首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The volumetric properties of electrolytes in solutions indicate the interactions of the constituent ions with their environment: the solvent and other ions. The interactions with the solvent alone are manifested at infinite dilution by the standard partial molar volume, V(infinity)(salt), obtained from density measurements. To study the interactions, it is necessary to split V(infinity)(salt) into the additive ionic contributions, V(infinity)(ion), using an extra-thermodynamic assumption. Values of V(infinity)(ion) for small ions depend cardinally on the electrostriction of the solvent that can be obtained from an iterative shell-by-shell calculation from a continuum model of the solvent. The solvent shrinkage per mol of ions is DeltaV(el)(ion)<0. Also, the molar electrostriction of the solvent S, DeltaV(el)(S)<0, is calculable. The ratio DeltaV(el)(ion)/DeltaV(el)(S)=n(infinity) is the solvation number of the ion in S at infinite dilution. The calculated V(infinity)(ion)(calc) are compared with the experimental values, showing good agreement for many univalent ions in both single solvents and in some binary solvent mixtures, where no appreciable preferential solvation takes place. Ion pairing sets in under certain circumstances of ionic charge and solvent permittivity. The difference DeltaV(ip)=V(ip)(infinity)-[V(infinity)(+)+V(infinity)(-)]>0 is obtained experimentally from the pressure derivative of the association constant. The ratio Deltan(ip)=DeltaV(ip)/DeltaV(el)(S) represents the number of solvent molecules released to the bulk on ion pairing by the diminution of the electrostriction.  相似文献   

2.
Photoacoustic calorimetry has been utilized to probe the thermodynamics accompanying photodissociation of the CO mixed valence form of bovine heart cytochrome c oxidase (COMV CcO). At pH's below 9 photolysis of the COMV CcO results in three kinetic phases with the first phase occurring faster than the time resolution of the instrument (i.e., < approximately 50 ns), a second phase occurring with a lifetime of approximately 100 ns and a third phase occurring with a lifetime of approximately 2 micros. The corresponding volume and enthalpy changes for these processes are: DeltaH1, DeltaV1 = +79 +/- 10 kcal mol(-1), +9 +/- 1 mL mol(-1); DeltaH2, DeltaV2 = -79 +/- 5 kcal mol(-1), -9 +/- 2 mL mol(-1); DeltaH3, DeltaV3 = +54 +/- 7 kcal mol(-1), +8 +/- 1 mL mol(-1). At pH's above 9 only one phase is observed, a prompt phase occurring in < 50 ns. The overall volume change is negligible above pH 9 and the enthalpy change is +29 +/- 5 kcal mol(-1). The data are consistent with the prompt phase being associated with CO-Fe(a3) bond cleavage, CO-CuB+ bond formation, Fe(a3) low-spin to high-spin transition and fast electron transfer (ET) from heme a3 to heme a followed by proton transfer from Glu242 to Arg38 on an approximately 100 ns timescale. The slow phase is likely a combination of CO thermal dissociation from CuB and additional ET between heme a3 to heme a. Interestingly, this phase is not evident above pH 9 suggesting linkage between CO dissociation/ET and the protonation state of a group or groups near the binuclear center.  相似文献   

3.
Activation of phospholipase Cbeta (PLCbeta) by G-proteins results in increased intracellular Ca(2+) and activation of protein kinase C. We have previously found that activated PLCbeta-Gbetagamma complex can be rapidly deactivated by Galpha(GDP) subunits without dissociation, which led to the suggestion that Galpha(GDP) binds to PLCbeta-Gbeta gamma and perturbs the activating interaction without significantly affecting the PLCbeta-Gbeta gamma binding energy. Here, we have used high pressure fluorescence spectroscopy to determine the volume change associated with this interaction. Since PLCbeta and G-protein subunits associate on membrane surfaces, we worked under conditions where the membrane surface properties are not expected to change. We also determined the pressure range in which the proteins remain membrane bound: PLCbeta binding was stable throughout the 1-2000 bars range, Gbeta gamma binding was stable only at high membrane concentrations, whereas Galpha(s)(GDP) dissociated from membranes above 1 kbar. High pressure dissociated PLCbeta-Gbeta gamma with a DeltaV = 34 +/- 5 ml/mol. This same volume change is obtained for a peptide derived from Gbeta which also activates PLCbeta. In the presence of Galpha(s)(GDP), the volume change associated with PLCbeta-Gbeta gamma interaction is reduced to 25 +/- 1 ml/mol. These results suggest that activation of PLCbeta by Gbeta gamma is conferred by a small (i.e., 3-15 ml/mol) volume element.  相似文献   

