首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intra‐thallus variation in fatty acid and pigment contents and profiles was investigated in five species of Laminariales (Alaria esculenta, Laminaria digitata, Laminaria hyperborea, Saccharina latissima, and Saccorhiza polyschides), and three Fucales (Ascophyllum nodosum, Fucus serratus, and Himanthalia elongata). Significant variation occurred across all species and compounds examined. Total fatty acids were generally higher in the fronds, with highest levels and largest variability observed in A. nodosum (1.5% of dry weight (DW) in the base, 6.3% of DW in frond tips). Percentages of the omega‐3 fatty acids 18:4 n‐3 and 20:5 n‐3 were generally higher in more distal parts, while 20:4 n‐6 exhibited a contrasting pattern, with higher levels in basal structures and holdfasts. Trends for pigments were similar to those for fatty acids in Laminariales. In the Fucales, highest levels were detected in the mid‐fronds, with lower concentrations in meristematic areas. Highest levels and greatest variability in pigments (e.g., chl a) was observed in F. serratus (1.07 mg · g?1 DW in the base, 3.04 mg · g?1 DW in the mid frond). Intra‐thallus variability was attributed to physiological functions of the respective thallus sections, e.g., photosynthetic activity, meristematic tissue, and to variations in physical attributes of the structures investigated. Regarding potential commercial nutritional applications, fronds appeared to represent most suitable source materials, due to higher levels of pigments, polyunsaturated fatty acids, and more preferable omega‐3/omega‐6 ratios.  相似文献   

2.
Taraxacum kok‐saghyz (TKS) is a dandelion species native to Kazakhstan, Uzbekistan and north‐west China, considered as a promising alternative source of natural rubber from its roots. The aim of this study was to investigate the possible exploitation of TKS leaves, a rubber byproduct, as a source of phenolic compounds with antioxidant properties for potential applications in forage, nutraceutical and pharmacological fields. Two accessions (TKS016, TKS018) grown under Mediterranean conditions of Sardinia were evaluated at vegetative and flowering stages. The leaves of TKS018 had the highest antioxidant capacity (19.6 mmol trolox equivalent antioxidant capacity 100 g?1), total phenolic (106.4 g gallic acid equivalent kg?1), tannic phenolics (58.5 g gallic acid equivalent kg?1) and total flavonoid contents (22.9 g catechin equivalent kg?1). At both phenological stages, TKS016 showed significantly lower values than TKS018 in 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH), total phenolic and tannic phenolics. Six individual molecules were identified, namely chlorogenic, cryptochlorogenic, caffeic, sinapic, chicoric and 3,4‐dimethoxycinnamic acids. Chicoric (8.53–10.68 g kg?1 DW) and chlorogenic acids (4.18–7.04 g kg?1 DW) were the most abundant. TKS leaves represent a valuable source of chicoric acid with potential application as antioxidant to be used as herbal medicine and nutrition for production of healthy food/feed.  相似文献   

3.
To test the effect of forecasted drought and warming conditions for the next decades by GCM and ecophysiological models on foliar concentrations of volatile organic compounds (VOCs) and especially of volatile terpenes, we studied four typical Mediterranean woody plants (Pinus halepensis L., Pistacia lentiscus L., Rosmarinus officinalis L. and Globularia alypum L.) under a field experimental drought and warming generated using automatically sliding curtains. Terpenes were detected in the four studied species (R. officinalis L., P halepensis L., Pistacia lentiscus L. and G. alypum L.). In general, maximum concentrations of terpenes were found in the coldest periods and minimum concentrations in the summer. Their concentrations ranged between 0.003 mg g?1 DM (eugenol) in G. alypum under drought conditions and 37 mg g?1 DM in R. officinalis under control conditions. Main volatile terpenes found in all studied species except in G. alypum were α‐pinene, camphene, β‐pinene, β‐phellandrene and caryophyllene. In general, VOC leaf concentrations increased when soil moisture increased and decreased when air temperature increased. However, contrasting not consistent responses to the drought and warming treatments were found among species, seasons and years. For example, in P. halepensis, the concentrations decreased in response to drought in winter and instead increased in summer. Contrarily, drought decreased concentrations in summer and increased them in winter in Pistacia lentiscus. In any case, the data on seasonal VOC concentration in Mediterranean woody species provided here will add new knowledge of seasonal variation in essential oil contents of these species. These data might help in the study of flammability of Mediterranean ecosystems and in improving prediction algorithms, inventories and modelling of monoterpene emissions in response to climate change, which mostly do not consider the changes in concentration under drought stress. However, the lack of general and consistent response patterns to increasing drought and warming among species, seasons and years found here makes this task difficult.  相似文献   

