首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
The arginine-rich RNA binding motif is found in a wide variety of proteins, including several viral regulatory proteins. Although related at the primary sequence level, arginine-rich domains from different proteins adopt different conformations depending on the RNA site recognized, and in some cases fold only in the context of RNA. Here we show that the RNA binding domain of the Jembrana disease virus (JDV) Tat protein is able to recognize two different TAR RNA sites, from human and bovine immunodeficiency viruses (HIV and BIV, respectively), adopting different conformations in the two RNA contexts and using different amino acids for recognition. In addition to the conformational differences, the JDV domain requires the cyclin T1 protein for high-affinity binding to HIV TAR, but not to BIV TAR. The "chameleon-like" behavior of the JDV Tat RNA binding domain reinforces the concept that RNA molecules can provide structural scaffolds for protein folding, and suggests mechanisms for evolving distinct RNA binding specificities from a single multifunctional domain.  相似文献   

14.
15.
16.
17.
18.
The interaction between the arginine-rich motif (ARM) of the human immunodeficiency virus (HIV) Tat protein and TAR RNA is essential for Tat activation and viral replication. Two related lentiviruses, bovine immunodeficiency virus (BIV) and Jembrana disease virus (JDV), also require Tat ARM-TAR interactions to mediate activation, but the viruses have evolved different RNA-binding strategies. Interestingly, the JDV ARM can act as a "chameleon," adopting both the HIV and BIV TAR binding modes. To examine how RNA-protein interactions may evolve in a viral context and possibly to identify peptides that recognize HIV TAR in novel ways, we devised a retroviral system based on HIV replication to amplify and select for RNA binders. We constructed a combinatorial peptide library based on the BIV Tat ARM and identified peptides that, like the JDV Tat ARM, also function through HIV TAR, revealing unexpected sequence characteristics of an RNA-binding chameleon. The results suggest that a retroviral screening approach may help identify high-affinity TAR binders and may provide new insights into the evolution of RNA-protein interactions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号