4.
We have used vibrating tube densitometry to investigate the packing properties of four alkanes and a homologous series of ten alcohols in fluid-phase membranes of dimyristoyl phosphatidylcholine (DMPC). It was found that the volume change of transferring these compounds from their pure states into the membrane, DeltaV(m)(pure-->mem), was positive for small (C4-C6) 1-alkanols while it was negative for larger alcohols and all alkanes. The magnitude of DeltaV(m)(pure-->mem) ranged from about +4 cm3/mol for alcohols with an alkyl chain about half the length of the fatty acids of DMPC, to -10 to -15 cm3/mol for the alkanes and long chain alcohols. On the basis of these observations, previously published information on the structure of the membrane-solute complexes and the free volume properties of (pure) phospholipid membranes, we suggest that two effects dominate the packing properties of hydrophobic solutes in DMPC. First, perturbation of the tightly packed interfacial zone around the ester bonds and first few methylene groups of DMPC brings about a positive contribution to DeltaV(m)(pure-->mem). This effect dominates the volume behavior for alcohols like 1-butanol, 1-pentanol and 1-hexanol. More hydrophobic solutes penetrate into the membrane core, which is loosely packed. In this region, they partially occupy interstitial (or free-) volume, which bring about a denser molecular packing and generate a negative contribution to DeltaV(m)(pure-->mem).  相似文献   

5.
The pressure dependence of the photocycle kinetics of bacteriorhodopsin from Halobacterium salinarium was investigated at pressures up to 4 kbar at 25 degrees C and 40 degrees C. The kinetics can be adequately modeled by nine apparent rate constants, which are assigned to irreversible transitions of a single relaxation chain of nine kinetically distinguishable states P(1) to P(9). All states except P(1) and P(9) consist of two or more spectral components. The kinetic states P(2) to P(6) comprise only the two fast equilibrating spectral states L and M. From the pressure dependence, the volume differences DeltaV(o)(LM) between these two spectral states could be determined that range from DeltaV(o)(LM) = -11.4 +/- 0.7 ml/mol (P(2)) to DeltaV(o)(LM) = 14.6 +/- 2.8 mL/mol (P(6)). A model is developed that explains the dependence of DeltaV(o)(LM) on the kinetic state by the electrostriction effect of charges, which are formed and neutralized during the L/M transition.  相似文献   

6.
The effects of high pressure (1-2000 bar) on the spin state and substrate binding equilibria in cytochrome P-450 have been determined. The high-spin (S = 5/2) to low spin (S = 1/2) transition of the ferric hemoprotein was monitored by uv-visible spectroscopy at various substrate concentrations. Increasing hydrostatic pressure on a sample of substrate-bound cytochrome P-450 resulted in a decrease in the high-spin fraction as monitored by a Soret maxima at 391 nm and an increase in the low-spin 417-nm region of the spectrum. These pressure-induced optical changes were totally reversible for all pressures below 800 bar and were found to correspond to simple substrate dissociation from the enzyme. High levels of the normally metabolized substrate, d-camphor, corresponding to a 99.9% saturation of the hemoprotein active site (50 mM Tris-Cl, 100 mM KCl, pH 7.2) completely prevented the pressure-induced high-spin to low-spin transition that is observed at less than saturating substrate concentrations. A gradual increase in the formation of the inactive P-420 form of the cytochrome was noted if the pressure of the sample was increased above 800 bar. These pressure-linked spectral changes were used to determine the microscopic volume change accompanying substrate binding, which was found to be -47.0 +/- 2 ml/mol (pH 7.2) which represents a substantial change for a ligand dissociation reaction. The observed volume change for camphor binding decreases to -30.6 +/- 2 ml/mol at pH 6.0, suggesting the involvement of a linked proton equilibrium. Various substrate analogs of camphor induce varying degrees of low-spin to high-spin shift upon binding to ferric cytochrome P-450 (3). The volume changes for the dissociation of these substrates were very similar to those obtained with camphor. The conformational changes associated with a shift from high- to low-spin ferric iron appear to be small in comparison to the overall macroscopic changes in volume accompanying substrate binding to the enzyme.  相似文献   