4.
A field experiment involving drought and warming manipulation was conducted over a 6-year period in a Mediterranean shrubland to simulate the climate conditions projected by IPCC models for the coming decades (20% decreased soil moisture and 1°C warming). We investigated P and K concentration and accumulation in the leaves and stems of the dominant species, and in soil. Drought decreased P concentration in Globularia alypum leaves (21%) and in Erica multiflora stems (30%) and decreased K concentration in the leaves of both species (20% and 29%, respectively). The general decrease of P and K concentration in drought plots was due to the reduction of soil water content, soil and root phosphatase activity and photosynthetic capacity that decreased plant uptake capacity. Warming increased P concentration in Erica multiflora leaves (42%), but decreased it in the stems and leaf litter of Erica multiflora and the leaf litter (33%) of Globularia alypum, thereby demonstrating that warming improved the P retranslocation and allocation from stem to leaves. These results correlate with the increase in photosynthetic capacity and growth of these two dominant shrub species in warming plots. Drought and warming had no significant effects on biomass P accumulation in the period 1999–2005, but drought increased K accumulation in aboveground biomass (10 kg ha−1) in Globularia alypum due to the increase in K concentration in stems. The stoichiometric changes produced by the different responses of the nutrients led to changes in the P/K concentration ratio in Erica multiflora leaves, stems and litter, and in Globularia alypum stems and litter. This may have implications for the nutritional value of these plant species and plant–herbivore relationships. The effects of climate change on P and K concentrations and contents in Mediterranean ecosystems will differ depending on whether the main component of change is drought or warming.  相似文献   

5.
Crocus sativus L., mostly famous as saffron, has gained more attention due to its crocin (crocetin ester) pigment responsible for its extensive pharmaceutical properties. In this study, we established two different callus cultures from corm and style explants of saffron to find out the best explant as a suitable source for crocin production. Comparative analyses of total phenolic, flavonoid, carotenoid and anthocyanin contents were also performed in the two callus cultures. For callus induction, different combinations of MS medium with name thidiazuron (TDZ), benzylaminopurine (BA), 1-naphthaleneacetic acid (NAA), and 2,4-dichlorophenoxyacetic acid (2,4-D) alone or in combination were tested. Of the used media, all the combinations containing TDZ and NAA gave 100% callus induction. HPLC-DAD and HPLC–ESI-MS analysis were used for identification of crocin esters in established callus cultures. The highest amount of 0.35 mg g?1 DW crocin was detected in style originated calli grown on the medium containing 3 mg L?1 NAA?+?1 mg L?1 TDZ while the corm calli showed the most abundant total carotenoid (0.73 mg g?1 DW), phenolic (15.04 mg gallic acid equivalent g?1 DW) and flavonoid (0.76 mg rutin equivalent g?1 DW) contents. In general, style-derived calli showed longer time survival with a fine texture and good quality compared to corm-derived calli.  相似文献   

