首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mechanisms and regulation of DNA end resection   总被引:1,自引:0,他引:1  
DNA double‐strand breaks (DSBs) are highly hazardous for genome integrity, because failure to repair these lesions can lead to genomic instability. DSBs can arise accidentally at unpredictable locations into the genome, but they are also normal intermediates in meiotic recombination. Moreover, the natural ends of linear chromosomes resemble DSBs. Although intrachromosomal DNA breaks are potent stimulators of the DNA damage response, the natural ends of linear chromosomes are packaged into protective structures called telomeres that suppress DNA repair/recombination activities. Although DSBs and telomeres are functionally different, they both undergo 5′–3′ nucleolytic degradation of DNA ends, a process known as resection. The resulting 3′‐single‐stranded DNA overhangs enable repair of DSBs by homologous recombination (HR), whereas they allow the action of telomerase at telomeres. The molecular activities required for DSB and telomere end resection are similar, indicating that the initial steps of HR and telomerase‐mediated elongation are related. Resection of both DSBs and telomeres must be tightly regulated in time and space to ensure genome stability and cell survival.  相似文献   

3.
Rothmund–Thomson syndrome (RTS) is an autosomal recessive hereditary disorder associated with mutation in RECQL4 gene, a member of the human RecQ helicases. The disease is characterized by genomic instability, skeletal abnormalities and predisposition to malignant tumors, especially osteosarcomas. The precise role of RECQL4 in cellular pathways is largely unknown; however, recent evidence suggests its involvement in multiple DNA metabolic pathways. This study investigates the roles of RECQL4 in DNA double‐strand break (DSB) repair. The results show that RECQL4‐deficient fibroblasts are moderately sensitive to γ‐irradiation and accumulate more γH2AX and 53BP1 foci than control fibroblasts. This is suggestive of defects in efficient repair of DSB’s in the RECQL4‐deficient fibroblasts. Real time imaging of live cells using laser confocal microscopy shows that RECQL4 is recruited early to laser‐induced DSBs and remains for a shorter duration than WRN and BLM, indicating its distinct role in repair of DSBs. Endogenous RECQL4 also colocalizes with γH2AX at the site of DSBs. The RECQL4 domain responsible for its DNA damage localization has been mapped to the unique N‐terminus domain between amino acids 363–492, which shares no homology to recruitment domains of WRN and BLM to the DSBs. Further, the recruitment of RECQL4 to laser‐induced DNA damage is independent of functional WRN, BLM or ATM proteins. These results suggest distinct cellular dynamics for RECQL4 protein at the site of laser‐induced DSB and that it might play important roles in efficient repair of DSB’s.  相似文献   

4.
Although recent studies highlight the importance of histone modifications and ATP‐dependent chromatin remodelling in DNA double‐strand break (DSB) repair, how these mechanisms cooperate has remained largely unexplored. Here, we show that the SWI/SNF chromatin remodelling complex, earlier known to facilitate the phosphorylation of histone H2AX at Ser‐139 (S139ph) after DNA damage, binds to γ‐H2AX (the phosphorylated form of H2AX)‐containing nucleosomes in S139ph‐dependent manner. Unexpectedly, BRG1, the catalytic subunit of SWI/SNF, binds to γ‐H2AX nucleosomes by interacting with acetylated H3, not with S139ph itself, through its bromodomain. Blocking the BRG1 interaction with γ‐H2AX nucleosomes either by deletion or overexpression of the BRG1 bromodomain leads to defect of S139ph and DSB repair. H3 acetylation is required for the binding of BRG1 to γ‐H2AX nucleosomes. S139ph stimulates the H3 acetylation on γ‐H2AX nucleosomes, and the histone acetyltransferase Gcn5 is responsible for this novel crosstalk. The H3 acetylation on γ‐H2AX nucleosomes is induced by DNA damage. These results collectively suggest that SWI/SNF, γ‐H2AX and H3 acetylation cooperatively act in a feedback activation loop to facilitate DSB repair.  相似文献   

5.
6.
Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double‐strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error‐free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I‐SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR‐white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals.  相似文献   