7.
Mokdad A  Nissen M  Satterlee JD  Larsen RW 《FEBS letters》2007,581(23):4512-4518
Here we report the results of transient absorption and photoacoustic calorimetry studies of CO photodissociation from the heme domain of the bacterial oxygen sensor HemAT-Bs. The results indicate that CO photolysis is accompanied by an overall DeltaH of -19 kcal mol(-1) and DeltaV of +4 ml mol(-1) as well as a red-shifted kinetic difference spectrum all occurring in <50 ns. Analysis of the DeltaH/DeltaV reveals that a conformational change takes place with a DeltaH(conf) of -40 kcal mol(-1) and DeltaV(conf) of -22 ml mol(-1). These thermodynamic changes are consistent with an increase in the solvent accessible surface area of the protein upon ligand dissociation, as observed in the X-ray structure of the ferric CN-bound and CN free forms of HemAT-Bs.  相似文献   

8.
The effect of pressure on the unfolding of the native (N) and molten globule (MG) state of canine milk lysozyme (CML) was examined using ultraviolet (UV) spectroscopy at pH 4.5 and 2.0, respectively. It appeared that the thermally induced unfolding was promoted by the increase of pressure from atmospheric to 100 MPa, which indicates that both the N and MG states of CML unfolded with the decrease of the partial molar volume change (DeltaV). The volume changes needed for unfolding were estimated from the free energy change vs. pressure plots, and these volume changes became less negative from 20 to 60 degrees C. The DeltaV values at 25 degrees C were obtained for the N-MG (-46 cm3/mol) and MG-unfolded-state (U) transition (-40 cm3/mol). With regards to the MG-U transition, this value is contrastive to that of bovine alpha-lactalbumin (BLA) (0.9 cm3/mol), which is homologous to CML. Previous studies revealed that the MG state of CML was significantly more stable, and closer to the N state in structure, than that of BLA. In contrast to the swollen hydrophobic core of the MG state of BLA, our results suggest that the MG state of CML possesses a tightly packed hydrophobic core into which water molecules cannot penetrate.  相似文献   

9.
Photoacoustic calorimetry and transient absorption spectroscopy were used to study conformational dynamics associated with CO photodissociation from horse heart myoglobin (Mb) reconstituted with either Fe protoporphyrin IX dimethylester (FePPDME), Fe octaethylporphyrin (FeOEP), or with native Fe protoporphyrin IX (FePPIX). The volume and enthalpy changes associated with the Fe-CO bond dissociation and formation of a transient deoxyMb intermediate for the reconstituted Mbs were found to be similar to those determined for native Mb (DeltaV1 = -2.5+/-0.6 ml mol(-1) and DeltaH1 = 8.1+/-3.0 kcal mol(-1)). The replacement of FePPIX by FeOEP significantly alters the conformational dynamics associated with CO release from protein. Ligand escape from FeOEP reconstituted Mb was determined to be roughly a factor of two faster (tau=330 ns) relative to native protein (tau=700 ns) and accompanying reaction volume and enthalpy changes were also found to be smaller (DeltaV2 = 5.4+/-2.5 ml mol(-1) and DeltaH2 = 0.7+/-2.2 kcal mol(-1)) than those for native Mb (DeltaV2 = 14.3+/-0.8 ml mol(-1) and DeltaH2 = 7.8+/-3.5 kcal mol(-1)). On the other hand, volume and enthalpy changes for CO release from FePPIX or FePPDME reconstituted Mb were nearly identical to those of the native protein. These results suggest that the hydrogen bonding network between heme propionate groups and nearby amino acid residues likely play an important role in regulating ligand diffusion through protein matrix. Disruption of this network leads to a partially open conformation of protein with less restricted ligand access to the heme binding pocket.  相似文献   

10.
Tobacco mosaic virus (TMV) is an intensely studied model of viruses. This paper reports an investigation into the dissociation of TMV by pH and pressure up to 220 MPa. The viral solution (0.25 mg/ml) incubated at 277 K showed a significant decrease in light scattering with increasing pH, suggesting dissociation. This observation was confirmed by HPLC gel filtration and electron microscopy. The calculated volume change of dissociation (DeltaV) decreased (absolute value) from -49.7 ml/mol of subunit at pH 3.8 to -21.7 ml/mol of subunit at pH 9.0. The decrease from pH 9.0 to 3.8 caused a stabilization of 14.1 kJ/mol of TMV subunit. The estimated proton release calculated from pressure-induced dissociation curves was 0.584 mol H(+)/mol of TMV subunit. These results suggest that the degree of virus inactivation by pressure and the immunogenicity of the inactivated structures can be optimized by modulating the surrounding pH.  相似文献   