6.
The present study consists in evaluating the inter- and intraspecific variability of phenolic contents and biological capacities of Limoniastrum monopetalum L. and L. guyonianum Boiss. extracts. Ultimately, they were subjected to HPLC for phenolic identification. Results showed a great variation of phenolic content as function of species and localities. In fact, L. guyonianum extracts (El Akarit) contained the highest polyphenol (57 mg GAE g?1 DW), flavonoid (9.47 mg CE g?1 DW) and condensed tannin contents (106.58 mg CE g?1 DW). These amounts were accompanied by the greatest total antioxidant activity (128.53 mg GAE g?1 DW), antiradical capacity (IC50 = 4.68 μg/ml) and reducing power (EC50 = 120 μg/ml). In addition, L. monopetalum and L. guyonianum extracts exhibited an important and variable antibacterial activity with a diameter of inhibition zone ranging from 6.00 to 14.83 mm. Furthermore, these extracts displayed considerable antifungal activity. L. monopetalum extracts (Enfidha) showed the strongest activity against Candida glabrata and C. krusei with a diameter exceeding 12 mm. The phytochemical investigation of these extracts confirmed the variability of phenolic composition, since the major phenolic compound varied as a function of species and locality. These findings suggest that these two halophytes may be a new source of natural antioxidants that are increasingly important for human consumption, as well as for agro-food, cosmetic and pharmaceutical industries.  相似文献   

7.
8.
Is the typical zinc (Zn) content of honey and pollen sufficient to meet the nutritional requirements of honey bees? To answer this question, and find the optimal dietary Zn levels for honey bees, we investigated the effects of varying dietary Zn levels on both captive worker bees and free‐flying honey bees, Apis mellifera ligustica Spinola (Hymenoptera: Apidae). We fed captive workers and free‐flying honey bees with 50% (wt/wt) sucrose solutions with Zn levels of either 0, 15, 30, 45, 60, or 75 mg kg?1 diet and measured their Cu/Zn‐SOD activity, the mean survival time of captive bees, the Cu/Zn‐SOD activity of larvae, and the Zn concentration of royal jelly. Captive workers provided with 30 mg kg?1 dietary Zn had higher Cu/Zn‐SOD activity and mean survival time than the control. Dietary Zn levels from 60 to 75 mg kg?1 significantly increased the Zn content of royal jelly provided by colonies and the Cu/Zn‐SOD activity of larvae. Honey or pollen with a Zn content of <30 mg kg?1 was insufficient to satisfy the maintenance nutritional requirements of bees that were not raising larvae. It therefore seems advisable to supply supplementary Zn to non‐brooding colonies when the Zn content of honey or pollen is <30 mg kg?1. Honey or pollen with a Zn content of 60 mg kg?1 was sufficient to satisfy the nutritional requirements for royal jelly production and to improve the health of larvae. It may therefore also be advisable to provide supplementary Zn to colonies with larvae when the Zn content of honey or pollen is <60 mg kg?1.  相似文献   

9.
Total flavonoid content (TFC) and cyanidin‐3‐glucoside (Cyd‐3‐glu) of seed and seed coat extract of 16 genotypes from five species of Carthamus were studied, and their major polyphenolic compounds and antioxidant activity of the seed coat extracts were determined using HPLC analysis and DPPH assay, respectively. Additionally, fatty acids composition of the seed oil was analyzed by GC. In general, TFC and Cyd‐3‐glu content of seed coat extracts were higher than those of seed extracts. A novel breeding line with black seed coat (named A82) depicted lower TFC (3.79 mg QUE/g DW) but higher Cyd‐3‐glu (24.64 mg/g DW) compared to the white and other seed‐pigmented genotypes. DPPH radical scavenging activity showed a strong association with Cyd‐3‐glu content (r = 0.84), but no correlation with TFC (r = ?0.32). HPLC analysis of seed coat extracts revealed that four compounds were dominant constituents including rutin (7.23 – 117.95 mg/100 g DW), apigenin (4.37 – 64.88 mg/100 g DW), quercetin (3.09 – 14.10 mg/100 g DW), and ferulic acid (4.49 – 30.41 mg/100 g DW). Interestingly, the genotype A82 with an appropriate polyunsaturated/saturated fatty acids index (5.46%) and a moderate linoleic fatty acid content (64.70%) had higher nutritional and pharmaceutical value than all the other genotypes.  相似文献   