7.
8.
Several types of DNA lesion are induced after ionizing irradiation (IR) of which double strand breaks (DSBs) are expected to be the most lethal, although single strand breaks (SSBs) and DNA base damages are quantitatively in the majority. Proteins of the base excision repair (BER) pathway repair these numerous lesions. DNA polymerase beta has been identified as a crucial enzyme in BER and SSB repair (SSBR). We showed previously that inhibition of BER/SSBR by expressing a dominant negative DNA polymerase beta (polβDN) resulted in radiosensitization. We hypothesized increased kill to result from DSBs arising from unrepaired SSBs and BER intermediates. We find here higher numbers of IR-induced chromosome aberrations in polβDN expressing cells, confirming increased DSB formation. These aberrations did not result from changes in DSB induction or repair of the majority of lesions. SSB conversion to DSBs has been shown to occur during replication. We observed an increased induction of chromatid aberrations in polβDN expressing cells after IR, suggesting such a replication-dependence of secondary DSB formation. We also observed a pronounced increase of chromosomal deletions, the most likely cause of the increased kill. After H2O2 treatment, polβDN expression only resulted in increased chromatid (not chromosome) aberrations. Together with the lack of sensitization to H2O2, these data further suggest that the additional secondarily induced lethal DSBs resulted from repair attempts at complex clustered damage sites, unique to IR. Surprisingly, the polβDN induced increase in residual γH2AX foci number was unexpectedly low compared with the radiosensitization or induction of aberrations. Our data thus demonstrate the formation of secondary DSBs that are reflected by increased kill but not by residual γH2AX foci, indicating an escape from γH2AX-mediated DSB repair. In addition, we show that in the polβDN expressing cells secondary DSBs arise in a radiation-specific and partly replication-dependent manner.  相似文献   

9.
Accumulation of DNA damage may play an essential role in both cellular senescence and organismal aging. The ability of cells to sense and repair DNA damage declines with age. However, the underlying molecular mechanism for this age-dependent decline is still elusive. To understand quantitative and qualitative changes in the DNA damage response during human aging, DNA damage-induced foci of phosphorylated histone H2AX (γ-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs) and eroded telomeres, were examined in human young and senescing fibroblasts, and in lymphocytes of peripheral blood. Here, we show that the incidence of endogenous γ-H2AX foci increases with age. Fibroblasts taken from patients with Werner syndrome, a disorder associated with premature aging, genomic instability and increased incidence of cancer, exhibited considerably higher incidence of γ-H2AX foci than those taken from normal donors of comparable age. Further increases in γ-H2AX focal incidence occurred in culture as both normal and Werner syndrome fibroblasts progressed toward senescence. The rates of recruitment of DSB repair proteins to γ-H2AX foci correlated inversely with age for both normal and Werner syndrome donors, perhaps due in part to the slower growth of γ-H2AX foci in older donors. Because genomic stability may depend on the efficient processing of DSBs, and hence the rapid formation of γ-H2AX foci and the rapid accumulation of DSB repair proteins on these foci at sites of nascent DSBs, our findings suggest that decreasing efficiency in these processes may contribute to genome instability associated with normal and pathological aging.  相似文献   

10.
When cells are exposed to radiation serious lesions are introduced into the DNA including double strand breaks (DSBs), single strand breaks (SSBs), base modifications and clustered damage sites (a specific feature of ionizing radiation induced DNA damage). Radiation induced DNA damage has the potential to initiate events that can lead ultimately to mutations and the onset of cancer and therefore understanding the cellular responses to DNA lesions is of particular importance. Using γH2AX as a marker for DSB formation and RAD51 as a marker of homologous recombination (HR) which is recruited in the processing of frank DSBs or DSBs arising from stalled replication forks, we have investigated the contribution of SSBs and non-DSB DNA damage to the induction of DSBs in mammalian cells by ionizing radiation during the cell cycle. V79-4 cells and human HF19 fibroblast cells have been either irradiated with 0–20 Gy of γ radiation or, for comparison, treated with a low concentration of hydrogen peroxide, which is known to induce SSBs but not DSBs. Inhibition of the repair of oxidative DNA lesions by poly(ADP ribose) polymerase (PARP) inhibitor leads to an increase in radiation induced γH2AX and RAD51 foci which we propose is due to these lesions colliding with replication forks forming replication induced DSBs. It was confirmed that DSBs are not induced in G1 phase cells by treatment with hydrogen peroxide but treatment does lead to DSB induction, specifically in S phase cells. We therefore suggest that radiation induced SSBs and non-DSB DNA damage contribute to the formation of replication induced DSBs, detected as RAD51 foci.  相似文献   