11.
Recombinant human interleukin-1 receptor antagonist (IL-1ra) in aqueous solutions unfolds and aggregates when subjected to hydrostatic pressures greater than about 180 MPa. This study examined the mechanism and thermodynamics of pressure-induced unfolding and aggregation of IL-1ra. The activation free energy for growth of aggregates (DeltaG-/+(aggregation)) was found to be 37 +/- 3 kJ/mol, whereas the activation volume (DeltaV-/+(aggregation)) was -120 +/- 20 mL/mol. These values compare closely with equilibrium values for denaturation: The free energy for denaturation, DeltaG(denaturation), was 20 +/- 5 kJ/mol, whereas the partial specific volume change for denaturation, DeltaV(denaturation), was -110 +/- 30 mL/mol. When IL-1ra begins to denature at pressures near 140 MPa, cysteines that are normally buried in the native state become exposed. Under oxidizing conditions, this results in the formation of covalently cross-linked aggregates containing nonnative, intermolecular disulfide bonds. The apparent activation free energy for nucleation of aggregates, DeltaG-/+(nuc), was 42 +/- 4 kJ/mol, and the activation volume for nucleation, DeltaV-/+(nuc),was -175 +/- 37 mL/mol, suggesting that a highly solvent-exposed conformation is needed for nucleation. We hypothesize that the large specific volume of IL-1ra, 0.752 +/- 0.004 mL/g, coupled with its relatively low conformational stability, leads to its susceptibility to denaturation at relatively low pressures. The positive partial specific adiabatic compressibility of IL-1ra, 4.5 +/- 0.7 +/- 10(-12) cm2/dyn, suggests that a significant component of the DeltaV(denaturation) is attributable to the elimination of solvent-free cavities. Lastly, we propose that hydrostatic pressure is a useful variable to conduct accelerated formulation studies of therapeutic proteins.  相似文献   

12.
The time-resolved thermodynamics of the flavin mononucleotide (FMN)-binding LOV1 domain of Chlamydomonas reinhardtii phot (phototropin homolog) was studied by means of laser-induced optoacoustic spectroscopy. In the wild-type protein the early red-shifted intermediate LOV(715) exhibits a small volume contraction, DeltaV(715) = -1.50 ml/mol, with respect to the parent state. LOV(715) decays within few micro s into the covalent FMN-Cys-57 adduct LOV(390), that shows a larger contraction, DeltaV(390) = -8.8 ml/mol, suggesting a loss of entropy and conformational flexibility. The high energy content of LOV(390), E(390) = 180 kJ/mol, ensures the driving force for the completion of the photocycle and points to a strained photoreceptor conformation. In the LOV-C57S mutated protein the photoadduct is not formed and DeltaV(390) is undetected. Large effects on the measured DeltaVs are observed in the photochemically competent R58K and R58K/D31Q mutated proteins, with DeltaV(390) = -2.0 and -1.9 ml/mol, respectively, and DeltaV(715) approximately 0. The D31Q and D31N substitutions exhibit smaller but well-detectable effects. These results show that the photo-induced volume changes involve the protein region comprising Arg-58, which tightly interacts with the FMN phosphate group.  相似文献   

