首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We use a model of open predation experiments to define scale domains that differ in terms of the controlling processes and scale dependence of predator impacts. For experimental arenas that are small compared to the movements of the prey (small scale domain) the model predicts that predator impacts are scale independent and controlled by prey movements. For arenas of intermediate scale we predict that predator impacts are scale dependent and controlled by both prey movements and direct predation, and for the largest scale domain we predict weak scale dependence and predation control.
We propose that the scale‐domain concept is useful when designing and interpreting field experiments. As an illustration we apply the concept to experiments examining predator effects on the stream benthos. First, we test two key assumptions of the underlying model: that area‐specific prey migration rates decrease with increasing size of experimental arenas and that predation rates are independent of arena size. For this purpose we used published estimates of prey emigration and predator consumption rates for nine studies examining the effects of stream predators on benthic prey. We found that prey per capita emigration rates but not predation rates decreased with increasing arena length.
Second, we demonstrate a method for identifying the scale domain of real experiments. The model of predation experiments was parameterized using experimental data and the expected spatial and temporal scale dependence of predator impacts on prey in these experiments was simulated. The simulations suggest that the studies conducted in the largest arenas (length 15–35 m) should be classified as large‐scale, consumption‐controlled experiments, whereas the experiments conducted in smaller arenas (length 1.5–6 m) should be classified as small or intermediate‐scale. We also attempted to determine the scale domain of the experiments in a large data set, including results from most published stream predation experiments. The majority of arenas used in these experiments (73%) were smaller than 1 m in length. Our data on the scale dependence of predation and prey migration rate suggest that experiments in this scale range (<1 m) should be classified as small‐scale, movement‐controlled experiments for most prey taxa.  相似文献   

2.
Ulf Bergstrm  Gran Englund 《Oikos》2002,97(2):251-259
We studied the effect of arena size on estimates of prey mortality rate in predation experiments. In a laboratory experiment involving two of the dominating benthic species in the northern Baltic Sea, the predacious isopod Saduria entomon , and its main prey, the amphipod Monoporeia affinis , the prey mortality rate increased with container radius. The densities of both predator and prey close to the wall increased with container size. We hypothesised that this scale-dependent coaggregation of predator and prey caused the mortality rates to increase with arena size. We tested the hypothesis with the help of a simple model, by calculating the expected number of prey eaten in containers of different size from experimental data on the distributions of predator and prey within the arenas. A significant relationship between expected and observed numbers eaten supported our hypothesis. As the aggregative response was most pronounced in large arenas, this leads to the counterintuitive conclusion that large containers produced more biased estimates of morality rates than small containers.
To further study the effects of coaggregation we explored a general simulation model where both predator and prey preferred the habitat close to the arena wall. The model predicted a humpshaped relationship between encounter rate and arena size. This suggests that when predators and prey show a scale-dependent tendency to aggregate along arena walls, the most accurate estimates of predation rates may be obtained with very small or very large arenas.  相似文献   

3.
The basic components of the predation of Phytoseiulus persimilisAthias-Henriot feeding upon eggs of Tetranychus urticaeKoch were studied in an open system where the predator could disperse freely. The type of the functional response of the predator to the density of its prey was the same as that studied so far in a closed system, i.e.,Holling's Type 2. The search rate of the predator, however, was much lower in comparison with the result from a closed system. The oviposition of the predator per day was only weakly related to prey densities higher than 10 per leaf disc. But the emigration rate was inversely dependent upon the initial prey density up to 60 per leaf disc. The searching behaviour of the predator was influenced by both the web density spun by T. urticae and the density of the prey: the predator searched for its prey intensively only after it had contact with web. Mutual interference was observed in prey consumption, but not in the emigration rate. The emigration rate was largely dependent upon the prey density available per predator.  相似文献   

