首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kuh D 《Aging cell》2006,5(6):579-580
Longitudinal studies will be needed to test the idea that social class in adult life, or in childhood, influences the rate of change in telomere length in peripheral blood samples.  相似文献   

2.
Lansdorp PM 《Aging cell》2006,5(6):583-584
Blood leukocytes are a heterogeneous mixture of cell types whose telomere lengths differ greatly, reflecting variation in stem cell turnover and recruitment, expansion and replacement of more mature cell types as well as variable telomere loss and telomere repair. These differences in cell and telomere length dynamics, together with the evidence that telomere length is influenced strongly by genetic polymorphisms, greatly complicate the interpretation of claims that socio-economic status modulates the rate of telomere attrition.  相似文献   

3.
Telomere length, a highly heritable trait, is longer in offspring of older fathers. This perplexing feature has been attributed to the longer telomeres in sperm of older men and it might be an ‘epigenetic’ mechanism through which paternal age plays a role in telomere length regulation in humans. Based on two independent (discovery and replication) twin studies, comprising 889 twin pairs, we show an increase in the resemblance of leukocyte telomere length between dizygotic twins of older fathers, which is not seen in monozygotic twins. This phenomenon might result from a paternal age‐dependent germ stem cell selection process, whereby the selected stem cells have longer telomeres, are more homogenous with respect to telomere length, and share resistance to aging.  相似文献   

4.
Telomere length has emerged as a marker of exposure to oxidative stress and aging. Race/ethnic differences in telomere length have been infrequently investigated. Leukocyte telomere length (LTL) was assessed 981 white, black and Hispanic men and women aged 45–84 years participating in the Multi-Ethnic Study of Atherosclerosis. Direct measurement and questionnaire were used to assess covariates. Linear regression was used to estimate associations of LTL with race/ethnicity and age after adjustment for sex, income, education, smoking, physical activity, diet and body mass index. On average blacks and Hispanics had shorter telomeres than whites [adjusted mean differences (standard error) in T/S ratio compared to whites: −0.041 (0.018) for blacks and −0.044 (0.018) for Hispanics]. Blacks and Hispanics showed greater differences in telomere length associated with age than whites (adjusted mean differences in T / S ratio per 1 year increase in age −0.0018, −0.0047 and −0.0055 in whites, blacks and Hispanics respectively). Differences in age associations were more pronounced and only statistically significant in women. Race/ethnic differences in LTL may reflect the cumulative burden of differential exposure to oxidative stress (and its predictors) over the lifecourse.  相似文献   

5.
Insulin resistance and oxidative stress are associated with accelerated telomere attrition in leukocytes. Both are also implicated in the biology of aging and in aging-related disorders, including hypertension. We explored the relations of leukocyte telomere length, expressed by terminal restriction fragment (TRF) length, with insulin resistance, oxidative stress and hypertension. We measured leukocyte TRF length in 327 Caucasian men with a mean age of 62.2 years (range 40-89 years) from the Offspring cohort of the Framingham Heart Study. TRF length was inversely correlated with age (r = -0.41, P < 0.0001) and age-adjusted TRF length was inversely correlated with the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) (r =-0.16, P = 0.007) and urinary 8-epi-PGF(2alpha) (r = -0.16, P = 0.005) - an index of systemic oxidative stress. Compared with their normotensive peers, hypertensive subjects exhibited shorter age-adjusted TRF length (hypertensives = 5.93 +/- 0.042 kb, normotensives = 6.07 +/- 0.040 kb, P = 0.025). Collectively, these observations suggest that hypertension, increased insulin resistance and oxidative stress are associated with shorter leukocyte telomere length and that shorter leukocyte telomere length in hypertensives is largely due to insulin resistance.  相似文献   

