首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA sequences from the mitochondrial DNA control region are used to test the phylogeographic relationships among the pike-perches,Stizostedion(Teleostei: Percidae) and to examine patterns of variation. Sequences reveal two types of variability: single nucleotide polymorphisms and 6 to 14 copies of 10- to 11-base-pair tandemly repeated sequences. Numbers of copies of the tandem repeats are found to evolve too rapidly to detect phylogenetic signal at any taxonomic level, even among populations. Sequence similarities of the tandem repeats amongStizostedionand other percids suggest concerted evolutionary processes. Predicted folding of the tandem repeats and their proximity to termination-associated sequences indicate that secondary structure mediates slipped-strand mispairing among the d-loop, heavy, and light strands. Neighbor-joining and maximum parsimony analyses of sequences indicate that the genus is divided into clades on the continents of North America and Eurasia. Calibrating genetic distances with divergence times supports the hypothesis thatStizostediondispersed from Eurasia to North America across a North Pacific Beringial land bridge approximately 4 million years before present, near the beginning of the Pliocene Epoch. The North AmericanS. vitreumandS. canadenseappear separated by about 2.75 million years, and the EurasianS. luciopercaandS. volgensisare diverged by about 1.8 million years, suggesting that speciation occurred during the late Pliocene Epoch.  相似文献   

2.
To examine the diverse colonization histories in eight tiger beetle species of the genus Cylindera (Coleoptera: Cicindelidae) on the East Asian islands, we conducted phylogenetic analyses and divergence time estimation using mitochondrial cytochome oxidase subunit I (COI) and nuclear 28S rDNA sequences. The island fauna consisted of four subgenera: Apterodela, Cicindina, Ifasina, and Cylindera. Apterodela is a flightless group with large bodies, whereas the others are fliers with small bodies. In Apterodela, the divergence among endemic species in Taiwan, Japan, and the mainland was ancient (2.1–4.7 Mya), as expected from their flightlessness. Their dispersal might have occurred across the extended landmass in East Asia during the Pliocene. In the subgenus Cicindina, Cylindera elisae has spread throughout East Asia, from which an endemic species, Cylindera bonina, was derived on the oceanic Bonin Islands during the early Pleistocene (0.9 Mya). This indicates the significance of Cylindera bonina, which is currently confined to a single island, for conservation. In the subgenus Ifasina, Cylindera kaleea is widely distributed in East Asia, and its sister species Cylindera humerula, endemic to Okinawa Island, diverged 1.0 Mya, whereas Cylindera psilica on Taiwan and the Yaeyama Islands diverged approximately 0.8 Mya. In the subgenus Cylindera, the colonization of Cylindera gracilis in Japan from the mainland occurred during the last glacial period. With the exception of C. bonina, which likely colonized new territories by flight or drifting, other dispersal events might have used land connections that occurred repeatedly during the Pliocene and Pleistocene. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 715–727.  相似文献   

3.
Previous studies have suggested that bird populations in east Asia were less affected by Pleistocene climatic fluctuations than those in Europe and North America. However, this is mainly based on comparisons among species. It would be more relevant to analyse geographical populations of widespread species or species complexes. We analyzed two mitochondrial genes and two nuclear introns for all taxa of Pica to investigate 1) which Earth history factors have shaped the lineage divergence, and 2) whether different geographical populations were differently affected by the Pleistocene climatic changes. Our mitochondrial tree recovered three widespread lineages, 1) in east Asia, 2) across north Eurasia, and 3) in North America, respectively, with three isolated lineages in northwest Africa, Arabia and the Qinghai‐Tibet Plateau, respectively. Divergences among lineages took place 1.4–3.1 million yr ago. The northwest African population was sister to the others, which formed two main clades. In one of these, Arabia was sister to Qinghai‐Tibet, and these formed the sister clade to the east Asia clade. The other main clade comprised the North American and north Eurasian clades. There was no or very slight structure within these six geographical clades, including a lack of differentiation between the two North American species black‐billed magpie P. hudsonia and yellow‐billed magpie P. nutalli. Demographic expansion was recorded in the three most widespread lineages after 0.06 Ma. Asymmetric gene flow was recorded in the north Eurasian clade from southwestern Europe eastward, whereas the east Asian clade was rooted in south central China. Our results indicate that the fragmentation of the six clades of Pica was related to climatic cooling and aridification during periods of the Pliocene–Pleistocene. Populations on both sides of the Eurasian continent were similarly influenced by the Pleistocene climate changes and expanded concomitantly with the expansion of steppes. Based on results we also propose a revised taxonomy recognising seven species of Pica.  相似文献   