11.
Elaboration of cellular DNA breaks by hydroperoxides.   总被引:2,自引:0,他引:2  
Cellular damage produced by ionizing radiation and peroxides, hydrogen peroxide (HOOH) and the organic peroxides tert-butyl (tBuOOH) or cumene hydroperoxide (CuOOH) were compared. DNA breaks, toxicity, malondialdehyde production, and the rate of peroxide disappearance were measured in a human adenocarcinoma cell line (A549). The alkaline and neutral filter elution assays were used to quantitate the kinetics of single and double strand break formation and repair (SSB and DSB), respectively. Peroxides, at 0.01-1.0 mM, produce multiphasic dose response curves for both toxicity and DNA SSBs. Radiation, 1-6 Gy, produced a shouldered survival curve, and both DNA SSB and DSBs produced in cells x-rayed on ice were nearly linear with dose. The peroxides produced more SSBs than radiation at equitoxic doses. X-ray induced DNA single strand breaks were rejoined rapidly by cells at 37 degrees C with approximately 80% of initial damage repaired in 20 min. Peroxide induced SSBs were maximal after 15 min at 37 degrees C. Rejoining proceeded thereafter, but at a rate less than for x-ray induced strand breaks. Significant DNA DSBs could not be achieved by peroxides even at concentrations 50-fold higher than required to produce SSBs. HOOH treatment of DNA on filters following cell lysis and proteolysis produced SSBs. CuOOH and tBuOOH produced no SSBs in lysed cell DNA. None of the peroxides produced DSBs when incubated with lysed cell DNA. Malondialdehyde was released from cells incubated with organic hydroperoxides, but not HOOH, nor up to 40 Gy of x-rays. HOOH was metabolized three times faster than the organic peroxides. The overall results demonstrate the necessity for a metabolically active cell environment to elaborate maximal DNA strand breaks and cell death at hydroperoxide concentrations of 10(-4) or greater, but prevent strand breaks and stimulate cell growth at 10(-5) M.  相似文献   

12.
Human replication protein A (RPA p34), a crucial component of diverse DNA excision repair pathways, is implicated in DNA double-strand break (DSB) repair. To evaluate its role in DSB repair, the intranuclear dynamics of RPA was investigated after DNA damage and replication blockage in human cells. Using two different agents [ionizing radiation (IR) and hydroxyurea (HU)] to generate DSBs, we found that RPA relocated into distinct nuclear foci and colocalized with a well-known DSB binding factor, gamma-H2AX, at the sites of DNA damage in a time-dependent manner. Colocalization of RPA and gamma-H2AX foci peaked at 2 h after IR treatment and subsequently declined with increasing postrecovery times. The time course of RPA and gamma-H2AX foci association correlated well with the DSB repair activity detected by a neutral comet assay. A phosphatidylinositol-3 (PI-3) kinase inhibitor, wortmannin, completely abolished both RPA and gamma-H2AX foci formation triggered by IR. Additionally, radiosensitive ataxia telangiectasia (AT) cells harboring mutations in ATM gene product were found to be deficient in RPA and gamma-H2AX colocalization after IR. Transfection of AT cells with ATM cDNA fully restored the association of RPA foci with gamma-H2AX illustrating the requirement of ATM gene product for this process. The exact coincidence of RPA and gamma-H2AX in response to HU specifically in S-phase cells supports their role in DNA replication checkpoint control. Depletion of RPA by small interfering RNA (SiRNA) substantially elevated the frequencies of IR-induced micronuclei (MN) and apoptosis in human cells suggestive of a role for RPA in DSB repair. We propose that RPA in association with gamma-H2AX contributes to both DNA damage checkpoint control and repair in response to strand breaks and stalled replication forks in human cells.  相似文献   

13.
In Saccharomyces cerevisiae, genome stability depends on RNases H1 and H2, which remove ribonucleotides from DNA and eliminate RNA–DNA hybrids (R‐loops). In Schizosaccharomyces pombe, RNase H enzymes were reported to process RNA–DNA hybrids produced at a double‐strand break (DSB) generated by I‐PpoI meganuclease. However, it is unclear if RNase H is generally required for efficient DSB repair in fission yeast, or whether it has other genome protection roles. Here, we show that S. pombe rnh1? rnh201? cells, which lack the RNase H enzymes, accumulate R‐loops and activate DNA damage checkpoints. Their viability requires critical DSB repair proteins and Mus81, which resolves DNA junctions formed during repair of broken replication forks. “Dirty” DSBs generated by ionizing radiation, as well as a “clean” DSB at a broken replication fork, are efficiently repaired in the absence of RNase H. RNA–DNA hybrids are not detected at a reparable DSB formed by fork collapse. We conclude that unprocessed R‐loops collapse replication forks in rnh1? rnh201? cells, but RNase H is not generally required for efficient DSB repair.  相似文献   

14.
赵烨  华跃进 《生命科学》2014,(11):1136-1142
耐辐射球菌对于电离辐射等DNA损伤剂具有极强的抗性,能够将同一个基因组中同时产生的高达100个以上的DNA双链断裂在数十小时内高效而精准地进行修复,是研究DNA双链断裂修复机制的重要模式生物。同源重组、非同源末端连接和单链退火途径作为3个主要的修复途径参与了耐辐射球菌基因组DNA双链断裂的修复过程。此外,一系列新发现的重要蛋白质,如Ppr I、Ddr B等对于耐辐射球菌基因组的修复过程同样至关重要。根据本实验室和国内外在这一研究领域近年来的报道,以不同的修复途径为线索,综述该菌DNA双链断裂修复机制的最新研究成果。  相似文献   