13.
The thermodynamics of coenzyme binding to human cytochrome P450 reductase (CPR) and its isolated FAD-binding domain have been studied by isothermal titration calorimetry. Binding of 2',5'-ADP, NADP(+), and H(4)NADP, an isosteric NADPH analogue, is described in terms of the dissociation binding constant (K(d)), the enthalpy (DeltaH(B)) and entropy (TDeltaS(B)) of binding, and the heat capacity change (DeltaC(p)). This systematic approach allowed the effect of coenzyme redox state on binding to CPR to be determined. The recognition and stability of the coenzyme-CPR complex are largely determined by interaction with the adenosine moiety (K(d2)(')(,5)(')(-ADP) = 76 nM), regardless of the redox state of the nicotinamide moiety. Similar heat capacity change (DeltaC(p)) values for 2',5'-ADP (-210 cal mol(-)(1) K(-)(1)), NADP(+) (-230 cal mol(-)(1) K(-)(1)), and H(4)NADP (-220 cal mol(-)(1) K(-)(1)) indicate no significant contribution from the nicotinamide moiety to the binding interaction surface. The coenzyme binding stoichiometry to CPR is 1:1. This result validates a recently proposed one-site kinetic model [Daff, S. (2004) Biochemistry 43, 3929-3932] as opposed to a two-site model previously suggested by us [Gutierrez, A., Lian, L.-Y., Wolf, C. R., Scrutton, N. S., and Roberts, C. G. K. (2001) Biochemistry 40, 1964-1975]. Calorimetric studies in which binding of 2',5'-ADP to CPR (TDeltaS(B) = -13400 +/- 200 cal mol(-)(1), 35 degrees C) was compared with binding of the same ligand to the isolated FAD-binding domain (TDeltaS(B) = -11200 +/- 300 cal mol(-)(1), 35 degrees C) indicate that the number of accessible conformational substates of the protein increases upon 2',5'-ADP binding in the presence of the FMN-binding domain. This pattern was consistently observed along the temperature range that was studied (5-35 degrees C). This contribution of coenzyme binding energy to domain dynamics in CPR agrees with conclusions from previous temperature-jump studies [Gutierrez, A., Paine, M., Wolf, C. R., Scrutton, N. S., and Roberts, G. C. K. (2002) Biochemistry 41, 4626-4637]. A combination of calorimetry and stopped-flow spectrophotometry kinetics experiments showed that this linkage between coenzyme binding energetics and diffusional domain motion impinges directly on the molecular recognition of cytochrome c by CPR. Single-turnover reduction of cytochrome c by CPR (k(max) = 15 s(-)(1), K(d) = 37 microM) is critically coupled to coenzyme binding through ligand-induced motions that enable the FMN-binding domain to overcome a kinetically unproductive conformation. This is remarkable since the FMN-binding domain is not directly involved in coenzyme binding, the NADP(H) binding site being fully contained in the FAD-binding domain. Sequential rapid mixing measurements indicate that harnessing of coenzyme binding energy to the formation of a kinetically productive CPR-cytochrome c complex is a highly synchronized event. The inferred half-time for the decay of this productive conformation (tau(50)) is 330 +/- 70 ms only. Previously proposed structural and kinetic models are discussed in light of these findings.  相似文献   

14.
Heme a is a redox cofactor unique to cytochrome c oxidases and vital to aerobic respiration. Heme a differs from the more common heme b by two chemical modifications, the C-8 formyl group and the C-2 hydroxyethylfarnesyl group. The effects of these porphyrin substituents on ferric and ferrous heme binding and electrochemistry were evaluated in a designed heme protein maquette. The maquette scaffold chosen, [Delta7-H3m](2), is a four-alpha-helix bundle that contains two bis(3-methyl-l-histidine) heme binding sites with known absolute ferric and ferrous heme b affinities. Hemes b, o, o+16, and heme a, those involved in the biosynthesis of heme a, were incorporated into the bis(3-methyl-l-histidine) heme binding sites in [Delta7-H3m](2). Spectroscopic analyses indicate that 2 equiv of each heme binds to [Delta7-H3m](2), as designed. Equilibrium binding studies of the hemes with the maquette demonstrate the tight affinity for hemes containing the C-2 hydroxyethylfarnesyl group in both the ferric and ferrous forms. Coupled with the measured equilibrium midpoint potentials, the data indicate that the hydroxyethylfarnesyl group stabilizes the binding of both ferrous and ferric heme by at least 6.3 kcal/mol via hydrophobic interactions. The data also demonstrate that the incorporation of the C-8 formyl substituent in heme a results in a 179 mV, or 4.1 kcal/mol, positive shift in the heme reduction potential relative to heme o due to the destabilization of ferric heme binding relative to ferrous heme binding. The two substituents appear to counterbalance each other to provide for tighter heme a affinity relative to heme b in both the ferrous and ferric forms by at least 6.3 and 2.1 kcal/mol, respectively. These results also provide a rationale for the reaction sequence observed in the biosynthesis of heme a.  相似文献   