4.
Plant disjunctions have provided some of the most intriguing distribution patterns historically addressed by biogeographers. We evaluated the three hypotheses that have been postulated to explain these patterns [vicariance, stepping‐stone dispersal and long‐distance dispersal (LDD)] using Munroa, an American genus of grasses with six species and a disjunct distribution between the desert regions of North and South America. The ages of clades, cytology, ancestral characters and areas of distribution were investigated in order to establish relationships among species, to determine the time of divergence of the genus and its main lineages, and to understand further the biogeographical and evolutionary history of this genus. Bayesian inference recovered the North American M. pulchella as sister species to the rest. Molecular dating and ancestral area analyses suggest that Munroa originated in North America in the late Miocene–Pliocene (7.2 Mya; 8.2–6.5 Mya). Based on these results, we postulate that two dispersal events modelled the current distribution patterns of Munroa: the first from North to South America (7.2 Mya; 8.2–6.5 Mya) and the second (1.8 Mya; 2–0.8 Mya) from South to North America. Arid conditions of the late Miocene–Pliocene in the Neogene and Quaternary climatic oscillations in North America and South America were probably advantageous for the establishment of populations of Munroa. We did not find any relationship between ploidy and dispersal events, and our ancestral character analyses suggest that shifts associated with dispersal and seedling establishment, such as habit, reproductive system, disarticulation of rachilla, and shape and texture of the glume, have been important in these species reaching new areas. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 110–125.  相似文献   

5.
Despite the considerable research that has focused on the evolutionary relationships and biogeography of the genus Bufo, an evolutionary synthesis of the entire group has not yet emerged. In the present study, almost 4 kb of DNA sequence data from mitochondrial (12S, tRNAVal, and 16S) and nuclear (POMC; Rag-1) genes, and 83 characters from morphology were analysed to infer a phylogeny of South American toads. Phylogenies were reconstructed with parsimony and maximum likelihood and Bayesian model-based methods. The results of the analysis of morphological data support the hypothesis that within Bufo , some skull characters (e.g. frontoparietal width), correlated with the amount of cranial ossification, are prone to homoplasy. Unique and unreversed morphological synapomorphies are presented that can be used to diagnose recognized species groups of South American toads. The results of all phylogenetic analyses support the monophyly of most species groups of South American Bufo . In most DNA-only and combined analyses, the South American (minus the B. guttatus and part of the ' B. spinulosus ' groups), North American, Central American, and African lineages form generally well-supported clades: ((((((((South America) (North America + Central America)) Eurasia) Africa) Eurasia) South America) West Indies) South America). This result confirms and extends prior studies recovering South American Bufo as polyphyletic. The biogeographical results indicate that: (1) The origin of Bufo predates the fragmentation of Gondwana; (2) Central and North American species compose the sister group to a large, 'derived' clade of South American Bufo ; and (3) Eurasian species form the sister group to the New World clade.  © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 146 , 407–452.  相似文献   