10.
Traditional Chinese Medicine (TCM) is a very important raw material source for natural medicines in China. The content and activity of active component are main indexes that evaluate the quality of TCM, however, they may vary with environmental factors. In this study, the effects of environmental factors on the active component contents and antioxidant activity of Dasiphora fruticosa collected from the five main growing areas of China were investigated. The contents of tannin, total flavonoids and rutin were determined to be 7.65 – 10.69%, 2.30 – 5.39% and 0.18 – 0.81%, respectively. Antioxidant activity was determined by DPPH assay, with the DPPH IC50 values ranged from 8.791 to 32.534 μg mL?1. In order to further explore the cause of these significant geographical variations, the chemometric methods including correlation analysis, principal component analysis, gray correlation analysis and path analysis were applied. The results showed that environmental factors had significant effect on the contents of active components and antioxidant activity. Rapidly available phosphorus (RAP) and rapidly available nitrogen (RAN) were common dominant factors, and a significant positive action existed between RAP and active components and antioxidant activity (< 0.05). Contributed by their high active components and strong antioxidant activity, Bange in Tibet and Geermu in Qinghai Province were selected as a favorable growing location, respectively.  相似文献   

11.
Bioactive phenolic compounds are powerful antioxidants in traditionally used medicinal and industrial crop plants and have attracted increased interest in the last years in their application and role in non-destructive methodology for pre-screening analysis of some stress factors. In this study the qualitative target was linked with future possible applications of received data for improving non-destructive methodology as well as for improving existing knowledge regarding antioxidant content in some plant species. Comparative analysis of total phenolics, flavonoid contents, phenolic acid composition, and antioxidant activity in known east central Europe medicinal and industrial crop plants of 26 species of families Asteraceae, Rosaceae and Lamiaceae was done. Among the investigated leaf extracts the highest total phenolic, total flavonoid contents and antioxidant activity have been seen for Stachys byzantine L. (Lamiaceae), Calendula officinalis L. (Asteraceae) and for Potentilla recta L. (Rosaceae). The highest syringic acid content has been found in the leaf extracts of plant family Asteraceae – in the range from 0.782 to 5.078 mg g?1 DW. The representative’s family Rosaceae has a higher content of p-anisic acid in the range 0.334–3.442 mg g?1DW compared to the leaf extracts of families Lamiaceae and Asteraceae. The comparative study showed significant differences of content of phenolic acids in the leaf extracts of different representative’s families Rosaceae, Asteraceae and Lamiaceae. We suggest that the presence of some phenolic acids can be used as a possible marker for family botanical specifications of representative families Asteraceae and Rosaceae. It was supposed that some pharmacological effects can be connected with the analyzed data.  相似文献   

12.
Wheat bulb fly (WBF), Delia coarctata Fallén (Diptera: Anthomyiidae), larvae are a subterranean pest of wheat [Triticum aestivum L. (Poaceae)] and other cereals. Larvae locate host plants through chemotaxis and chemokinesis, utilising the primary plant metabolite carbon dioxide as a ‘search trigger’ and Poaceae‐specific secondary plant metabolites exuded from the plant. The aim of this study was to use arena bioassays to identify further compounds involved in the host‐finding process. The larval behavioural response to four concentrations of syringic and vanillic acid, chemical constituents of host‐plant exudates, were tested. Analysis of the final resting position of D. coarctata larvae by the Rayleigh test of uniformity identified attraction to wheat seedling exudates and to both compounds at the lowest concentrations tested, with syringic acid concentrations being most attractive at 0.1 mg l?1 and vanillic acid being most attractive at 0.001 mg l?1. These results add more detail to the subterranean chemical ecology of this species, allowing a behavioural sequence for host‐plant orientation by WBF larvae to be proposed.  相似文献   

