首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daily activity rhythms that are dominated by internal clocks are called circadian rhythms. A central clock is located in the suprachiasmatic nucleus of the hypothalamus, and peripheral clocks are located in most mammalian peripheral cells. The central clock is entrained by light/dark cycles, whereas peripheral clocks are entrained by feeding cycles. The effects of nutrients on the central and peripheral clocks have been investigated during the past decade and much interaction between them has come to light. For example, a high-fat diet prolongs the period of circadian behavior, a ketogenic diet advances the onset of locomotor activity rhythms, and a high-salt diet advances the phase of peripheral molecular clocks. Moreover, some food factors such as caffeine, nobiletin, and resveratrol, alter molecular and/or behavioral circadian rhythms. Here, we review nutrients and food factors that modulate mammalian circadian clocks from the cellular to the behavioral level.  相似文献   

2.
The circadian system controls the timing of behavioral and physiological functions in most organisms studied. The review addresses the question of when and how the molecular clockwork underlying circadian oscillations within the central circadian clock in the suprachiasmatic nuclei of the hypothalamus (SCN) and the peripheral circadian clocks develops during ontogenesis. The current model of the molecular clockwork is summarized. The central SCN clock is viewed as a complex structure composed of a web of mutually synchronized individual oscillators. The importance of development of both the intracellular molecular clockwork as well as intercellular coupling for development of the formal properties of the circadian SCN clock is also highlighted. Recently, data has accumulated to demonstrate that synchronized molecular oscillations in the central and peripheral clocks develop gradually during ontogenesis and development extends into postnatal period. Synchronized molecular oscillations develop earlier in the SCN than in the peripheral clocks. A hypothesis is suggested that the immature clocks might be first driven by external entraining cues, and therefore, serve as "slave" oscillators. During ontogenesis, the clocks may gradually develop a complete set of molecular interlocked oscillations, i.e., the molecular clockwork, and become self-sustained clocks.  相似文献   

3.
Circadian rhythms are regulated by clocks located in specific structures of the central nervous system, such as the suprachiasmatic nucleus (SCN) in mammals, and by peripheral oscillators present in various other tissues. Recent discoveries have elucidated the control of central and peripheral clocks by environmental signals. The major synchroniser in animals is light. In mammals, a subset of retinal ganglion cells receive light signals that are transmitted to the SCN via the retinohypothalamic tract. Photoreception is probably elicited by a novel opsin, melanopsin, although cryptochromes may also play a role. These signals feed directly to the SCN master clock, which then provides timing cues to peripheral clocks. In contrast to mammals, peripheral tissues in the fly and in the fish are directly photoreceptive. However, alternative routes exist. Some peripheral clocks in mammals can be specifically entrained in an SCN-independent manner by restricting food during the light period.  相似文献   

4.
5.
Albrecht U 《Neuron》2012,74(2):246-260
The mammalian circadian system, which is comprised of multiple cellular clocks located in the organs and tissues, orchestrates their regulation in a hierarchical manner throughout the 24?hr of the day. At the top of the hierarchy are the suprachiasmatic nuclei, which synchronize subordinate organ and tissue clocks using electrical, endocrine, and metabolic signaling pathways that impact the molecular mechanisms of cellular clocks. The interplay between the central neural and peripheral tissue clocks is not fully understood and remains a major challenge in determining how neurological and metabolic homeostasis is achieved across the sleep-wake cycle. Disturbances in the communication between the plethora of body clocks can desynchronize the circadian system, which is believed to contribute to the development of diseases such as obesity and neuropsychiatric disorders. This review will highlight the relationship between clocks and metabolism, and describe how cues such as light, food, and reward mediate entrainment of the circadian system.  相似文献   

6.
Circadian rhythms in plants: a millennial view   总被引:5,自引:0,他引:5  
Circadian rhythms are endogenous rhythms with periods of approximately 24 h. These rhythms are widespread both within any given organism and among diverse taxa. As genetic and molecular biological studies, primarily in a subset of model organisms, have begun to identify the components of circadian systems, there is optimism that we will soon achieve a detailed molecular understanding of circadian timing mechanisms. Although plants have provided many examples of rhythmic outputs, and our understanding of photoreceptors of circadian input pathways is well-advanced, plants have lagged behind other groups of organisms in the identification of components of the central circadian oscillator. However, there are now a number of promising candidates for components of plant circadian clocks, and it seems probable that we will soon know the details of a plant central oscillator. Moreover, there is also accumulating evidence that plants and other organisms house multiple circadian clocks, both in different tissues and, quite probably, within individual cells. This provides an unanticipated level of complexity with the potential for interaction among these multiple oscillators.  相似文献   