15.
16.
Astrocytes, the most common cell type in the brain, play a principal role in the repair of damaged brain tissues during external radiotherapy of brain tumours. As a downstream gene of p53, the effects of Krüppel‐like factor 4 (KLF4) in response to X‐ray‐induced DNA damage in astrocytes are unclear. In the present study, KLF4 expression was upregulated after the exposure of astrocytes isolated from the murine brain. Inhibition of KLF4 expression using lentiviral transduction produced less double‐strand DNA breaks (DSB) determined by a neutral comet assay and flow cytometric analysis of phosphorylated histone family 2A variant and more single‐strand DNA breaks (SSB) determined by a basic comet assay when the astrocytes were exposed to 4 Gy of X‐ray radiation. These data suggest that radiation exposure of the tissues around brain tumour during radiation therapy causes KLF4 overexpression in astrocytes, which induces more DSB and reduces SSB. This causes the adverse effects of radiation therapy in the treatment of brain tumours. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The radiation-induced process of strand breaks on pBR322 plasmid DNA in aqueous solution for different energy electrons was studied by Monte Carlo simulation. Assumptions of induction mechanisms of single- and double-strand breaks (SSBs and DSBs) used in the simulation are that SSB is induced by OH or H reaction with DNA and that DSB is induced by two SSBs on the opposite strands within 10 bp. Dose-response relationships of SSBs and DSBs were demonstrated for monoenergetic electrons of 100 eV, 10 keV, 1 keV and 1 MeV, and the yields of SSB and DSB were calculated. The dose-response relationships of SSBs and DSBs can be fitted by linear and linear-quadratic functions, respectively. The ratio of quadratic to linear components of DSB induction changes due to the electron energy. A high contribution of the linear component is observed for 1 keV electrons in the dose range below 160 Gy. The yields of SSBs and DSBs for all examined electron energies lie well within the experimental data when the probability of strand-break induction by OH and H is assumed to be around 0.1-0.2. The yield of SSBs has a minimum at 1 keV, while the yield of DSBs has a maximum at 1 keV in the examined energies. The strand breaks are formed most densely for 1 keV electrons.  相似文献   

18.
19.
Engineered nucleases can be used to induce site‐specific double‐strand breaks (DSBs) in plant genomes. Thus, homologous recombination (HR) can be enhanced and targeted mutagenesis can be achieved by error‐prone non‐homologous end‐joining (NHEJ). Recently, the bacterial CRISPR/Cas9 system was used for DSB induction in plants to promote HR and NHEJ. Cas9 can also be engineered to work as a nickase inducing single‐strand breaks (SSBs). Here we show that only the nuclease but not the nickase is an efficient tool for NHEJ‐mediated mutagenesis in plants. We demonstrate the stable inheritance of nuclease‐induced targeted mutagenesis events in the ADH1 and TT4 genes of Arabidopsis thaliana at frequencies from 2.5 up to 70.0%. Deep sequencing analysis revealed NHEJ‐mediated DSB repair in about a third of all reads in T1 plants. In contrast, applying the nickase resulted in the reduction of mutation frequency by at least 740‐fold. Nevertheless, the nickase is able to induce HR at similar efficiencies as the nuclease or the homing endonuclease I–SceI. Two different types of somatic HR mechanisms, recombination between tandemly arranged direct repeats as well as gene conversion using the information on an inverted repeat could be enhanced by the nickase to a similar extent as by DSB‐inducing enzymes. Thus, the Cas9 nickase has the potential to become an important tool for genome engineering in plants. It should not only be applicable for HR‐mediated gene targeting systems but also by the combined action of two nickases as DSB‐inducing agents excluding off‐target effects in homologous genomic regions.  相似文献   

20.
Cells are constantly threatened by multiple sources of genotoxic stress that cause DNA damage. To maintain genome integrity, cells have developed a coordinated signalling network called DNA damage response (DDR). While multiple kinases have been thoroughly studied during DDR activation, the role of protein dephosphorylation in the damage response remains elusive. Here, we show that the phosphatase Cdc14 is essential to fulfil recombinational DNA repair in budding yeast. After DNA double‐strand break (DSB) generation, Cdc14 is transiently released from the nucleolus and activated. In this state, Cdc14 targets the spindle pole body (SPB) component Spc110 to counterbalance its phosphorylation by cyclin‐dependent kinase (Cdk). Alterations in the Cdk/Cdc14‐dependent phosphorylation status of Spc110, or its inactivation during the induction of a DNA lesion, generate abnormal oscillatory SPB movements that disrupt DSB‐SPB interactions. Remarkably, these defects impair DNA repair by homologous recombination indicating that SPB integrity is essential during the repair process. Together, these results show that Cdc14 promotes spindle stability and DSB‐SPB tethering during DNA repair, and imply that metaphase spindle maintenance is a critical feature of the repair process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号