首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Previous studies on the folding mechanism of Escherichia coli serine hydroxymethyltransferase (SHMT) showed that the final rate determining folding step was from an intermediate that contained two fully folded domains with N-terminal segments of approximately 55 residues and interdomain segments of approximately 50 residues that were still solvent exposed and subject to proteolysis. The interdomain segment contains 3 Pro residues near its N terminus and 2 Pro residues near its C terminus. The 5 Pro residues were each mutated to both a Gly and Ala residue, and each mutant SHMT was purified and characterized with respect to kinetic properties, stability, secondary structure, and folding mechanism. The results showed that Pro214 and Pro218 near the N terminus of the interdomain segment are not critical for folding, stability, or activity. The P216A mutant also retained most of the characteristics of the native enzyme, but its folding rate was altered. However, the P216G mutant was severely compromised in folding into a catalytically competent enzyme. Mutation of both Pro258 and Pro264 had altered folding kinetics and resulted in enzymes that expressed little catalytic activity. The Phe257-Pro258 bond is cis in its configuration, and the P258A mutant SHMT showed reduced thermal stability. Pro216, Pro258, and Pro264 are conserved in all 53 known sequences of this enzyme. The results are discussed in terms of the role of each Pro residue in maintaining the structure and function of SHMT and a possible role in pyridoxal 5'-phosphate addition to the apo-enzyme.  相似文献   

2.
R Manohar  A G Rao  N A Rao 《Biochemistry》1984,23(18):4116-4122
The kinetic mechanism for the interaction of D-cycloserine with serine hydroxymethyltransferase (EC 2.1.2.1) from sheep liver was established by measuring changes in the activity, absorbance, and circular dichoism (CD) of the enzyme. The irreversible inhibition of the enzyme was characterized by three detectable steps: an initial rapid step followed by two successive steps with rate constants of 5.4 X 10(-3) s-1 and 1.4 X 10(-4) s-1. The first step was distinguished by a rapid disappearance of the enzyme absorbance peak at 425 nm, a decrease in the enzyme activity to 25% of the uninhibited velocity, and a lowering of the CD intensity at 432 nm to about 65% of the original value. The second step of the interaction was accompanied by a complete loss of enzyme activity and a marginal increase in the CD intensity at 432 nm. The final step resulted in the complete loss of the enzyme absorbance at 425 nm and of the CD band at 432 nm. The products of the reaction were identified as (a) apoenzyme by absorbance measurements, CD spectra, and reconstitution with pyridoxal 5'-phosphate and (b) a pyridoxal 5'-phosphate-D-cycloserine Schiff's base complex identified by its fluorescence and absorbance spectra. The Schiff base complex was expelled from the enzyme active site in the final step of the reaction. The proposed mechanism, which is different from those operative in other pyridoxal phosphate dependent enzymes, probably accounts for the selective inhibition of serine hydroxymethyltransferase by the drug in vivo.  相似文献   

3.
Significant derepression of serine hydroxymethyltransferase is observed when metE or metF mutants of Escherichia coli K-12 are grown on D-methionine sulfoxide instead of L-methionine. The derepression is not prevented by addition of glycine, adenosine, guanosine, guanosine, and thymidine to the growth medium of methionine-limited metF cells showing that the effect is not due to a secondary deficiency of these nutrients. On the other hand, methionine-limited growth of a metA mutant leads to derepression of met regulon enzymes, but only a marginal increase in serine hydroxymethyltransferase activity. A prototrophic metJ strain grown on minimal medium has about the same serine hydroxymethyltransferase as the wild type. The enzyme activity of the metJ strain is not influenced by methionine, but it is partially repressed by glycine, adenosine, and thymidine. metK strains have about twice as much serine hydroxymethyltransferase activity as wild-type cells when grown on minimal medium; but when both types of cells are grown on medium supplemented with glycine, adenosine, guanosine, and thymidine, their enzyme activities are about the same. The results show that methionine limitation can lead to depression of serine hydroxymethyltransferase, but that the regulatory system is different from the one which controls the methionine regulon.  相似文献   