15.
Inhibition of soluble guanylate cyclase by ODQ   总被引:6,自引:0,他引:6  
The heme in soluble guanylate cyclases (sGC) as isolated is ferrous, high-spin, and 5-coordinate. [1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one] (ODQ) has been used extensively as a specific inhibitor for sGC and as a diagnostic tool for identifying a role for sGC in signal transduction events. Addition of ODQ to ferrous sGC leads to a Soret shift from 431 to 392 nm and a decrease in nitric oxide (NO)-stimulated sGC activity. This Soret shift is consistent with oxidation of the ferrous heme to ferric heme. The results reported here further define the molecular mechanism of inhibition of sGC by ODQ. Addition of ODQ to the isolated sGC heme domain [beta1(1-385)] gave the same spectral changes as when sGC was treated with ODQ. EPR and resonance Raman spectroscopy was used to show that the heme in ODQ-treated beta1(1-385) is indeed ferric. Inhibition of the NO-stimulated sGC activity by ODQ is due to oxidation of the sGC heme and not to perturbation of the catalytic site, since the ODQ-treated sGC has the same basal activity as untreated sGC (68 +/- 12 nmol min(-)(1) mg(-)(1)). In addition, ODQ-oxidized sGC can be re-reduced by dithionite, and this re-reduced sGC has identical NO-stimulated activity as the original ferrous sGC. Oxidation of the sGC heme by ODQ is fast with a second-order rate constant of 8.5 x 10(3) M(-)(1) s(-)(1). ODQ can also oxidize hemoglobin, indicating that the reaction is not specific for the heme in sGC versus that in other hemoproteins.  相似文献   

16.
Mayburd AL  Kassner RJ 《Biochemistry》2002,41(39):11582-11591
The binding of nitric oxide to ferric and ferrous Chromatium vinosum cytochrome c' was studied. The extinction coefficients for the ferric and ferrous nitric oxide complexes were measured. A binding model that included both a conformational change and dissociation of the dimer into subunits provided the best fit for the ferric cytochrome c' data. The NO (nitric oxide) binding affinity of the WT ferric form was found to be comparable to the affinities displayed by the ferric myoglobins and hemoglobins. Using an improved fitting model, positive cooperativity was found for the binding of NO to the WT ferric and ferrous forms, while anticooperativity was the case for the Y16F mutant. Structural explanations accounting for the binding are proposed. The NO affinity of ferrous cytochrome c' was found to be much lower than the affinities of myoglobins, hemoglobins, and pentacoordinate heme models. Structural factors accounting for the difference in affinities were analyzed. The NO affinity of ferrous cytochrome c' was found to be in the range typical of receptors and carriers. In addition, cytochrome c' was found to react with cytosolic light-irradiated membranes in the presence of succinate and carbon monoxide. With these results, a biochemical model of cytochrome c' functioning as a nitric oxide carrier was proposed.  相似文献   

17.
The electronic and vibrational properties of the [Fe(His)(4)(Cys)] site (Center II) responsible for catalysis of superoxide reduction in the two-iron superoxide reductase (2Fe-SOR) from Desulfovibrio vulgaris have been investigated using the combination of EPR, resonance Raman, UV/visible/near-IR absorption, CD, and VTMCD spectroscopies. Deconvolution of the spectral contributions of Center II from those of the [Fe(Cys)(4)] site (Center I) has been achieved by parallel investigations of the C13S variant, which does not contain Center I. The resonance Raman spectrum of ferric Center II has been assigned based on isotope shifts for (34)S and (15)N globally labeled proteins. As for the [Fe(His)(4)(Cys)] active site in 1Fe-SOR from Pyrococcus furiosus, the spectroscopic properties of ferric and ferrous Center II in D. vulgaris 2Fe-SOR are indicative of distorted octahedral and square-pyramidal coordination geometries, respectively. Differences in the properties of the ferric [Fe(His)(4)(Cys)] sites in 1Fe- and 2Fe-SORs are apparent in the rhombicity of the S=5/2 ground state ( E/ D=0.06 and 0.28 in 1Fe- and 2Fe-SORs, respectively), the energy of the CysS(-)(p(pi))-->Fe(3+)(d(pi)) CT transition (15150+/-150 cm(-1) and 15600+/-150 cm(-1) in 1Fe- and 2Fe-SORs, respectively) and in changes in the Fe-S stretching region of the resonance Raman spectrum indicative of a weaker Fe-S(Cys) bond in 2Fe-SORs. These differences are interpreted in terms of small structural perturbations in the Fe coordination sphere with changes in the Fe-S(Cys) bond strength resulting from differences in the peptide N-H.S(Cys) hydrogen bonding within a tetrapeptide bidentate "chelate". Observation of the characteristic intervalence charge transfer transition of a cyano-bridged [Fe(III)-NC-Fe(II)(CN)(5)] unit in the near-IR VTMCD spectra of ferricyanide-oxidized samples of both P. furiosus 1Fe-SOR and D. vulgaris 2Fe-SOR has confirmed the existence of novel ferrocyanide adducts of the ferric [Fe(His)(4)(Cys)] sites in both 1Fe- and 2Fe-SORs.  相似文献   