4.
1. We conducted an experimental study of predation by benthivorous fish on a natural community of stream invertebrates using a reach‐scale approach. Over a 2‐year period (experimental phase), the benthic invertebrate community of a stretch containing two species of benthivorous fish was compared with a fishless stretch. Thereafter, all fish were removed and benthic community structure was analysed again to account for natural differences between the two stretches (reference phase). 2. Benthivorous fish at the moderate densities investigated did not affect total benthic biomass or density, but did alter species composition. In addition, the fish effect differed between pool and riffle habitats, with larger effects in the pools indicating a habitat‐specific predation effect. In the reference phase, when all fish were removed from the stream, the difference between the two stretches was reduced. 3. The benthivorous fish reduced the densities of four taxa (Pisidium sp., Dugesia gonocephala, Gammarus pulex, Limoniidae), representing 29% of total biomass. It is possible that density reductions of other species were masked by prey migration despite the relatively large spatial scale. Indeed, higher drift activity in the upstream fishless stretch could have increased the density of Baetis rhodani in the fish stretch, as indicated by the results of a drift model. 4. Our results provide insights into stream food web ecology because fish predation showed effects even in a natural system where habitat complexity was high, environmental factors were highly variable and many predator and prey species interacted and because benthivorous fish were the focus, whereas the majority of previous predation experiments in streams have used drift‐feeding trout.  相似文献   

5.
To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species.  相似文献   

6.
Nyström P  McIntosh AR 《Oecologia》2003,136(2):279-288
Predatory species have been introduced to habitats spanning a wide range of environmental conditions. To better understand the consequences of predation in natural communities we need to examine how variations in abiotic factors modify the influence of predation. The effects of introduced predators may vary amongst habitats if natural disturbance affects the abundance and taxonomic composition of consumers and their resources, or the predator alters recolonisation after disturbance. We tested whether a bed-moving disturbance altered subsequent interactions involving native and introduced predatory fish, invertebrate grazers and algae in experimental channels within a New Zealand stream. Disturbance reduced the abundance of invertebrates by 84%, and induced mortality of Conoesucidae caddisflies. However, the relative abundance of taxa changed little immediately following the disturbance. Invertebrate communities recovered following disturbance in fishless channels and those with native galaxiids (Galaxias vulgaris), and were almost indistinguishable from undisturbed fishless controls after 2 weeks. Invertebrate abundance declined and algal abundance increased in channels with exotic brown trout (Salmo trutta) and their effect was strongest in previously disturbed channels. However, predators and disturbance only had interactive effects on grazer emigration rates. Trout affected grazers through direct consumption (e.g. Conoesucidae caddisflies), and induced higher emigration rates of grazers from channels via drift (e.g. the mayfly Deleatidium). The effects of predatory trout and galaxiids combined differed in disturbed and stable channels. The observed combined effects of predatory trout and galaxiids on invertebrate grazers were lower than expected in stable channels partly due to low emigration rates of Conoesucidae, whereas emigration of grazers was higher than expected in the disturbed channels. The biomass of algae was higher than expected in disturbed channels with both predators. Collectively, our results indicate that predator substitutability and the non-lethal effects of introduced predators varied depending on disturbance history, but their effects on the biomass of grazers and algae did not.  相似文献   

7.
1. First known for their shredding activity, freshwater amphipods also behave as active predators with consequences for prey population regulation and amphipod coexistence in the context of biological invasions. 2. A way to quantify predation is to determine the average consumption rate per predator, also known as its functional response (FR). 3. Although amphipods are gregarious and can display social interactions that can alter per capita consumption rates, previous studies using the FR approach to investigate amphipod predation ignored such potential mutual interference because they did not consider variations in predator density. 4. We investigated the FR of Echinogammarus berilloni feeding on dipteran larvae with joint variations in prey and predator densities. This bivariate experimental design allowed us to estimate interference and to compare the fits of the three main classes of theoretical FR models, in which the predation rate is a function of prey density alone (prey‐dependent models), of both prey and predator densities (predator‐dependent models) or of the prey‐to‐predator ratio (ratio‐dependent models). 5. The Arditi–Ginzburg ratio‐dependent FR model provided the best representation of the FR of E. berilloni, whose predation rate showed a decelerating rise to a horizontal asymptote as prey abundance increased. 6. Ratio dependence means that mutual interference between amphipods leads to prey sharing. Mutual interference is likely to vary between amphipod species, depending on their level of aggressiveness.  相似文献   