7.
In mammals, 24-h rhythms of behaviour and physiology are regulated by the circadian clock. The circadian clock is controlled by a central clock in the brain's suprachiasmatic nucleus (SCN) that synchronizes peripheral clocks in peripheral tissues. Clock genes in the SCN are primarily entrained by light. Increasing evidence has shown that peripheral clocks are also regulated by light and hormones independent of the SCN. How the peripheral clocks deal with internal signals is dependent on the relevance of a specific cue to a specific tissue. In different tissues, most genes that are under circadian control are not overlapping, revealing the tissue-specific control of peripheral clocks. We will discuss how different signals control the peripheral clocks in different peripheral tissues, such as the liver, gastrointestinal tract, and pancreas, and discuss the organ-to-organ communication between the peripheral clocks at the molecular level.  相似文献   

8.
Resetting mechanism of central and peripheral circadian clocks in mammals   总被引:15,自引:0,他引:15  
  相似文献   

9.
Chrononutrition – circadian clocks and energy metabolism Genetically encoded endogenous clocks regulate 24‐hour rhythms of physiology and behavior. A central pacemaker residing in the suprachiasmatic nucleus synchronizes peripheral clocks found in all tissues with each other and with the external day‐night cycle. One function of circadian clocks is the regulation of energy metabolism via rhythmic activation of tissue‐specific clock‐controlled genes. In the liver, genes involved in glucose and lipid metabolism are regulated in this fashion, while in adipocytes, fatty acid release and adipokine secretion are controlled by the circadian clock. Disruption of circadian rhythms as seen, for example, in shift workers promotes the development of metabolic disorders such as obesity and type‐2 diabetes.  相似文献   

10.
Understanding Neutral Genomic Molecular Clocks   总被引:1,自引:0,他引:1  
The molecular clock hypothesis is a central concept in molecular evolution and has inspired much research into why evolutionary rates vary between and within genomes. In the age of modern comparative genomics, understanding the neutral genomic molecular clock occupies a critical place. It has been demonstrated that molecular clocks run differently between closely related species, and generation time is an important determinant of lineage specific molecular clocks. Moreover, it has been repeatedly shown that regional molecular clocks vary even within a genome, which should be taken into account when measuring evolutionary constraint of specific genomic regions. With the availability of a large amount of genomic sequence data, new insights into the patterns and causes of variation in molecular clocks are emerging. In particular, factors such as nucleotide composition, molecular origins of mutations, weak selection and recombination rates are important determinants of neutral genomic molecular clocks.  相似文献   

11.
Many physiological functions of insects show a rhythmic change to adapt to daily environmental cycles. These rhythms are controlled by a multi-clock system. A principal clock located in the brain usually organizes the overall behavioral rhythms, so that it is called the "central clock". However, the rhythms observed in a variety of peripheral tissues are often driven by clocks that reside in those tissues. Such autonomous rhythms can be found in sensory organs, digestive and reproductive systems. Using Drosophila melanogaster as a model organism, researchers have revealed that the peripheral clocks are self-sustained oscillators with a molecular machinery slightly different from that of the central clock. However, individual clocks normally run in harmony with each other to keep a coordinated temporal structure within an animal. How can this be achieved? What is the molecular mechanism underlying the oscillation? Also how are the peripheral clocks entrained by light-dark cycles? There are still many questions remaining in this research field. In the last several years, molecular techniques have become available in non-model insects so that the molecular oscillatory mechanisms are comparatively investigated among different insects, which give us more hints to understand the essential regulatory mechanism of the multi-oscillatory system across insects and other arthropods. Here we review current knowledge on arthropod's peripheral clocks and discuss their physiological roles and molecular mechanisms.  相似文献   

12.
ABSTRACT

In mammals, daily physiological events are regulated by the circadian rhythm, which comprises two types of internal clocks: the central clock and peripheral clocks. Circadian rhythm plays an important role in maintaining physiological functions including the sleep-wake cycle, body temperature, metabolism and organ functions. Circadian rhythm disorder, which is caused, for example, by an irregular lifestyle or long-haul travel, increases the risk of developing disease; therefore, it is important to properly maintain the rhythm of the circadian clock. Food and the circadian clock system are known to be closely linked. Studies on rodents suggest that ingesting specific food ingredients, such as the flavonoid nobiletin, fish oil, the polyphenol resveratrol and the amino acid L-ornithine affects the circadian clock. However, there are few reports on the foods that affect these circadian clocks in humans. In this study, therefore, we examined whether L-ornithine affects the human central clock in a crossover design placebo-controlled human trial. In total, 28 healthy adults (i.e. ≥20 years) were randomly divided into two groups and completed the study protocol. In the 1st intake period, participants were asked to take either L-ornithine (400 mg) capsules or placebo capsules for 7 days. After 7 days’ interval, they then took the alternative test capsules for 7 days in the 2nd intake period. On the final day of each intake period, saliva was sampled at various time points in the dim light condition, and the concentration of melatonin was quantified to evaluate the phase of the central clock. The results revealed that dim light melatonin onset, a recognized marker of central circadian phase, was delayed by 15 min after ingestion of L-ornithine. Not only is this finding an indication that L-ornithine affects the human central clock, but it also demonstrates that the human central clock can be regulated by food ingredients.  相似文献   