18.
Fago A  Mathews AJ  Moens L  Dewilde S  Brittain T 《FEBS letters》2006,580(20):4884-4888
Previously identified, potentially neuroprotective reactions of neuroglobin require the existence of yet unknown redox partners. We show here that the reduction of ferric neuroglobin by cytochrome b(5) is relatively slow (k=6 x 10(2)M(-1)s(-1) at pH 7.0) and thus is unlikely to be of physiological significance. In contrast, the reaction between ferrous neuroglobin and ferric cytochrome c is very rapid (k=2 x 10(7)M(-1)s(-1)) with an apparent overall equilibrium constant of 1 microM. Based on this data we propose that ferrous neuroglobin may well play a role in preventing apoptosis.  相似文献   

19.
The thermodynamic stability of staphylococcal nuclease was studied against the variation of both temperature and pressure by utilizing (1)H NMR spectroscopy at 750 MHz in 20 mM Mes buffer containing 99.9 % (2)H(2)O, pH 5.3. Equilibrium fractions of folded and unfolded protein species were evaluated with the proton signals of two histidine residues as monitor in the pressure range of 30-3300 bar and in the temperature range of 1.5 degrees C-35 degrees C. From the multi-parameter fit of the experimental data to the Gibbs energy equation expressed as a simultaneous function of pressure and temperature, we determined the compressibility change (Deltabeta), the volume change at 1 bar (DeltaV degrees ) and the expansivity change (Deltaalpha) upon unfolding among other thermodynamic parameters: Deltabeta=0.02(+/-0.003) ml mol(-1) bar(-1); Deltaalpha=1.33(+/-0.2) ml mol(-1) K(-1); DeltaV degrees =-41.9(+/-6. 3) ml mol(-1) (at 24 degrees C); DeltaG degrees =13.18(+/-2) kJ mol(-1) (at 24 degrees C); DeltaC(p)=13.12(+/-2) kJ mol(-1) K(-1); DeltaS degrees =0.32(+/-0.05) kJ mol(-1) K(-1 )(at 24 degrees C). The result yields a three-dimensional free energy surface, i.e. the free energy-landscape of staphylococcal nuclease on the P-T plane. The significantly positive Deltabeta and Deltaalpha values suggest that, in the pressure-denatured state, staphylococcal nuclease forms a loosely packed and fluctuating structure. The slight but statistically significant difference between the unfolding transitions of the His8 and His124 environments is considered to reflect local fluctuations in the native state, leading to pre-melting of the His124 environment prior to the cooperative unfolding of the major part of the protein.  相似文献   

20.
Myeloperoxidase (MPO), which is involved in host defence and inflammation, is a unique peroxidase in having a globin-like standard reduction potential of the ferric/ferrous couple. Intravacuolar and exogenous MPO released from stimulated neutrophils has been shown to exist in the oxyferrous form, called compound III. To investigate the reactivity of ferrous MPO with molecular oxygen, a stopped-flow kinetic analysis was performed. In the absence of dioxygen, ferrous MPO decays to ferric MPO (0.04 s(-1) at pH 8 versus 1.4 s(-1) at pH 5). At pH 7.0 and 25 degrees C, compound III formation (i.e., binding of dioxygen to ferrous MPO) occurs with a rate constant of (1.1+/-0.1) x 10(4)M(-1)s(-1). The rate doubles at pH 5.0 and oxygen binding is reversible. At pH 7.0, the dissociation equilibrium constant of the oxyferrous form is (173+/-12)microM. The rate constant of dioxygen dissociation from compound III is much higher than conversion of compound III to ferric MPO (which is not affected by the oxygen concentration). This allows an efficient transition of compound III to redox intermediates which actually participate in the peroxidase or halogenation cycle of MPO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号