首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent reports on the impressive efficacy of adoptively transferred T cells to challenge cancer in early phase clinical trials have significantly raised the profile of T cell therapy. Concomitantly, general expectations are also raised by these reports, with the natural aspiration to deliver this therapy over a wide range of tumor indications. Chimeric antigen receptors (CARs) endow T cell populations with defined antigen specificities that function independently of the natural T cell receptor and permit targeting of T cells towards virtually any tumor. Here, we review the current clinical application of CAR-T cells and relate clinical efficacy and safety of CAR-T cell trials to parameters considered critical for CAR engineering, classified as the three T's of CAR-T cell manipulation.  相似文献   

2.
Breast cancer rises as the most commonly diagnosed cancer in 2020. Among women, breast cancer ranks first in both cancer incidence rate and mortality. Treatment resistance developed from the current clinical therapies limits the efficacy of therapeutic outcomes, thus new treatment approaches are urgently needed. Chimeric antigen receptor (CAR) T cell therapy is a type of immunotherapy developed from adoptive T cell transfer, which typically uses patients'' own immune cells to combat cancer. CAR-T cells are armed with specific antibodies to recognize antigens in self-tumor cells thus eliciting cytotoxic effects. In recent years, CAR-T cell therapy has achieved remarkable successes in treating hematologic malignancies; however, the therapeutic effects in solid tumors are not up to expectations including breast cancer. This review aims to discuss the development of CAR-T cell therapy in breast cancer from preclinical studies to ongoing clinical trials. Specifically, we summarize tumor-associated antigens in breast cancer, ongoing clinical trials, obstacles interfering with the therapeutic effects of CAR-T cell therapy, and discuss potential strategies to improve treatment efficacy. Overall, we hope our review provides a landscape view of recent progress for CAR-T cell therapy in breast cancer and ignites interest for further research directions.  相似文献   

3.
The host immune system plays an instrumental role in the surveillance and elimination of tumors by recognizing and destroying cancer cells. In recent decades, studies have mainly focused on adoptive immunotherapy using engineered T cells for the treatment of malignant diseases. Through gene engraftment of the patient’s own T cells with chimeric antigen receptor (CAR), they can recognize tumor specific antigens effectively and eradicate selectively targeted cells in an MHC-independent fashion. To date, CAR-T cell therapy has shown great clinical utility in patients with B-cell leukemias. Owing to different CAR designs and tumor complex microenvironments, genetically redirected T cells may generate diverse biological properties and thereby impact their long-term clinical performance and outcome. Meanwhile some unexpected toxicities that result from CAR-T cell application have been examined and limited the curative effects. Diverse important parameters are closely related with adoptively transferred cell behaviors, including CAR-T cells homing, CAR constitutive signaling, T cell differentiation and exhaustion. Thus, understanding CARs molecular design to improve infused cell efficacy and safety is crucial to clinicians and patients who are considering this novel cancer therapeutics. In this review, the developments in CAR-T cell therapy and the limitations and perspectives in optimizing this technology towards clinical application are discussed.  相似文献   

4.
BackgroundChimeric antigen receptor (CAR)–T cell therapy opens a new era for cancer treatment. However, in prolonged follow-up, relapse has emerged as one of the major obstacles. Dendritic cell (DC) vaccination is a promising treatment to eradicate tumor cells and prevent relapse. The epidermal growth factor receptor (EGFR) pathway substrate 8 (Eps8) gene is involved in regulating cancer progression and is considered an attractive target for specific cancer immunotherapy. The purpose of this study was to explore a combinatorial therapy using CAR-T cells and a DC vaccine such as Eps8-DCs to increase leukemia treatment efficacy.MethodsWe pulsed DCs with Eps8-derived peptides to generate Eps8-DCs, engineered T cells to express a second-generation CAR specific for CD19, and analyzed the effects of the Eps8-DCs on the in vitro expansion, phenotype and effector functions of the CD19 CAR-T cells.ResultsThe Eps8-DCs significantly reduced the activation-induced cell death and enhanced the proliferative potential of CAR-T cells during in vitro expansion. In addition, the expanded T cells co-cultured with the Eps8-DCs exhibited an increased percentage of central memory T cells (Tcms) and a decreased percentage of effector memory T cells (Tems). The Eps8-DCs enhanced CD19 CAR-T cell immune functions, including cytokine production, CD107a degranulation activity and cytotoxicity.DiscussionThis study demonstrates that Eps8-DCs exert synergistic effect on CD19 targeting CAR-T cells and paves the way for clinical trials using the combination of DC vaccination and engineered T cells in relapsed leukemia.  相似文献   