13.
We investigated the effects of warming and drought on C and N concentrations, nitrogen use efficiency (NUE), and C and N accumulation in different ecosystem compartments. We conducted a 6-year (1999–2005) field experiment to simulate the climate conditions projected by IPCC models for the coming decades in a Mediterranean shrubland. We studied the two dominant species, Globularia alypum and Erica multiflora, and an N-fixing species, Dorycnium pentaphyllum, also abundant in this shrubland. Warming (1 °C) decreased N leaf concentrations by 25% and increased N stem concentrations by 40% in G. alypum. Although warming changed the available ammonium in soil in some seasons, it did not increase total soil N contents. Drought (19% average reduction in soil moisture) decreased leaf N concentrations in the two dominant shrub species, E. multiflora and G. alypum by 16% and 19%, respectively, and increased stem N concentrations by 56% and 40%, respectively. Neither warming nor drought changed the leaf N concentrations in the N-fixing species D. pentaphyllum, although warming increased stem N concentration by 9%. In G. alypum, the increase of stem N concentrations contributed to the observed increase of N accumulation in stem biomass in drought treatments with respect to control plots (8 kg N ha−1). Neither warming nor drought changed NUE in the period 1999–2005. Warming increased soil organic C relative to drought. The effects of warming and drought on C and N concentrations, on N accumulation and on leaf/stem N distribution were not the result of dilution or concentration effects produced by changes in biomass accumulation. Other factors such as the changes in soil N availability, photosynthetic capacity, and plant internal C and N remobilization must be involved. These changes which differed depending on the species and the plant tissue show that the climate change projected for the coming decades will have significant effects on the C and N cycle and stoichiometry, with probable implications for ecosystem structure and function, such as changes in plant–herbivore relationships, decomposition rates or community species composition.  相似文献   

14.
The effect of nitrogen (N: low = 2% N or moderate = 10% N) levels and cultivation (photoautotrophic or mixotrophic) modes on the biochemicals in Chlorella minutissima was evaluated using a mass culture system. Moderate N and mixotrophic cultures had higher biomass, protein, carbohydrate content and photosynthetic pigments than the low N and photoautotrophic treatments. In contrast, lipid and fatty acid content of the low N and photoautotrophic treatments were higher than in the moderate N and mixotrophic cultures. More phytochemicals were accumulated in moderate N and mixotrophic cultures which corresponded to better antioxidant capacity in the extracts. The most potent (0.7 mg · mL?1) acetylcholinesterase inhibitory activity was displayed by moderate N and mixotrophic treatment. Approximately 60% of the extracts exhibited a noteworthy antimicrobial activity regardless of the N levels and cultivation modes. Thus, moderate N level enhanced the phytochemicals and biological activities of C. minutissima cultured under a mixotrophic system.  相似文献   

15.
The effects of salinity, light intensity and sediment on Gracilaria tenuistipitata C.F. Chang & B.M. Xia on growth, pigments, agar production, and net photosynthesis rate were examined in the laboratory under varying conditions of salinity (0, 25 and 33 psu), light intensity (150, 400, 700 and 1000 µmol photons m?2 s?1) and sediment (0, 0.67 and 2.28 mg L?1). These conditions simulated field conditions, to gain some understanding of the best conditions for cultivation of G. tenuistipitata. The highest growth rate was at 25 psu, 700 µmol photons m?2 s?1 with no sediments, that provided a 6.7% increase in weight gain. The highest agar production (24.8 ± 3.0 %DW) was at 25 psu, 150–400 µmol photons m?2 s?1 and no sediment. The highest pigment contents were phycoerythrin (0.8 ± 0.5 mg g?1FW) and phycocyanin (0.34 ± 0.05 mg g?1 FW) produced in low light conditions, at 150 µmol photons m?2 s?1. The highest photosynthesis rate was 161.3 ± 32.7 mg O2 g?1 DW h?1 in 25 psu, 400 µmol photons m?2 s?1 without sediment in the short period of cultivation, (3 days) and 60.3 ± 6.7 mg O2 g?1 DW h?1 in 25 psu, 700 µmol photons m?2 s?1 without sediment in the long period of cultivation (20 days). The results indicated that salinity was the most crucial factor affecting G. tenuistipitata growth and production. This would help to promote the cultivation of Gracilaria cultivation back into the lagoon using these now determined baseline conditions. Extrapolation of the results from the laboratory study to field conditions indicated that it was possible to obtain two crops of Gracilaria a year in the lagoon, with good yields of agar, from mid‐January to the end of April (dry season), and from mid‐July to the end of September (first rainy season) when provided sediment was restricted.  相似文献   