8.
SUMMARY. 1. Predation upon macroinvertebrates by the loach Oreonectes platycephalus Günther (Cobitidae) was studied using predator inclusion/exclusion cages in a series of pools along a Hong Kong stream. Treatments employed were predator exclusion, medium (approximately natural) predator densities (1 fish cage−1) and high predator densities (2 fish cage−1). Macroinvertebrate abundance in cages was monitored after 2 and 4-weeks exposure to predators.
2. The presence of fish was associated with significant declines in the total numbers of macroinvertebrates colonizing cages. However, taxa were influenced differently, with mayflies decreasing by a factor of two while the more mobile shrimps (Atyidae) were unaffected. Chironomid abundance (largely Chironominae) was unaffected by predator density and increased in week 4. Detritus acted as a confounding variable at this time because chironomid abundance was significantly correlated with the weight of accumulated detritus in cages.
3. While invertebrates were more abundant in cages lacking fish, there were no fewer invertebrates in cages with 2 fish than with 1 fish. This may indicate the presence of secure refuges among substrates in the cages, preventing the additional fish from depleting prey further, or a lack of precision of methods due to natural variations in prey densities and spatial patchiness.
4. No significant effects of predators on relative prey abundance or species richness were detected.
5. The impact of predation on prey abundance weakened on week 4, perhaps due to extra refuges among the accumulated detritus. However, drying of the stream increased fish densities in pools so that cages may have become zones of relative safety that were colonized readily by macroinvertebrates. This result highlights the need for year-round investigations to quantify predation effects in Hong Kong's seasonal tropical climate.  相似文献   

9.
Douglas W. Morris 《Oikos》2005,109(2):239-254
Current research contrasting prey habitat use has documented, with virtual unanimity, habitat differences in predation risk. Relatively few studies have considered, either in theory or in practice, simultaneous patterns in prey density. Linear predator–prey models predict that prey habitat preferences should switch toward the safer habitat with increasing prey and predator densities. The density‐dependent preference can be revealed by regression of prey density in safe habitat versus that in the riskier one (the isodar). But at this scale, the predation risk can be revealed only with simultaneous estimates of the number of predators, or with their experimental removal. Theories of optimal foraging demonstrate that we can measure predation risk by giving‐up densities of resource in foraging patches. The foraging theory cannot yet predict the expected pattern as predator and prey populations covary. Both problems are solved by measuring isodars and giving‐up densities in the same predator–prey system. I applied the two approaches to the classic predator–prey dynamics of snowshoe hares in northwestern Ontario, Canada. Hares occupied regenerating cutovers and adjacent mature‐forest habitat equally, and in a manner consistent with density‐dependent habitat selection. Independent measures of predation risk based on experimental, as well as natural, giving‐up densities agreed generally with the equal preference between habitats revealed by the isodar. There was no apparent difference in predation risk between habitats despite obvious differences in physical structure. Complementary studies contrasting a pair of habitats with more extreme differences confirmed that hares do alter their giving‐up densities when one habitat is clearly superior to another. The results are thereby consistent with theories of adaptive behaviour. But the results also demonstrate, when evaluating differences in habitat, that it is crucial to let the organisms we study define their own habitat preference.  相似文献   

10.
Dispersal connects spatially separated local food webs at a larger, metacommunity scale, and as a result, dispersal may both influence and be influenced by local food-web dynamics. Here, I focused on a rock-pool metacommunity and used a combination of observational, experimental, and theoretical approaches to explore the role of local prey (Moina macrocopa) density on the rate of emigration by their predator (Trichocorixa verticalis) and in turn, the effect of predator emigration on the per capita predation rate experienced by local prey populations. A lab feeding experiment quantified predation rates, demonstrating that indeed adult T. verticalis are voracious predators of M. macrocopa. M. macrocopa densities vary over five orders of magnitude across both space and time in rock pools, and a mesocosm experiment showed that this variation significantly influences T. verticalis emigration: predators emigrated more rapidly when prey were in lower densities. Finally, computer simulations demonstrated that this pattern of dispersal by T. verticalis has the potential to relieve local M. macrocopa populations from predation when the prey are at low densities, thereby reducing the likelihood that local M. macrocopa populations will be driven extinct by predation from T. verticalis.  相似文献   