5.
Hepatocellular carcinoma (HCC), the most common primary liver cancer has a high mortality in China, and it is usually diagnosed at a late stage, thereby leaving patients with few effective treatment options. Chimeric antigen receptor-T (CAR-T) cell therapy, a novel immunotherapy that has shown promising results in leukemia, lymphoma and multiple myeloma, is also expected to work well in solid tumors, including HCC. However, the ideal therapeutic efficacy has not yet been achieved, in part due to tumor antigen escape caused by antigen heterogeneity. To overcome such challenge, we screened a panel of biomarkers in HCC cell lines and found that GPC3 and B7H3 were highly expressed on HCC with expression heterogeneity. Then we developed a novel bispecific T cell engagers CAR-T (CAR.T-BiTEs) that drives the expression of a CAR specific for GPC3 and BiTEs against CD3 and B7H3, herein referred to as “GPC3-BiTE CAR.” We found that BiTEs promoted the increased activation of untransduced T cells and IFN-γ release. Moreover, BiTEs secreted by GPC3-BiTE CAR-HEK293T cells promoted increased cytotoxicity activity of untransduced T cells against GPC3+/B7H3+ (GPC3 positive/B7H3 positive) and GPC3-/B7H3+(GPC3 negative/B7H3 positive) HCC cell lines. In vitro function assays showed that GPC3-BiTE CAR-T cells exhibited greater cytotoxicity activity against GPC3+/B7H3+ HCC cell lines than GPC3 CAR-T cells (GPC3-targeted CAR-T cells) and B7H3 CAR-T cells (B7H3-targeted CAR-T cells). Furthermore, GPC3-BiTE CAR-T cells exhibited superior cytotoxicity against GPC3 negative HCC cell lines compared with GPC3 CAR T cells. In conclusion, our study showed that GPC3-BiTE CAR T cells exhibited superior antitumor activity than single-target CAR-T cells and can overcome tumor escape induced by antigen heterogeneity, suggesting that this could be a promising therapeutic strategy for HCC.  相似文献   

6.
Esophageal cancer, including esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), has a poor prognosis and limited therapeutic options. Chimeric antigen receptor (CAR)-T cells represent a potential ESCC treatment. In this study, we examined CD276 expression in healthy and esophageal tumor tissues and explored the tumoricidal potential of CD276-targeting CAR-T cells in ESCC. CD276 was strongly and homogenously expressed in ESCC and EAC tumor lesions but mildly in healthy tissues, representing a good target for CAR-T cell therapy. We generated CD276-directed CAR-T cells with a humanized antigen-recognizing domain and CD28 or 4–1BB co-stimulation. CD276-specific CAR-T cells efficiently killed ESCC tumor cells in an antigen-dependent manner both in vitro and in vivo. In patient-derived xenograft models, CAR-T cells induced tumor regression and extended mouse survival. In addition, CAR-T cells generated from patient T cells demonstrated potent cytotoxicity against autologous tumor cells. Our study indicates that CD276 is an attractive target for ESCC therapy, and CD276-targeting CAR-T cells are worth testing in ESCC clinical trials.  相似文献   

7.
CAR-T免疫细胞治疗已经在血液肿瘤领域取得突破性进展.然而,目前上市和国内临床试验的CAR-T细胞均来自肿瘤患者自身,即自体型CAR-T.因受制于患者T细胞的质量和数量、制备周期长且价格昂贵等原因,很难将其进行大规模临床应用.该研究利用CRISPR/Cas9基因编辑技术敲除健康人脐带血来源T细胞的TCR分子和HLA-...  相似文献   