16.
We investigated the potential of seaweeds as feedstock for oil‐based products, and our results support macroalgae (seaweeds) as a biomass source for oil‐based bioproducts including biodiesel. Not only do several seaweeds have high total lipid content above 10% dry weight, but in the brown alga Spatoglossum macrodontum 50% of these lipids are in the form of extractable fatty acids. S. macrodontum had the highest fatty acid content (57.40 mg g?1 dw) and a fatty acid profile rich in saturated fatty acids with a high content of C18:1, which is suitable as a biofuel feedstock. Similarly, the green seaweed Derbesia tenuissima has high levels of fatty acids (39.58 mg g?1 dw), however, with a high proportion of PUFA (n‐3) (31% of total lipid) which are suitable as nutraceuticals or fish oil replacements. Across all species of algae the critical parameter of fatty acid content (measured as fatty acid methyl esters, FAME) was positively correlated (R2 = 0.67) with total lipid content. However, the proportion of fatty acids to total lipid decreased markedly with total lipid content, generally between 30% and 50%, making it an inaccurate measure of the potential to identify seaweeds suitable for oil‐based bioproducts. Finally, we quantified within species variation of fatty acids across locations and sampling periods supporting either environmental effects on quantitative fatty acid profiles, or genotypes with specific quantitative fatty acid profiles, thereby opening the possibility to optimize the fatty acid content and quality for oil production through specific culture conditions and selective breeding.  相似文献   

17.
Endogenous auxins and cytokinins were quantitated in 24 axenic microalgal strains from the Chlorophyceae, Trebouxiophyceae, Ulvophyceae, and Charophyceae. These strains were in an exponential growth phase, being harvested on day 4. Acutodesmus acuminatus Mosonmagyaróvár Algal Culture Collection‐41 (MACC) produced the highest biomass and Chlorococcum ellipsoideum MACC‐712 the lowest biomass. The auxins, indole‐3‐acetic acid (IAA) and indole‐3‐acetamide (IAM) were present in all microalgal strains. No other auxin conjugates were detected. IAA and IAM concentrations varied greatly, ranging from 0.50 to 71.49 nmol IAA · g?1 DW and 0.18 to 99.83 nmol IAM · g?1 DW, respectively. In 19 strains, IAA occurred in higher concentrations than IAM. Nineteen cytokinins were identified in the microalgal strains. Total cytokinin concentrations varied, ranging from 0.29 nmol · g?1 DW in Klebsormidium flaccidum MACC‐692 to 21.40 nmol · g?1 DW in Stigeoclonium nanum MACC‐790. The general trend was that cis‐zeatin types were the predominant cytokinins; isopentenyladenine‐type cytokinins were present in moderate concentrations, while low levels of trans‐zeatin‐type and very low levels of dihydrozeatin‐type cytokinins were detected. Ribotides were generally the main cytokinin conjugate forms present with the cytokinin free bases and ribosides present in similar but moderate levels. The levels of O‐glucosides were low. Only one N‐glucoside was detected, being present in nine strains in very low concentrations. In 15 strains, the auxin content was 2‐ to 4‐fold higher than the cytokinin content.  相似文献   