4.
Serine hydroxymethyltransferase (SHMT), a pyridoxal-5'-phosphate (PLP)-dependent enzyme catalyzes the tetrahydrofolate (H(4)-folate)-dependent retro-aldol cleavage of serine to form 5,10-methylene H(4)-folate and glycine. The structure-function relationship of SHMT was studied in our laboratory initially by mutation of residues that are conserved in all SHMTs and later by structure-based mutagenesis of residues located in the active site. The analysis of mutants showed that K71, Y72, R80, D89, W110, S202, C203, H304, H306 and H356 residues are involved in maintenance of the oligomeric structure. The mutation of D227, a residue involved in charge relay system, led to the formation of inactive dimers, indicating that this residue has a role in maintaining the tetrameric structure and catalysis. E74, a residue appropriately positioned in the structure of the enzyme to carry out proton abstraction, was shown by characterization of E74Q and E74K mutants to be involved in conversion of the enzyme from an 'open' to 'closed' conformation rather than proton abstraction from the hydroxyl group of serine. K256, the residue involved in the formation of Schiffs base with PLP, also plays a crucial role in the maintenance of the tetrameric structure. Mutation of R262 residue established the importance of distal interactions in facilitating catalysis and Y82 is not involved in the formaldehyde transfer via the postulated hemiacetal intermediate but plays a role in stabilizing the quinonoid intermediate. The mutational analysis of scSHMT along with the structure of recombinant Bacillus stearothermophilus SHMT and its substrate(s) complexes was used to provide evidence for a direct transfer mechanism rather than retro-aldol cleavage for the reaction catalyzed by SHMT.  相似文献   

5.
Serine hydroxymethyltransferase (SHMT) from Bacillus stearothermophilus (bsSHMT) is a pyridoxal 5'-phosphate-dependent enzyme that catalyses the conversion of L-serine and tetrahydrofolate to glycine and 5,10-methylene tetrahydrofolate. In addition, the enzyme catalyses the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids and transamination. In this article, we have examined the mechanism of the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids by SHMT. The three-dimensional structure and biochemical properties of Y51F and Y61A bsSHMTs and their complexes with substrates, especially L-allo-Thr, show that the cleavage of 3-hydroxy amino acids could proceed via Calpha proton abstraction rather than hydroxyl proton removal. Both mutations result in a complete loss of tetrahydrofolate-dependent and tetrahydrofolate-independent activities. The mutation of Y51 to F strongly affects the binding of pyridoxal 5'-phosphate, possibly as a consequence of a change in the orientation of the phenyl ring in Y51F bsSHMT. The mutant enzyme could be completely reconstituted with pyridoxal 5'-phosphate. However, there was an alteration in the lambda max value of the internal aldimine (396 nm), a decrease in the rate of reduction with NaCNBH3 and a loss of the intermediate in the interaction with methoxyamine (MA). The mutation of Y61 to A results in the loss of interaction with Calpha and Cbeta of the substrates. X-Ray structure and visible CD studies show that the mutant is capable of forming an external aldimine. However, the formation of the quinonoid intermediate is hindered. It is suggested that Y61 is involved in the abstraction of the Calpha proton from 3-hydroxy amino acids. A new mechanism for the cleavage of 3-hydroxy amino acids via Calpha proton abstraction by SHMT is proposed.  相似文献   

6.
A binding assay for serine hydroxymethyltransferase   总被引:2,自引:0,他引:2  
A sensitive assay for measuring serine hydroxymethyltransferase activity has been developed, based on the binding of N5,N10-[14C]methylene tetrahydrofolate (THF) to DEAE-cellulose paper. The complete assay requires THF, pyridoxal 5'-phosphate, [14C]serine, and enzyme. The reaction is stopped by streaking an aliquot of the reaction mixture onto a square of DEAE-cellulose paper, washing the paper with water to remove unreacted serine, drying the paper, and counting the bound N5,N10-[14C]methylene-THF. To determine that the labeled product was N5,N10-methylene-THF, unlabeled formaldehyde, which exchanges with the labeled methylene carbon, was added after the product had accumulated; 2 min after the addition of formaldehyde the amount of labeled product was reduced by 50%, and by 85% after 10 min. In addition, glycine, which reverses the reaction, and hydroxylamine, which reacts with the methylene carbon, reduced the number of counts bound to the paper. Binding of product to the filter is proportional to both enzyme concentration and assay time. No counts were retained on phosphocellulose filters. This assay represents a new and simple method for measuring serine hydroxymethyltransferase activity, which can be used to measure enzyme activity in tissue homogenates and for screening large numbers of samples.  相似文献   