6.
7.
As attrition of telomeres, DNA caps that protect chromosome integrity, is accelerated by various forms of stress, telomere length (TL) has been proposed as an indicator of lifetime accumulated stress. In ecological studies, it has been used to provide insights into ageing, life history trade‐offs, the costs of reproduction and disease. qPCR is a high‐throughput and cost‐effective tool to measure relative TL (rTL) that can be applied to newly collected and archived ecological samples. However, qPCR is susceptible to error both from the method itself and pre‐analytical steps. Here, repeatability was assessed overall and separately across multiple levels (intra‐assay, inter‐assay and inter‐extraction) to elucidate the causes of measurement error, as a step towards improving precision. We also tested how accuracy, defined as the correlation between the “gold standard” for TL estimation (telomere restriction fragment length analysis with in‐gel hybridization), could be improved. We find qPCR repeatability (intra‐ and inter‐assay levels) to be at similar levels across three common storage media (ethanol, Longmire's and Queen's). However, inter‐extraction repeatability was 50% lower for samples stored in Queen's lysis buffer, indicating storage medium can influence precision. Precision as well as accuracy could be increased by estimating rTL from multiple qPCR reactions and from multiple extractions. Repetition increased statistical power equivalent to a 25% (single extraction analysed twice) and 17% (two extractions) increase in sample size. Overall, this study identifies novel sources of variability in high‐throughput telomere quantification and provides guidance on sampling strategy design and how to increase rTL precision and accuracy.  相似文献   

8.
Summary Yeast chromosomes terminate in a GC-rich tail of DNA. Previous investigations have shown that the length of this tail can change in response to genetic variation. Here we present data that show that the length can also alter in response to changes in the amount of the GC-rich DNA found elsewhere in the nucleus.  相似文献   

9.
Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes, thus protecting their stability and integrity. They play important roles in DNA replication and repair and are central to our understanding of aging and cancer development. In rapidly dividing cells, telomere length is maintained by the activity of telomerase. About 400 TLM (telomere length maintenance) genes have been identified in yeast, as participants of an intricate homeostasis network that keeps telomere length constant. Two papers have recently shown that despite this extremely complex control, telomere length can be manipulated by external stimuli. These results have profound implications for our understanding of cellular homeostatic systems in general and of telomere length maintenance in particular. In addition, they point to the possibility of developing aging and cancer therapies based on telomere length manipulation.  相似文献   

10.

Background

Rupture of the fetal membranes is a common harbinger of imminent labor and delivery. Telomere shortening is a surrogate for oxidative stress (OS) and senescence. Fetal leukocyte and placental membrane DNA telomere lengths were evaluated to determine their association with preterm prelabor rupture of the membranes (pPROM) or spontaneous preterm births with intact membranes (PTB), compared to term birth.

Methods

Telomere lengths were quantified in cord blood leukocytes (n = 133) from three major groups: 1) pPROM (n = 28), 2) PTB (n = 69) and 3) uncomplicated full term births (controls, n = 35), using real-time quantitative PCR. Placental membrane specimens (n = 18) were used to correlate fetal leukocyte and placental telomere lengths. Telomere length differences among the groups were analyzed by ANOVA. Pearson correlation coefficients determined relationships between leukocyte and placental membrane telomere lengths.

Results

In pregnancies with intact membranes, fetal leukocyte telomere length was inversely proportional to gestational age. The mean telomere length decreased as gestation progressed, with the shortest at term. pPROM had telomere lengths (9962±3124 bp) that were significantly shorter than gestational age-matched PTB (11546±4348 bp, p = 0.04), but comparable to term births (9011±2497 bp, p = 0.31). Secondary analyses revealed no effects of race (African American vs. Caucasian) or intraamniotic infection on telomere length. A strong Pearson''s correlation was noted between fetal leukocyte and placental membrane telomere lengths (ρ = 0.77; p<0.01).

Conclusions

Fetal leukocyte telomere length is reduced in pPROM compared to PTB but is similar to term births. pPROM represents a placental membrane disease likely mediated by OS-induced senescence.  相似文献   

11.
Telomeres help maintain genome integrity by protecting natural chromosome ends from being recognized as damaged DNA. When telomeres become dysfunctional, they limit replicative lifespan and prevent outgrowth of potentially cancerous cells by activating a DNA damage response that forces cells into senescence or apoptosis. On the other hand, chromosome ends devoid of proper telomere protection are subject to DNA repair activities that cause end-to-end fusions and, when cells divide, extensive genomic instability that can promote cancer. While telomeres represent unique chromatin structures with important roles in cancer and aging, we have limited understanding of the way telomeres and the response to their malfunction are controlled at the level of chromatin. Accumulating evidence indicates that different types of posttranslational modifications act in both telomere maintenance and the response to telomere uncapping. Here, we discuss the latest insights on posttranslational control of telomeric chromatin, with emphasis on ubiquitylation and SUMOylation events.  相似文献   