11.
1. The spatial heterogeneity of ecosystems as well as temporal activity patterns of organisms can have far‐reaching effects on predator–prey relationships. We hypothesised that spatiotemporal constraints in mesohabitat use by benthic fish predators would reduce habitat overlap with benthic invertebrates and lead to mesohabitat‐specific predation risks. 2. We analysed the spatiotemporal activity patterns of two small‐bodied benthivorous fishes, gudgeon (Gobio gobio) and stone loach (Barbatula barbatula), and of benthic invertebrates in a small temperate stream during three 24‐h field experiments. By applying a novel method of field video observation, we monitored the spatiotemporal foraging behaviour of the fish in their natural environment. A parallel analysis of invertebrate mesohabitat use by means of small area Hess sampling allowed a direct estimation of habitat overlap at a pool–riffle scale. 3. Gudgeon showed a dominant spatial activity pattern preferring pools at all times of day, whereas stone loach used both mesohabitats but with a distinct temporal (nocturnal) activity pattern. The patterns of residence were not identical with those of active foraging. Invertebrate community composition differed significantly between mesohabitats but not between times of day. More than half of the total dissimilarity between pools and riffles was accounted for by six invertebrate taxa. Five of these were subject to higher fish predation in pools than in riffles. The total prey consumption of the two fish species together in pools was about three times as high as in riffles. Trophic niche breadth of stone loach and thus its predation range was broader than that of gudgeon. 4. These results indicate that the potential predation risk for stream invertebrates depends on the combination of spatial and temporal patterns of both predator and prey. Given the distinct differences in predation risk found between pools and riffles, we conclude that spatial heterogeneity at the mesohabitat scale can influence mechanisms and consequences of selective predation. We also suggest that the analysis of spatiotemporal predator–prey relationships should not be based on the premise that the main residence habitat and active foraging habitat of a predator are identical.  相似文献   

12.
Abstract:  Prey consumption by Typhlodromus pyri Scheuten was studied in the presence and absence of apple powdery mildew, Podosphaera leucotricha (Ell. and Everh.) under constant laboratory conditions. Eggs of Tetranychus urticae Koch were offered to predatory mites as a prey. Seven densities ranging from five to 100 T. urticae eggs per arena were used. Mildew conidia (approximately 0.5 mg) were added to half of the arenas by brushing them from infected apple leaves. A single adult female of T. pyri was introduced onto each arena and number of prey eggs consumed was counted 12 h later when the predator was offered new T. urticae eggs again and the procedure was repeated once. Data showed that predators consumed in both experimental periods nearly all prey in experiments with densities up to 40 eggs per arena and no mildew. However, the number of eggs consumed decreased more than twofold when mildew conidia were supplied, even at high prey densities. Differences in predation rate between treatments with and without mildew were highly significant. The results thus indicate that availability of mildew as an alternative food can reduce prey suppression by T. pyri . Possible implications of these findings in biological control of spider mites by generalist predatory mites are discussed.  相似文献   

13.
The risk of predation can have large effects on ecological communities via changes in prey behaviour, morphology and reproduction. Although prey can use a variety of sensory signals to detect predation risk, relatively little is known regarding the effects of predator acoustic cues on prey foraging behaviour. Here we show that an ecologically important marine crab species can detect sound across a range of frequencies, probably in response to particle acceleration. Further, crabs suppress their resource consumption in the presence of experimental acoustic stimuli from multiple predatory fish species, and the sign and strength of this response is similar to that elicited by water-borne chemical cues. When acoustic and chemical cues were combined, consumption differed from expectations based on independent cue effects, suggesting redundancies among cue types. These results highlight that predator acoustic cues may influence prey behaviour across a range of vertebrate and invertebrate taxa, with the potential for cascading effects on resource abundance.  相似文献   

14.
Reviews of the impact of invertebrate predators in enclosure/exclosure experiments suggest that much of the apparent depletion of prey is due to prey emigration induced by the predators. However, these generalisations derive mainly from studies of invertebrate predators that are predominantly active searchers (usually stoneflies) and of prey with strong avoidance responses (mainly mayflies).
We examined the impact of a large sit-and-wait predator, the nymph of the dragonfly Cordulegaster boltonii , which has recently invaded Broadstone Stream as a new top predator. Field enclosure/exclosure experiments were conducted to assess the impact of the invader on the benthos. Depletion of prey varied seasonally and among taxa, and was highest when prey density and encounter rates were high. Mobile prey, although least likely to show a statistically significant response because of high exchange rates, were those most strongly depleted.
Experimental channels were used to separate the relative contribution of consumption and emigration to total impact for the two most depleted prey species. Depletion of prey was due solely to consumption and predators did not induce emigration. We therefore urge caution in making generalisations about the impacts of invertebrate predators, since sit-and-wait and searching predators potentially have very different impacts.  相似文献   

