2 in more detail using oligonucleotide substrates. We observed that Brh2 prefers partially duplex structures with single-stranded branches, flaps, or D-loops. We found also that Brh2 has an inherent ability to promote DNA annealing and strand exchange reactions on free as well as RPA-coated substrates. Unlike Rad51, Brh2 was able to promote DNA strand exchange when preincubated with double-stranded DNA. These findings raise the notion that Brh2 may have roles in homologous recombination beyond the previously established Rad51 mediator activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号