7.
Cytosolic serine hydroxymethyltransferase has been shown previously to exhibit both broad substrate and reaction specificity. In addition to cleaving many different 3-hydroxyamino acids to glycine and an aldehyde, the enzyme also catalyzes with several amino acid substrate analogs decarboxylation, transamination, and racemization reactions. To elucidate the relationship of the structure of the substrate to reaction specificity, the interaction of both amino acid and folate substrates and substrate analogs with the enzyme has been studied by three different methods. These methods include investigating the effects of substrates and substrate analogs on the thermal denaturation properties of the enzyme by differential scanning calorimetry, determining the rate of peptide hydrogen exchange with solvent protons, and measuring the optical activity of the active site pyridoxal phosphate. All three methods suggest that the enzyme exists as an equilibrium between "open" and "closed" forms. Amino acid substrates enter and leave the active site in the open form, but catalysis occurs in the closed form. The data suggest that the amino acid analogs that undergo alternate reactions, such as racemization and transamination, bind only to the open form of the enzyme and that the alternate reactions occur in the open form. Therefore, one role for forming the closed form of the enzyme is to block side reactions and confer reaction specificity.  相似文献   

8.
P Stover  V Schirch 《Biochemistry》1992,31(7):2155-2164
Serine hydroxymethyltransferase in the presence of glycine catalyzes the hydrolysis of (6R)-5,10-methenyltetrahydropteroylpolyglutamate to (6S)-5-formyltetrahydropteroylpolyglutamate. The enzyme also catalyzes the formation of (6S)-5-formyltetrahydropteroylpolyglutamate from a compound in equilibrium with (6R)-5,10-methenyltetrahydropteroylpolyglutamate believed to be (6R,11R)-5,10-hydroxymethylenetetrahydropteroylpolyglutamate , a putative intermediate in the nonenzymatic hydrolysis of 5,10-methenyltetrahydropteroylglutamate to 5-formyltetrahydropteroylglutamate [Stover, P., & Schirch, V. (1992) Biochemistry (preceding paper in this issue)]. The enzymatic mechanism for the formation of (6S)-5-formyltetrahydropteroylpolyglutamate from these substrates and the role of glycine in the reaction was addressed. Evidence suggests that (6R,11R)-5,10-hydroxymethylenetetrahydropteroyltetraglutamate++ + is a catalytically competent intermediate in the enzyme-catalyzed hydrolysis of (6R)-5,10-methenyltetrahydropteroyltetraglutamate. The enzyme displays a high Km of 40 microM for (6R)-5,10-methenyltetrahydropteroyltetraglutamate, while the Km for (6R,11R)-5,10-hydroxymethylenetetrahydropteroyltetraglutamate++ + is below 0.5 microM. The kcat values for both reactions are identical and equal to the rate of formation of an enzyme ternary complex absorbing at 502 nm which is formed from glycine and (6S)-5-formyltetrahydropteroylpolyglutamate. The hydrolysis reaction proceeds with exchange of the C11 formyl proton of (6R)-5,10-methenyltetrahydropteroyltetraglutamate, suggesting that the enzyme-catalyzed reaction occurs by the same C11 carbanion inversion mechanism as the nonenzymatic reaction. Isotope exchange experiments using [2-3H]glycine and differential scanning calorimetry data suggest both a catalytic and a conformational role for glycine in the enzymatic reaction. The results are discussed in terms of the similarity in mechanisms of the SHMT-catalyzed retroaldol cleavage of serine and hydrolysis of (6R)-5,10-methenyltetrahydropteroylpolyglutamates.  相似文献   

9.
Plasmodium lophurae serine hydroxymethyltransferase (EC 2.1.2.1) was partially purified and characterized by (NH4)2SO4 fractionation and chromatography on Sephadex G-100. The enzyme, precipitated by 3.0.3.3 M (NH4)2SO4, had a molecular weight of 68,300 as estimated by exclusion chromatography on G-100. The pH optimum of the enzyme was 6.8-7.6 in sodium phosphate-citrate buffer. Citrate stabilized the enzyme during storage in phosphate buffer at 4 C. The Km was 4.3 X 10(-3) M for L-serine and 2.5 X 10(-4) M for tetrahydrofolate.  相似文献   