6.
The carnivorous plant family Sarraceniaceae comprises three genera of wetland-inhabiting pitcher plants: Darlingtonia in the northwestern United States, Sarracenia in eastern North America, and Heliamphora in northern South America. Hypotheses concerning the biogeographic history leading to this unusual disjunct distribution are controversial, in part because genus- and species-level phylogenies have not been clearly resolved. Here, we present a robust, species-rich phylogeny of Sarraceniaceae based on seven mitochondrial, nuclear, and plastid loci, which we use to illuminate this family's phylogenetic and biogeographic history. The family and genera are monophyletic: Darlingtonia is sister to a clade consisting of Heliamphora+Sarracenia. Within Sarracenia, two clades were strongly supported: one consisting of S. purpurea, its subspecies, and S. rosea; the other consisting of nine species endemic to the southeastern United States. Divergence time estimates revealed that stem group Sarraceniaceae likely originated in South America 44-53 million years ago (Mya) (highest posterior density [HPD] estimate = 47 Mya). By 25-44 (HPD = 35) Mya, crown-group Sarraceniaceae appears to have been widespread across North and South America, and Darlingtonia (western North America) had diverged from Heliamphora+Sarracenia (eastern North America+South America). This disjunction and apparent range contraction is consistent with late Eocene cooling and aridification, which may have severed the continuity of Sarraceniaceae across much of North America. Sarracenia and Heliamphora subsequently diverged in the late Oligocene, 14-32 (HPD = 23) Mya, perhaps when direct overland continuity between North and South America became reduced. Initial diversification of South American Heliamphora began at least 8 Mya, but diversification of Sarracenia was more recent (2-7, HPD = 4 Mya); the bulk of southeastern United States Sarracenia originated co-incident with Pleistocene glaciation, <3 Mya. Overall, these results suggest climatic change at different temporal and spatial scales in part shaped the distribution and diversity of this carnivorous plant clade.  相似文献   

7.
In this study we investigated the phylogenetics of the Eurasian treecreeper (Certhia familiaris), a forest passerine with a wide Palaearctic range including Corsica, using three mitochondrial genes and three nuclear introns, and its phylogeographic history using the COI gene. Our phylogenetic results, including eight of the ten sub‐species currently recognized, support the monophyly of C. familiaris with respect to its Indo‐Asian sister species C. hodgsoni. C. familiaris comprises two lineages that diverged during the mid‐Pleistocene (c. 1 Myr): one palaeoendemic lineage has an allopatric range nowadays restricted to the Corsica island and the Caucasus region whereas the second one, more recent and widespread, is distributed over most of Eurasia and in northern China. The most likely scenario that may explain such a pattern is a double colonization of the western Palaearctic from the eastern range of the species. During the middle Pleistocene period, a first lineage expanded its range up into Europe but did not persist through glacial cycles except in Corsica and the Caucasus region. Later, during the upper Pleistocene, a second lineage began to diversify around 0.09 Myr, spreading towards the western Palaearctic from a unique refuge likely located in the eastern Palaearctic [correction added on 6 March 2015 after first online publication: 0.9 Myr amended to 0.09 Myr]. Apart from C. f. corsa, our results do not suggest any distinct evolutionary history for other sub‐species previously described on morphological grounds in Europe. Our study highlights the important conservation value of the Corsican treecreeper and emphasizes the major role of mature pine forests in the evolution of endemic bird taxa in Corsica. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 134–153.  相似文献   

8.
We surveyed mitochondrial DNA haplotype divergence within and between populations of six species of North American chickadees (Parus, Subgenus Poecile) with the following results. (1) Genotype diversities (range 0.3 to 0.7) and low nucleotide diversities (range 3 to 27 × 10?4) within populations were typical of known vertebrates. (2) The two widespread, northern species (atricapillus and hudsonicus) exhibit little mtDNA genetic differentiation throughout their previously glaciated continental distributions, most likely because of recent, postglacial range expansions. (3) Newfoundland populations of atricapillus and maritime province (Newfoundland plus Nova Scotia) populations of hudsonicus have distinct mtDNA haplotypes which differ from continental haplotypes by single restriction site changes. (4) Haplotypes of the southeastern U.S. species P. carolinensis divide into eastern and western sets which have diverged by three percent. This heretofore unrecognized, divided population structure may correspond to the Tombigbee River/ Mobile Bay disjunction known in some other vertebrate taxa. (5) Allopatric populations of the southwestern species sclateri and gambeli exhibit divergences of one and three percent respectively. (6) Prevailing interspecific divergence distances of three to seven percent suggest speciation early in the Pleistocene rather than during late (e.g., Wisconsin) glaciations. (7) Phylogenetic analyses suggest that North American taxa include two clades, hudsonicus-rufescens-sclateri versus carolinensis-atricapillus-gambeli and that carolinensis and atricapillus are not sister species.  相似文献   