18.
Biogenic volatile organic compounds (BVOC) emissions from bioenergy crops may differ from those of conventional crops. We compared emission rates of isoprene and a number of monoterpenes from the lignocellulosic bioenergy crops short‐rotation coppice (SRC) willow and Miscanthus, with the conventional crops wheat and oilseed rape. BVOC emission rates were measured via dynamic vegetation enclosure and GC‐MS analysis approximately monthly between April 2010 and August 2012 at a location in England and from SRC willow at two locations in Scotland. The largest BVOC emission rates were measured from willow in England and varied between years. Isoprene emission rates varied between μg g?1 h?1. Of the monoterpenes detected from willow, α‐pinene emission rates were highest (μg g?1 h?1), followed by μg g?1 h?1 for δ‐3‐carene, μg g?1 h?1 for β‐pinene and μg g?1 h?1 for limonene. BVOC emission rates measured in Scotland were much lower. Low emission rates of isoprene and α‐pinene were measured from Miscanthus in 2010 (μg g?1 h?1 and μg g?1 h?1, respectively) but were not detected in subsequent years. Emission rates from wheat of isoprene were negligible but relatively high for monoterpenes (μg g?1 h?1 and μg g?1 h?1 for α‐pinene and limonene, respectively). No significant emission rates of BVOCs were measured from oilseed rape. The measured emission rates followed a clear seasonal trend. Crude extrapolations based solely on data gathered here indicate that isoprene emissions from willow could correspond to 0.004–0.03% (UK) and 0.76–5.5% (Europe) of current global isoprene if 50% of all land potentially available for bioenergy crops is planted with willow.  相似文献   

19.
The phenolic composition and antioxidant capacity of four Tunisian lichen species, Cladonia rangiformis, Flavoparmelia caperata, Squamarina cartilaginea and Xanthoria parietina, were determined in order to provide a better understanding of their lichenochemical composition. Powdered material of F. caperata was the richest in total phenolic content (956.68 μg GAE g−1 DW) and S. cartilaginea in proanthocyanidin content (77.31 μg CE g−1 DW), while the acetone extract of X. parietina showed the highest flavonoid content (9.56 μg CE g−1 DW). The antioxidant capacity of all lichen extracts and crude material was evaluated by DPPH. scavenging, iron-chelating, and iron-reducing powers. Results showed that methanol extracts of S. cartilaginea had the highest DPPH. antioxidant capacity (IC50=0.9 μg mL−1) and the highest iron-reducing power was attributed to the acetone extract of this species. All extracts of all species were further screened by Fourier-transform infrared spectroscopy (FT-IR) and nuclear resonance spectroscopy (NMR); results showed an abundance of phenols, aromatic compounds, and fatty acids. Overall, our results showed that the investigated species are a rich source of potentially bioactive compounds with valuable properties.  相似文献   

20.

Microshoots of the East Asian medicinal plant species Schisandra chinensis (Chinese magnolia vine) were grown in bioreactors characterized by different construction and cultivation mode. The tested systems included two continuous immersion systems—a cone-type bioreactor (CNB) and a cylindric tube bioreactor (CTB), a nutrient sprinkle bioreactor (NSB), and two temporary immersion systems (TIS)—RITA® and Plantform. Microshoots were grown for 30 and 60 days in the MS medium enriched with 1 mg l?1 NAA and 3 mg l?1 BA. The accumulation of two groups of phenolic compounds: phenolic acids and flavonoids in the bioreactor-grown S. chinensis biomass, was evaluated for the first time. In the microshoot extracts, seven phenolic acids: chlorogenic, gallic, p–hydroxybenzoic, protocatechuic, syringic, salicylic and vanillic, and three flavonoids: kaempferol, quercitrin and rutoside, were identified. The highest total amount of phenolic acids (46.68 mg 100 g?1 DW) was recorded in the biomass maintained in the CNB for 30 days. The highest total content of flavonoids (29.02 mg 100 g?1 DW) was found in the microshoots maintained in the NSB for 30 days. The predominant metabolites in all the tested systems were: gallic acid (up to 10.01 mg 100 g?1 DW), protocatechuic acid (maximal concentration 16.30 mg 100 g?1 DW), and quercitrin (highest content 21.00 mg 100 g?1 DW).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号