10.
Folate-dependent one-carbon metabolism is critical for the synthesis of numerous cellular constituents required for cell growth, and serine hydroxymethyltransferase (SHMT) is central to this process. Our studies reveal that the gene for cytosolic SHMT (cSHMT) maps to the critical interval for Smith-Magenis syndrome (SMS) on chromosome 17p11.2. The basic organization of the cSHMT locus on chromosome 17 was determined and was found to be deleted in all 26 SMS patients examined by PCR, FISH, and/or Southern analysis. Furthermore, with respect to haploinsufficiency, cSHMT enzyme activity in patient lymphoblasts was determined to be approximately 50% that of unaffected parent lymphoblasts. Serine, glycine, and folate levels were also assessed in three SMS patients and were found to be within normal ranges. The possible effects of cSHMT hemizygosity on the SMS phenotype are discussed.  相似文献   

11.
12.
We have developed a novel HPLC-based fluorometric assay for serine hydroxymethyltransferase activity. In this assay, the 5,10-CH(2)-H(4)PteGlu formed by serine hydroxymethyltransferase activity is reduced to 5-CH(3)-H(4)PteGlu using NaBH(4). Then the fluorescent assay components are separated by reversed-phase chromatography under isocratic conditions and 5-CH(3)-H(4)PteGlu is quantified by comparison with standards. We show that this assay can be used to measure serine hydroxymethyltransferase activity at 10(-8) to 10(-3)M (6R,S)-H(4)PteGlu.  相似文献   

13.
Serine hydroxymethyltransferase purified from rabbit liver cytosol has at least two Asn residues (Asn(5) and Asn(220)) that are 67 and 30% deamidated, respectively. Asn(5) is deamidated equally to Asp and isoAsp, while Asn(220) is deamidated only to isoAsp. To determine the effect of these Asn deamidations on enzyme activity and stability a recombinant rabbit liver cytosolic serine hydroxymethyltransferase was expressed in Escherichia coli over a 5-h period. About 90% of the recombinant enzyme could be isolated with the two Asn residues in a nondeamidated form. Compared with the enzyme isolated from liver the recombinant enzyme had a 35% increase in catalytic activity but exhibited no significant changes in either affinity for substrates or stability. Introduction of Asp residues for either Asn(5) or Asn(220) did not significantly alter activity or stability of the mutant forms. In vitro incubation of the recombinant enzyme at 37 degrees C and pH 7.3 resulted in the rapid deamidation of Asn(5) to both Asp and isoAsp with a t(1/2) of 50-70 h, which is comparable to the rate found with small flexible peptides containing the same sequence. The t(1/2) for deamidation of Asn(220) was at least 200 h. This residue may become deamidated only after some unfolding of the enzyme. The rates for deamidation of Asn(5) and Asn(220) are consistent with the structural environment of the two Asn residues in the native enzyme. There are also at least two additional deamidation events that occur during prolonged incubation of the recombinant enzyme.  相似文献   

14.
E G Platzer 《Life sciences》1977,20(8):1417-1424
Subcellular fractions of the bird malaria, Plasmodium lophurae were prepared by differential centrifugation. Cytochrome oxidase activity was located in the mitochondrial fraction. A major portion of glutamate dehydrogenase activity was found in the mitochondrial fraction with the remainder in the ribosomal and cytosolic fractions. Malate dehydrogenase and serine hydroxymethyltransferase activities were located primarily in the cytosolic fraction.  相似文献   

15.
Serine hydroxymethyltransferase (SHMT), which catalyzes the reversible reaction of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate, is one of the three enzymes in dTMP synthesis pathway that is highly active during cell division and has been proposed as a potential chemotherapeutic target in infectious diseases and cancer. This is the first study to describe nucleotide and amino acid sequences of SHMT from the malaria parasite Plasmodium vivax. Sequencing of 12 P. vivax isolates revealed limited polymorphisms in 3 noncoding regions. Its biological function is also reported.  相似文献   