8.
The survival of patients with hematological malignancies has been significantly improved due to the development of new therapeutic agents. However, relapse remains a major matter for concern. Recently, T cells engineered with chimeric antigen receptor(CAR) were reported to show unprecedented responses in a range of hematological malignancies. The persistence of the CAR-T cell can last for years and tends toward long-term antitumor memory by which relapses can be effectively prevented. The primary side effects that appear in most clinical trials are cytokine release syndrome and neurotoxicity. However, these symptoms can be treated and reversed. In this review, we describe CAR structure and function and summarize recent advances in CAR-T cell therapy in hematological malignancies.  相似文献   

9.
Chimeric antigen receptor (CAR) T-cell therapy is an immunotherapy approach that has played a tremendous role in the battle against cancer for years. Since the CAR T lymphocytes are unrestricted-major histocompatibility complex T lymphocytes, they could identify more targets than natural T cells, resulting in practical and widespread functions. The good prospects of CAR T-cell therapy in oncology can be additionally applied to treat other diseases such as autoimmune and infectious diseases. CAR-T cell-derived immunotherapy for autoimmune disorders can be allocated to CAR-Tregs and chimeric autoantibody receptor T cells. Other generations of CARs target human immunodeficiency virus (HIV) proteins. In this review, we summarize CAR-T cell therapies in autoimmune disorders and HIV infection.  相似文献   

10.
CAR-T cell therapy has already achieved world-renowned clinical effects in the treatment of hematological malignancies. Due to the tumor heterogeneity, immunosuppressive microenvironment, and other factors, CAR-T cell therapy has still not shown obvious clinical efficacy in clinical treatment of solid tumors. However, great progress has been made in the preparation of CAR-T cells in recent years, including T cells redirected for universal cytokine mediated killing, universal CAR -T cells, non-viral vector CAR-T cells, SynNotch technology, SUPRA CAR technology, regulated CAR-T cells, and bi-specific CAR-T cells, etc. Future research and development of CAR-T cell therapy will be focused on these following aspects: the combined application of CAR-T cells with different targets, known as "Cocktail CAR-T cells", is expected to increase efficiency toward solid tumors; based on systemic biology/synthetic biology theories, CAR-T cells are likely to be transformed to robot or intelligent system by introducing sensors, logic gates, and logic circuits. This article mainly comments on research progress and perspectives on CAR-T cell therapy in solid tumor treatment.  相似文献   

11.
基于嵌合抗原受体修饰的T细胞(CAR-T)的过继免疫疗法已被证明是治疗恶性肿瘤最有希望的策略之一,但是目前其在实体瘤中的应用依然有限。研究表明磷脂酰肌醇蛋白聚糖3 (GPC3)对肝细胞癌来说是一种有意义的诊断、治疗和预后生物标志物,且已有利用第二代/第三代GPC3靶向的CAR-T细胞治疗肝细胞癌的研究报道。为了进一步提高治疗效果,构建同时表达GPC3 CAR、人源IL-7和CCL19细胞因子的第四代慢病毒载体,转染293T细胞包装慢病毒并感染人T淋巴细胞制备靶向GPC3的第四代CAR-T细胞(GPC3-BBZ-7×19)。利用细胞计数、趋化小室、荧光素酶生物发光法以及流式细胞术等比较其与第二代GPC3 CAR-T细胞(GPC3-BBZ)在增殖、迁移、杀伤以及亚型分布方面的区别,评估GPC3-BBZ-7×19 CAR-T细胞对免疫缺陷小鼠体内GPC3阳性的肝细胞癌腹腔移植瘤生长的作用。结果表明与GPC3-BBZ CAR-T细胞相比,GPC3-BBZ-7×19 CAR-T细胞具备更强的增殖能力、趋化能力以及记忆干细胞(Stem memory T cell,Tscm)组成比(P值均<0...  相似文献   

12.
Recent reports on the impressive efficacy of chimeric antigen receptor (CAR)-modified T cells against hematologic malignancies have inspired oncologists to extend these efforts for the treatment of solid tumors. Clinical trials of CAR-T-based cancer immunotherapy for solid tumors showed that the efficacies are not as remarkable as in the case of hematologic malignancies. There are several challenges that researchers must face when treating solid cancers with CAR-T cells, these include choosing an ideal target, promoting efficient trafficking and infiltration, overcoming the immunosuppressive microenvironment, and avoiding associated toxicity. In this review, we discuss the obstacles imposed by solid tumors on CAR-T cell-based immunotherapy and strategies adopted to improve the therapeutic potential of this approach. Continued investigations are necessary to improve therapeutic outcomes and decrease the adverse effects of CAR-T cell therapy in patients with solid malignancies in the future.  相似文献   