9.
Peracarpeae is a small tribe consisting of three genera: Homocodon, Heterocodon and Peracarpa, with a disjunct distribution between eastern Asia and western North America. Homocodon is endemic to southwestern China and was previously placed in the western North American genus Heterocodon. Our phylogenetic analysis using four plastid markers (matK, atpB, rbcL and trnL-F) suggests the polyphyly of Peracarpeae. Homocodon is sister to a clade consisting of the eastern Asian Adenophora, Hanabusaya and species of Campanula from the Mediterranean region and North America, rather than forming a clade with Heterocodon. Homocodon and its Eurasia relatives are estimated to have diverged in the early Miocene (16.84 mya, 95% HPD 13.35–21.45 mya). The eastern Asian Peracarpa constitutes a clade with the North American Heterocodon, Githopsis and three species of Campanula, supporting a disjunction between eastern Asia and North America in Campanulaceae. The Asian-North American disjunct lineages diverged in the early Miocene (16.17 mya, 95% HPD 13.12–20.9 mya). The biogeographic analyses suggest that Homocodon may be a relict of an early radiation in eastern Asia, and that Peracarpa and its closest North American relatives most likely originated from a Eurasian ancestor.  相似文献   

10.
Understanding the history of diversification in the North American deserts has long been a goal of biogeographers and evolutionary biologists. Although it appears that a consensus is forming regarding the patterns of diversification in the Nearctic deserts in vertebrate taxa, little work has been done exploring the historical biogeography of widespread invertebrate taxa. Before a robust model of geobiotic change in the North American deserts can be proposed, it needs to be determined whether the same historical events affected vertebrate and invertebrate taxa in the same way. We explore the phylogeographic patterns in a widespread nocturnal wasp genus Dilophotopsis using two rDNA loci, the internal transcribed spacer regions 1 and 2 (ITS1 and ITS2). We use Bayesian phylogenetic analysis and haplotype network analysis to determine whether a consistent geographic pattern exists among species and populations within Dilophotopsis. We also used molecular dating techniques to estimate divergence dates of the major phylogenetic clades. Our analyses indicates that the species‐level divergences in Dilophotopsis occurred in the Neogene, and likely were driven by mountain building during the Miocene–Pliocene boundary (approximately 5 Mya) similar to the divergences in many vertebrate taxa. The population‐level divergences within species occurred during the Pleistocene (0.1–1.8 Mya). The present study shows that similar patterns of diversification exist in vertebrate and invertebrate taxa. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 360–375.  相似文献   

11.
Eupatorium were examined by sequencing the internal transcribed spacers (ITS) of nuclear ribosomal DNA and restriction site analysis of chloroplast DNA. Molecular data provided strong evidence that (1) this genus originated in North America, (2) the genus diverged into three morphological species groups, Eutrochium, Traganthes and Uncasia in North America, and (3) one of the North American Uncasia lineages migrated into temperate Europe and eastern Asia over the Bering land bridge. The estimated divergence times support a late Miocene to early Pliocene migration from North America to Eurasia via the Bering land bridge. A European species was sister to all of the eastern Asian species examined. The disjunct distribution pattern of the genus Eupatorium is incongruent with the classical Arcto-Tertiary geoflora concept. Received 13 September 1999/ Accepted in revised form 4 January 2000  相似文献   