16.
Serine hydroxymethyltransferase (SHMT; EC 2.1.2.1) catalyzes the reversible interconversion of serine and glycine with transfer of the serine side chain one-carbon group to tetrahydropteroylglutamate (H(4)PteGlu), and also the conversion of 5,10-methenyl-H(4)PteGlu to 5-formyl-H(4)PteGlu. In the cell, H(4)PteGlu carries a poly-gamma-glutamyl tail of at least 3 glutamyl residues that is required for physiological activity. This study combines solution binding and mutagenesis studies with crystallographic structure determination to identify the extended binding site for tetrahydropteroylpolyglutamate on rabbit cytosolic SHMT. Equilibrium binding and kinetic measurements of H(4)PteGlu(3) and H(4)PteGlu(5) with wild-type and Lys --> Gln or Glu site mutant homotetrameric rabbit cytosolic SHMTs identified lysine residues that contribute to the binding of the polyglutamate tail. The crystal structure of the enzyme in complex with 5-formyl-H(4)PteGlu(3) confirms the solution data and indicates that the conformation of the pteridine ring and its interactions with the enzyme differ slightly from those observed in complexes of the monoglutamate cofactor. The polyglutamate chain, which does not contribute to catalysis, exists in multiple conformations in each of the two occupied binding sites and appears to be bound by the electrostatic field created by the cationic residues, with only limited interactions with specific individual residues.  相似文献   

17.
18.
Serine hydroxymethyltransferase (SHMT), commonly implicatedin the glycine synthesis of eucaryotes, was examined in Neurosporacrassa, wild type (FGSC 853) and a formate-requiring mutant(FGSC 9). The mutant was SHMT-deficient, containing only 15%of the total activity found in the wild type. Differential anddensity gradient centrifugations showed the mutant to be deficientin soluble SHMT activity. Both strains contained particulateSHMT which sedimented with mitochondrial marker enzymes. The origins of glycine were examined by a combination of enzyme,growth and 14C feeding experiments. Growth of the mutant wasstrongly inhibited by the isocitrate lyase-directed inhibitoritaconate. This inhibition was reduced when exogenous glycinewas supplied. Itaconate (up to 30 mM) did not inhibit growthof the wild type but in both strains isocitrate lyase activitieswere reduced. The mutant contained more lyase and glyoxylateaminotransferase than the wild type. In feeding experiments,[2-14C]acetate and [l-14C]glyoxylate were more readily incorporatedinto glycine in the mutant than the wild type. Itaconate (30mM) reduced the flow of acetate carbon into glycine by up to70% in the mutant. It is concluded that deficiency in solubleSHMT necessitates glycine synthesis via an isocitrateglyoxylateglycinesequence. (Received December 24, 1979; )  相似文献   

19.
Serine hydroxymethyltransferase and the glycine cleavage system are both present in liver mitochondria and both bind glycine to form a pyridoxal 5'-phosphate carbanionic quinoid species. Lipoic acid has been shown to have the ability to intercept the carbanionic intermediate formed from the binary complex of serine hydroxymethyltransferase and glycine and form an intermediate adduct which is ultimately processed to yield CO2 and a methylamine adduct. Kinetic studies have shown that the lipoic acid-dependent decarboxylation of glycine catalyzed by serine hydroxymethyltransferase proceeds through a sequential mechanism. This lipoic acid-dependent decarboxylation catalyzed by serine hydroxymethyltransferase is similar to the initial reaction of the glycine cleavage system and to the lipoic acid-dependent decarboxylation of glycine by the P-protein alone suggesting that both enzymes could serve in lieu of each other.  相似文献   

20.
The complete amino acid sequence of cytosolic serine hydroxymethyltransferase from rabbit liver was determined. The sequence was determined from analysis of peptides isolated from tryptic and cyanogen bromide cleavages of the enzyme. Special procedures were used to isolate and sequence the C-terminal and blocked N-terminal peptides. Each of the four identical subunits of the enzyme consists of 483 residues. The sequence could be easily aligned with the sequence of Escherichia coli serine hydroxymethyltransferase. The primary structural homology between the rabbit and E. coli enzymes is about 42%. The importance of the primary and predicted secondary structural homology between the two enzymes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号