15.
The predation and searching efficiency of fourth instar of predatory C. septempunctata at various densities of mustard aphid, Lipaphis erysimi (Kaltenbach) and predator was investigated under laboratory conditions. The feeding rate of predatory stage decreased at increased prey- and predator densities. Highest percent (92.80%) prey consumption was observed at initial prey density and lowest percent (40.86%) prey consumption at highest prey density by the fourth instar, though the total prey consumption increased with increase in either prey- or predator densities. Similarly, the individual prey consumption was also highest at initial predator density and lowest at highest predator density owing to the mutual interference between the predators at higher densities. The area of discovery (searching efficiency) also decreased with increase in prey- and predator densities. Handling time of predator was highest at lower prey densities, which decreased with increased prey densities. The highest percentage of prey consumption at the prey density of 50 revealed that 1:50 predator-prey ratio was the best to reduce the pest population.  相似文献   

16.
  1. Predator–prey models are often used to represent consumptive interactions between species but, typically, are derived using simple experimental systems with little plasticity in prey or predator behaviours. However, many prey and predators exhibit a broad suite of behaviours. Here, we experimentally tested the effect of density-dependent prey and predator behaviours on per capita relative mortality rates using Florida bass (Micropterus floridanus) consuming juvenile Bluegill (Lepomis macrochirus).
  2. Experimental ponds were stocked with a factorial design of low, medium, and high prey and predator densities. Prey mortality, prey–predator behaviours, and predator stomach contents were recorded over or after 7 days. We assumed the mortality dynamics followed foraging arena theory. This pathologically flexible predator–prey model separates prey into invulnerable and vulnerable pools where predators can consume prey in the latter. As this approach can represent classic Lotka–Volterra and ratio-dependent dynamics, we fit a foraging arena predator–prey model to the number of surviving prey.
  3. We found that prey exhibited density-dependent prey behaviours, hiding at low densities, shoaling at medium densities, and using a provided refuge at high densities. Predators exhibited ratio-dependent behaviours, using an ambush foraging mode when one predator was present, hiding in the shadows at low prey–high predator densities, and shoaling at medium and high prey–high predator densities. The foraging arena model predicted the mortality rates well until the high prey–high predator treatment where group vigilance prey behaviours occurred and predators probably interfered with one another resulting in the model predicting higher mortality than observed.
  4. This is concerning given the ubiquity of predator–prey models in ecology and natural resource management. Furthermore, as Allee effects engender instability in population regulation, it could lead to inaccurate predictions of conservation status, population rebuilding or harvest rates.
  相似文献   

17.
Synthesis Predation risk experienced by individuals living in groups depends on the balance between predator dilution, competition for refuges, and predator interference or synergy. These interactions operate between prey species as well: the benefits of group living decline in the presence of an alternative prey species. We apply a novel model‐fitting approach to data from field experiments to distinguish among competing hypotheses about shifts in predator foraging behavior across a range of predator and prey densities. Our study provides novel analytical tools for analyzing predator foraging behavior and offers insight into the processes driving the dynamics of coral reef fish. Studies of predator foraging behavior typically focus on single prey species and fixed predator densities, ignoring the potential importance of complexities such as predator dilution; predator‐mediated effects of alternative prey; heterospecific competition; or predator–predator interactions. Neglecting the effects of prey density is particularly problematic for prey species that live in mixed species groups, where the beneficial effects of predator dilution may swamp the negative effects of heterospecific competition. Here we use field experiments to investigate how the mortality rates of a shoaling coral reef fish (a wrasse: Thalassoma amblycephalum), change as a result of variation in: 1) conspecific density, 2) density of a predator (a hawkfish: Paracirrhites arcatus), and 3) presence of an alternative prey species that competes for space (a damselfish: Pomacentrus pavo). We quantify changes in prey mortality rates from the predator's perspective, examining the effects of added predators or a second prey species on the predator's functional response. Our analysis highlights a model‐fitting approach that discriminates amongst multiple hypotheses about predator foraging in a community context. Wrasse mortality decreased with increasing conspecific density (i.e. mortality was inversely density‐dependent). The addition of a second predator doubled prey mortality rates, without significantly changing attack rate or handling time – i.e. there was no evidence for predator interference. The presence of a second prey species increased wrasse mortality by 95%; we attribute this increase either to short‐term apparent competition (predator aggregation) or to a decrease in handling time of the predator (e.g. through decreased wrasse vigilance). In this system, 1) prey benefit from intraspecific group living though a reduced predation risk, and 2) the benefit of group living is reduced in the presence of an alternative prey species.  相似文献   