13.
T cell mediated adoptive immune response has been characterized as the key to anti-tumor immunity. Scientists around the world including in China, have been trying to harness the power of T cells against tumors for decades. Recently, the biosynthetic chimeric antigen receptor engineered T cell(CAR-T) strategy was developed and exhibited encouraging clinical efficacy, especially in hematological malignancies. Chimeric antigen receptor research reports began in 2009 in China according to our Pub Med search results. Clinical trials have been ongoing in China since 2013 according to the trial registrations on clinicaltrials.gov.. After years of assiduous efforts, research and clinical scientists in China have made their own achievements in the CAR-T therapy field. In this review, we aim to highlight CAR-T research and clinical trials in China, to provide an informative reference for colleagues in the field.  相似文献   

14.
T cells, genetically modified by chimeric antigen receptors (CAR-T), are endowed with specificity to a desired antigen and are cytotoxic to cells expressing the targeted antigen. CAR-T-based cancer immunotherapy is a promising therapy for curing hematological malignancy, such as acute lymphoid leukemia, and is promising for extending their efficacy to defeat solid tumors. To date, dozens of different CAR-T cells have been evaluated in clinical trials to treat tumors; this necessitates the establishment of guidelines for the production and application of CAR-T cells. However, it is challenging to standardize CAR-T cancer therapy because it involves a combination of gene therapy and cell therapy. In this review, we compare the existing guidelines for CAR-T cells and discuss the challenges and considerations for establishing guidance for CAR-T-based cancer immunotherapy.  相似文献   

15.
Cell-based immunotherapies have been selected for the front-line cancer treatment approaches. Among them, CAR-T cells have shown extraordinary effects in hematologic diseases including chemotherapy-resistant acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and non-Hodgkin lymphoma (NHL). In this approach, autologous T cells isolated from the patient''s body genetically engineered to express a tumor specific synthetic receptor against a tumor antigen, then these cells expanded ex vivo and re-infusion back to the patient body. Recently, significant clinical response and high rates of complete remission of CAR T cell therapy in B-cell malignancies led to the approval of Kymriah and Yescarta (CD19-directed CAR-T cells) were by FDA for treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Despite promising therapeutic outcomes, CAR T cells also can elicit the immune-pathologic effects, such as Cytokine Release Syndrome (CRS), Tumor Lysis Syndrome (TLS), and on-target off-tumor toxicity, that hampered its application. Ineffective control of these highly potent synthetic cells causes discussed potentially life-threatening toxicities, so researchers have developed several mechanisms to remote control CAR T cells. In this paper, we briefly review the introduced toxicities of CAR-T cells, then describe currently existing control approaches and review their procedure, pros, and cons.  相似文献   

16.
过继性细胞免疫治疗(adoptive cellular immunotherapy,ACI)是目前较为有效的恶性肿瘤的治疗方法之一。随着技术的日趋成熟,已在多种实体瘤和血液肿瘤的t临床治疗中取得较好疗效。其中,嵌合抗原受体(chimeric antigen receptor,CAR)T细胞技术是近年来发展非常迅速的一种细胞治疗技术。通过基因改造技术,效应T细胞的靶向性、杀伤活性和持久性均较常规应用的免疫细胞高,并可克服肿瘤局部免疫抑制微环境和打破宿主免疫耐受状态。目前,CAR的信号域已从第一代的单一信号分子发展为包含CD28、4—1BB等共刺激分子的多信号结构域(第二、三代),临床应用广泛。但是,该技术也存在脱靶效应、插入突变等临床应用风险。该文将就CAR—T细胞技术在恶性肿瘤免疫治疗中的应用及可能存在的问题作一综述。  相似文献   