13.
14.
The mammalian genome encodes at least a dozen of genes directly involved in the regulation of the feedback loops constituting the circadian clock. The circadian system is built up on a multitude of oscillators organized according to a hierarchical model in which neurons of the suprachiasmatic nuclei of the hypothalamus may drive the central circadian clock and all the other somatic cells may possess the molecular components allowing tissues and organs to constitute peripheral clocks. Suprachiasmatic neurons are driving the central circadian clock which is reset by lighting cues captured and integrated by the melanopsin cells of the retina and define the daily rhythms of locomotor activity and associated physiological regulatory pathways like feeding and metabolism. This central clock entrains peripheral clocks which can be synchronized by non-photic environmental cues and uncoupled from the central one depending on the nature and the strength of the circadian signal. The human circadian clock and its functioning in central or peripheral tissues are currently being explored to increase the therapeutic efficacy of timed administration of drugs or radiation, and to offer better advice on lighting and meal timing useful for frequent travelers suffering from jet lag and for night workers' comfort. However, the molecular mechanism driving and coordinating the central and peripheral clocks through a wide range of synchronizers (lighting, feeding, physical or social activities) remains a mystery.  相似文献   

15.
Clock genes in mammalian peripheral tissues   总被引:13,自引:0,他引:13  
  相似文献   

16.
Circadian clocks are ubiquitous and are found in organisms ranging from bacteria to mammals. This ubiquity of occurrence implies adaptive significance, but to date there has been no rigorous empirical evidence to support this. It is believed that an organism possessing circadian clocks gains fitness advantage in two ways: (i) by synchronizing its behavioral and physiological processes to cyclic environmental factors (extrinsic adaptive value); (ii) by coordinating its internal metabolic processes (intrinsic adaptive value). There is preliminary circumstantial evidence to support both. Several studies using organisms living in constant environments have shown that these organisms possess functional circadian clocks, suggesting that circadian clocks may have some intrinsic adaptive value. Studies to assess the adaptive value of circadian clocks in periodic environments suggest that organisms may have a fitness advantage in those periodic environments, which closely match their own intrinsic periodicity. Furthermore, evidence from organisms living in the wild, selection studies, and studies on latitudinal clines suggest that circadian clocks may have an extrinsic adaptive value as well. In this paper, I have presented several hypotheses for the emergence of circadian clocks and have reviewed some major empirical studies suggesting adaptive significance of circadian clocks.  相似文献   

17.
Circadian clocks are ubiquitous and are found in organisms ranging from bacteria to mammals. This ubiquity of occurrence implies adaptive significance, but to date there has been no rigorous empirical evidence to support this. It is believed that an organism possessing circadian clocks gains fitness advantage in two ways: (i) by synchronizing its behavioral and physiological processes to cyclic environmental factors (extrinsic adaptive value); (ii) by coordinating its internal metabolic processes (intrinsic adaptive value). There is preliminary circumstantial evidence to support both. Several studies using organisms living in constant environments have shown that these organisms possess functional circadian clocks, suggesting that circadian clocks may have some intrinsic adaptive value. Studies to assess the adaptive value of circadian clocks in periodic environments suggest that organisms may have a fitness advantage in those periodic environments, which closely match their own intrinsic periodicity. Furthermore, evidence from organisms living in the wild, selection studies, and studies on latitudinal clines suggest that circadian clocks may have an extrinsic adaptive value as well. In this paper, I have presented several hypotheses for the emergence of circadian clocks and have reviewed some major empirical studies suggesting adaptive significance of circadian clocks.  相似文献   

18.
A master circadian clock resides in the brain and is required to synchronize the clocks in peripheral tissues such as the liver. Until now, it has been unclear how the central clock synchronizes the peripheral ones. New work points to one of the core clock genes, mPer2, as an essential link in this chain.  相似文献   

19.
Circadian clocks generate daily rhythms in molecular, cellular, and physiological functions providing temporal dimension to organismal homeostasis. Recent evidence suggests two‐way relationship between circadian clocks and aging. While disruption of the circadian clock leads to premature aging in animals, there is also age‐related dampening of output rhythms such as sleep/wake cycles and hormonal fluctuations. Decay in the oscillations of several clock genes was recently reported in aged fruit flies, but mechanisms underlying these age‐related changes are not understood. We report that the circadian light–sensitive protein CRYPTOCHROME (CRY) is significantly reduced at both mRNA and protein levels in heads of old Drosophila melanogaster. Restoration of CRY using the binary GAL4/UAS system in old flies significantly enhanced the mRNA oscillatory amplitude of several genes involved in the clock mechanism. Flies with CRY overexpressed in all clock cells maintained strong rest/activity rhythms in constant darkness late in life when rhythms were disrupted in most control flies. We also observed a remarkable extension of healthspan in flies with elevated CRY. Conversely, CRY‐deficient mutants showed accelerated functional decline and accumulated greater oxidative damage. Interestingly, overexpression of CRY in central clock neurons alone was not sufficient to restore rest/activity rhythms or extend healthspan. Together, these data suggest novel anti‐aging functions of CRY and indicate that peripheral clocks play an active role in delaying behavioral and physiological aging.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号