18.
M. D. Moran  L. E. Hurd 《Oecologia》1994,98(3-4):269-273
We investigated the short-term response of an arthropod assemblage to elevated generalist predator densities by introducing Chinese mantids (Tenodera sinensis) to field plots in a replicated, controlled experiment. Abundances of carnivorous arthropods were reduced by mantids to a greater extent than herbivores, and cursorial spiders emigrated from treatment plots in greater numbers than from controls. Initially, this emigration consisted only of small spiders that were demonstrated in the laboratory to be prey for mantids. Thus, the initial response of an arthropod assemblage to increased predators, densities was increased interactions among predators, which caused decline in predator population densities in a shorter time than competition for prey would require. Predator avoidance behavior must be considered together with intraguild predation and competition when interpreting the outcome of predator manipulations. Shortterm experiments may be more valuable than longer term studies in detecting this effect.  相似文献   

19.

Small‐scale zooplankton swimming behaviors can affect aquatic predator‐prey interactions. Difficulties in controlling prey swimming behavior however, have restricted the ability to test hypotheses relating differences in small‐scale swimming behavior to frequency of predation by fish. We report here a Virtual Plankton (VP) system that circumvents this problem by allowing the observation of fish “preying"on computer‐generated prey images whose size, shape, color and swimming behavior can be precisely controlled. Two experiments were performed in which bluegill sunfish (Lepomis macrochirus) were given a choice of either two VP images, one of which moved twice as fast as the other, or six VP, one of which moved either faster (1.25 x, 1.5 x or 2 x ) or slower (0.5 x) than the other five. Current predator‐prey models based on encounter probabilities and prey visibility predict that moving faster increases predation risk and conversely, moving slower decreases predation risk. In agreement with existing predator‐prey models, in both experiments, fish chose faster moving VP significantly more often than their slower moving neighbors. Contrary to the predictions of existing models, in the second experiment with six VP, the rate at which fish chose a prey image moving half as fast as the five surrounding images did not differ significantly from the rate predicted by chance(l/6). These results suggest that current fish‐zooplankton predation models would benefit by the incorporation of small‐scale swimming behavior and assessments of its influence on overall prey visibility.  相似文献   

20.
The effects of prey density and spatial distribution on prey consumption of the adult predatory ladybird, Harmonia axyridis , were investigated by using a 2 × 2 factorial design in large scale cages. Prey density influenced prey consumption of the ladybirds, and the frequency with which predation occurred was quite different between the prey distributions. The ladybirds consumed a relatively constant and small number of aphids when the prey were uniformly distributed, whereas the number of prey consumed per day when predation occurred was large and much more variable when the prey were contagiously distributed. At high prey density, the number of prey consumed was highest during the first day of the experiment; thereafter, only 10–20 aphids were consumed during the following 3 days. However, these patterns of prey consumption were not observed at low prey density. The percentage of aphids that remained on the host plants when the experiments were terminated was higher at low prey density than at high prey density, suggesting that predator foraging efficiency at low prey density was lower than at high prey density. Ladybirds foraging for high prey density were more frequently observed on the plants with aphids than ladybirds foraging for low prey density. Prey distribution also influenced the frequency of residence of ladybirds on the plants. The different predation patterns observed in the two spatial distributions, in which prey consumption was much more variable for the contagious distribution, might be explained by the difference in prey encounter rate of the predator between the distributions. This study indicated that the ladybirds had limited ability to search out prey over large spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号