12.
A second locus (Lhb1B) encoding Photosystem II Type I chlorophyll a/b-binding (CAB) polypeptides was identified in Arabidopsis thaliana. This locus carries two genes in an inverted orientation. The predicted sequences of the polypeptides encoded by these two genes show substantial divergence in their amino termini relative to each other and to the proteins encoded by the three Lhb1 CAB genes previously characterized [10], but little divergence within the predicted primary structure of the mature protein. DNA probes derived from seven additional types of tomato CAB genes, encoding chlorophyll a/b-binding polypeptides of several antenna systems of the photosynthetic apparatus, were tested against A. thaliana. Each of these hybridized in Southern blots to unique DNA fragment(s), demonstrating the existence of each of these different types of CAB genes in the genome of A. thaliana. The number of genes encoding each CAB type in A. thaliana was estimated to be similar to that of tomato.  相似文献   

13.
How can adverse experiences in early life, such as maltreatment, exert such powerful negative effects on health decades later? The answer may lie in changes to DNA. New research suggests that exposure to stress can accelerate the erosion of DNA segments called telomeres. Shorter telomere length correlates with chronological age and also disease morbidity and mortality. Thus, telomere erosion is a potential mechanism linking childhood stress to health problems later in life. However, an array of mechanistic, methodological, and basic biological questions must be addressed in order to translate telomere discoveries into clinical applications for monitoring health and predicting disease risk. This paper covers the current state of the science and lays out new research directions.  相似文献   

14.
15.
Transfers of resources between generations are an essential element in current models of human life-history evolution accounting for prolonged development, extended lifespan and menopause. Integrating these models with Hamilton''s theory of inclusive fitness, we predict that the interaction of biological kinship with the age-schedule of resource production should be a key driver of intergenerational transfers. In the empirical case of Tsimane’ forager–horticulturalists in Bolivian Amazonia, we provide a detailed characterization of net transfers of food according to age, sex, kinship and the net need of donors and recipients. We show that parents, grandparents and siblings provide significant net downward transfers of food across generations. We demonstrate that the extent of provisioning responds facultatively to variation in the productivity and demographic composition of families, as predicted by the theory. We hypothesize that the motivation to provide these critical transfers is a fundamental force that binds together human nuclear and extended families. The ubiquity of three-generational families in human societies may thus be a direct reflection of fundamental evolutionary constraints on an organism''s life-history and social organization.  相似文献   

16.
Telomere attrition is one of biological aging hallmarks and may be intervened to target multiple aging-related diseases, including Alzheimer's disease and Alzheimer's disease related dementias (AD/ADRD). The objective of this study was to assess associations of leukocyte telomere length (TL) with AD/ADRD and early markers of AD/ADRD, including cognitive performance and brain magnetic resonance imaging (MRI) phenotypes. Data from European-ancestry participants in the UK Biobank (n = 435,046) were used to evaluate whether mid-life leukocyte TL is associated with incident AD/ADRD over a mean follow-up of 12.2 years. In a subsample without AD/ADRD and with brain imaging data (n = 43,390), we associated TL with brain MRI phenotypes related to AD or vascular dementia pathology. Longer TL was associated with a lower risk of incident AD/ADRD (adjusted Hazard Ratio [aHR] per SD = 0.93, 95% CI 0.90–0.96, p = 3.37 × 10−7). Longer TL also was associated with better cognitive performance in specific cognitive domains, larger hippocampus volume, lower total volume of white matter hyperintensities, and higher fractional anisotropy and lower mean diffusivity in the fornix. In conclusion, longer TL is inversely associated with AD/ADRD, cognitive impairment, and brain structural lesions toward the development of AD/ADRD. However, the relationships between genetically determined TL and the outcomes above were not statistically significant based on the results from Mendelian randomization analysis results. Our findings add to the literature of prioritizing risk for AD/ADRD. The causality needs to be ascertained in mechanistic studies.  相似文献   