17.
Chimeric antigen receptor (CAR)-engineered T cells have a proven efficacy for the treatment of refractory hematological B cell malignancies. While often accompanied by side effects, CAR-T technology is getting more mature and will become an important treatment option for various tumor indications. In this review, we summarize emerging approaches that aim to further evolve CAR-T cell therapy based on combinations of so-called universal or modular CAR-(modCAR-)T cells, and their respective adaptor molecules (CAR-adaptors), which mediate the crosslinking between target and effector cells. The activity of such modCAR-T cells is entirely dependent on binding of the respective CAR-adaptor to both a tumor antigen and to the CAR-expressing T cell. Contrary to conventional CAR-T cells, where the immunological synapse is established by direct interaction of CAR and membrane-bound target, modCAR-T cells provide a highly flexible and customizable development of the CAR-T cell concept and offer an additional possibility to control T cell activity.  相似文献   

18.
Although CAR-T cells are widely used to treat cancer, efficiency of CAR-T cell cytolytic responses has not been carefully examined. We engineered CAR specific for HMW-MAA (high-molecular-weight melanoma-associated antigen) and evaluated potency of CD8+ CAR-T cells to release cytolytic granules and to kill tissue-derived melanoma cells, which express different levels of HMW-MAA. CAR-T cells efficiently killed melanoma cells expressing high level of HMW-MAA, but not melanoma cells with lower levels of HMW-MAA. The same melanoma cells presenting significantly lower level of stimulatory peptide-MHC ligand were readily lysed by T cells transduced with genes encoding α,β-TCR specific for the peptide-MHC ligand. The data suggest that higher level of targeted molecules is required to engage a larger number of CARs than TCRs to induce efficient cytolytic granule release and destruction of melanoma cells. Understanding the difference in molecular mechanisms controlling activation thresholds of CAR- versus TCR-mediated responses will contribute to improving efficiency of CAR T cells required to eliminate solid tumors presenting low levels of targeted molecules.  相似文献   

19.
本研究分析了共表达白细胞介素-15 (interleukin-15, IL-15)和趋化因子配体19 (C-C chemokine ligand 19, CCL19)的EGFRvⅢ CAR-T细胞的功能特性及其体外特异性杀伤效果,旨在优化CAR-T细胞多项功能,提高靶向EGFRvⅢ 的CAR-T细胞对胶质母细胞瘤(glioblastoma, GBM)的治疗效果。通过基因工程技术获得重组慢病毒质粒,转染293T细胞获得慢病毒并感染T细胞获得靶向EGFRvⅢ的第四代CAR-T细胞(EGFRvⅢ-IL-15-CCL19 CAR-T)。利用流式细胞仪、细胞计数仪、趋化小室、凋亡试剂盒等检测了第四代和第二代CAR-T细胞(EGFRvⅢ CAR-T)的CAR分子表达率、增殖、趋化能力、体外特异性杀伤能力及抗凋亡能力等。结果表明,与EGFRvⅢ CAR-T细胞相比,EGFRvⅢ-IL-15-CCL19 CAR-T细胞能成功分泌IL-15和CCL19,具有更强的体外增殖能力、趋化能力以及抗凋亡能力(P值均<0.05),而体外特异性杀伤能力无显著差异。因此,靶向EGFRvⅢ且同时分泌IL-15和CCL19的CAR-T细胞有望提高胶质母细胞瘤的治疗效果,为临床试验提供一定的参考依据。  相似文献   

20.
Human epidermal growth factor receptor 2 (HER2) proteins are overexpressed in a high proportion of gastric cancer (GC) cases and affect the maintenance of cancer stem cell (CSC) subpopulations, which are used as targets for the clinical treatment of patients with HER2-positive GC. Despite improvements in survival, numerous HER2-positive patients fail treatment with trastuzumab, highlighting the need for more effective therapies. In this study, we generated a novel type of genetically modified human T cells, expressing a chimeric antigen receptor (CAR), and targeting the GC cell antigen HER2, which harbors the CD137 andCD3ζ moieties. Our findings show that the expanded CAR-T cells, expressing an increased central memory phenotype, were activated by the specific recognition of HER2 antigens in an MHC-independent manner, and effectively killed patient-derived HER2-positive GC cells. In HER2-positive xenograft tumors, CAR-T cells exhibited considerably enhanced tumor inhibition ability, long-term survival, and homing to targets, compared with those of non-transduced T cells. The sphere-forming ability and in vivo tumorigenicity of patient-derived gastric cancer stem-like cells, expressing HER2 and the CD44 protein, were also inhibited. Our results support the future development and clinical application of this adoptive immunotherapy in patients with HER2-positive advanced GC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号