17.
Previous studies have indicated that average telomere length is partly inherited ( Slagboom et al., 1994 ; Rufer et al., 1999 ) and that there is an inherited telomere pattern in each cell ( Graakjaer et al., 2003 ); ( Londoño‐Vallejo et al., 2001 ). In this study, we quantify the importance of the initially inherited telomere lengths within cells, in relation to other factors that influence telomere length during life. We have estimated the inheritance by measuring telomere length in monozygotic (MZ) twins using Q‐FISH with a telomere specific peptide nucleic acid (PNA)‐probe. Homologous chromosomes were identified using subtelomeric polymorphic markers. We found that identical homologous telomeres from two aged MZ twins show significantly less differences in relative telomere length than when comparing the two homologues within one individual. This result means that towards the end of life, individual telomeres retain the characteristic relative length they had at the outset of life and that any length alteration during the lifespan impacts equally on genetically identical homologues. As the result applies across independent individuals, we conclude that, at least in lymphocytes, epigenetic/environmental effects on relative telomere length are relatively minor during life.  相似文献   

18.
Telomeres consist of nucleotide repeats and a protein complex at chromosome ends that are essential to maintaining chromosomal integrity. Several studies have suggested that subjects with shorter telomeres are at increased risk of bladder and lung cancer. In comparison to normal tissues, telomeres are shorter in high-grade intraepithelial neoplasia and prostate cancer. We examined prostate cancer risk associated with relative telomere length as determined by quantitative PCR on prediagnostic buffy coat DNA isolated from 612 advanced prostate cancer cases and 1049 age-matched, cancer-free controls from the PLCO Cancer Screening Trial. Telomere length was analyzed as both a continuous and a categorical variable with adjustment for potential confounders. Statistically significant inverse correlations between telomere length, age and smoking status were observed in cases and controls. Telomere length was not associated with prostate cancer risk (at the median, OR = 0.85, 95% CI: 0.67, 1.08); associations were similar when telomere length was evaluated as a continuous variable or by quartiles. The relationships between telomere length and inflammation-related factors, diet, exercise, body mass index, and other lifestyle variables were explored since many of these have previously been associated with shorter telomeres. Healthy lifestyle factors ( i.e. , lower BMI, more exercise, tobacco abstinence, diets high in fruit and vegetables) tended to be associated with greater telomere length. This study found no statistically significant association between leukocyte telomere length and advanced prostate cancer risk. However, correlations of telomere length with healthy lifestyles were noted, suggesting the role of these factors in telomere biology maintenance and potentially impacting overall health status.  相似文献   

19.
Environmental conditions during early‐life development can have lasting effects shaping individual heterogeneity in fitness and fitness‐related traits. The length of telomeres, the DNA sequences protecting chromosome ends, may be affected by early‐life conditions, and telomere length (TL) has been associated with individual performance within some wild animal populations. Thus, knowledge of the mechanisms that generate variation in TL, and the relationship between TL and fitness, is important in understanding the role of telomeres in ecology and life‐history evolution. Here, we investigate how environmental conditions and morphological traits are associated with early‐life blood TL and if TL predicts natal dispersal probability or components of fitness in 2746 wild house sparrow (Passer domesticus) nestlings from two populations sampled across 20 years (1994–2013). We retrieved weather data and we monitored population fluctuations, individual survival, and reproductive output using field observations and genetic pedigrees. We found a negative effect of population density on TL, but only in one of the populations. There was a curvilinear association between TL and the maximum daily North Atlantic Oscillation index during incubation, suggesting that there are optimal weather conditions that result in the longest TL. Dispersers tended to have shorter telomeres than non‐dispersers. TL did not predict survival, but we found a tendency for individuals with short telomeres to have higher annual reproductive success. Our study showed how early‐life TL is shaped by effects of growth, weather conditions, and population density, supporting that environmental stressors negatively affect TL in wild populations. In addition, shorter telomeres may be associated with a faster pace‐of‐life, as individuals with higher dispersal rates and annual reproduction tended to have shorter early‐life TL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号