12.
The burbot (Lota lota Linnaeus, 1758) is the only freshwater species from the cod family. Various taxonomic hypotheses were tested against molecular data by sequencing the mitochondrial cytochrome b locus of 120 burbot from 41 populations together with the related species Molva molva (ling) and Brosme brosme (tusk), which represented the other Lotinae genera. Within the genus Lota two distinct phylogroups were observed: one in North America south of the Great Slave Lakes (Lota lota maculosa) and one in Eurasia and the remainder of the Nearctic region (Lota lota lota). The burbot lineage separated 10 Myr BP from the other Lotinae, while the genetic variation within burbot appeared to be approximately 1 Myr old. However, fossil evidence suggested that burbot already existed in the Early Pliocene in Europe, from were it probably colonized North America in the Early Pleistocene. While Nearctic burbot survived climatic oscillations and diverged in several refugia, the Eurasian form became extinct or was reduced to a very small population. In the Late Pleistocene the species recolonized the Palearctic region to establish its present distribution range.  相似文献   

13.
Tentatively dated, the Plio‐/Pleistocene origin of the ancient Lake Ohrid on the Balkan Peninsula makes it the oldest ancient lake in Europe. Given the surface area of the lake and the adjusted endemicity rate, it may be also defined as the most diverse of all the ancient lakes in the world. From all the animal groups endemic to this lake, gammarids are amongst the most scarcely known in terms of their diversity and phylogenetic relationships. Partial DNA sequences of two mitochondrial genes, cytochrome oxidase subunit I (cox1) and 16S ribosomal RNA (16S rRNA) of eight known endemic Gammarus species from the Lake Ohrid valley were analysed. Phylogenetic analyses showed that endemic Gammarus species comprise an ancient species flock, with Gammarus sketi from the feeder springs being their sister taxon outside the lake. Amongst the species inhabiting the lake, Gammarus solidus and Gammarus salemaai are morphologically and molecularly well defined. By contrast, Gammarus ochridensis, Gammarus parechiniformis, Gammarus lychnidensis, and Gammarus stankokaramani revealed high discrepancy between morphological and genetic data. None of these morphospecies form a monophyletic clade and a significant degree of apparent gene flow occurs between them. This could be caused by incomplete lineage sorting and/or hybridization events. Two novel mtDNA lineages were found within the lake, possibly constituting two new species (Gammarus sp. 1 and Gammarus sp. 2). Molecular clock analysis showed that the split between G. sketi and the Gammarus species flock from the lake occurred approximately 5–7 Mya, whereas within the flock there were at least two intralacustrine radiations: one estimated at 2–3 Mya and the second at less than 1 Mya. The first one could be associated with the origin of the lake and the second with the lake water‐level fluctuations during Pleistocene. © 2013 The Linnean Society of London  相似文献   

14.
For a nearly complete set of species of Erythronium (Liliaceae), we examined two plastid loci (the rps16 intron and the 5′ trnK intron, excluding the matK exon), one nuclear locus (nrITS) and morphology to evaluate species relationships and that of Erythronium to Amana, the putatively most closely allied genus. A matrix of morphological characters was developed through observation of around 900 living and herbarium specimens; evolution of these was examined using character optimization on the combined (total‐evidence) tree. Parsimony methods were used to examine the morphological and molecular data sets produced, both separately and in combination, with Bayesian methods also used on the molecular data sets. These established that the genus is probably sister to Amana (although most analyses placed Amana inside Erythronium) and that Tulipa is sister to the pair of Erythronium and Amana. Within Erythronium, there are three strongly supported geographically distinct clades: (1) Eurasian and (2) eastern and (3) western North American. Separation of species in these three clades is less clear, particularly among the western North American taxa. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ●●, ●●–●●.  相似文献   

15.
Drosophila is the genus responsible for the birth of experimental genetics, but the taxonomy of drosophilids is difficult because of the overwhelming diversity of the group. In this study, we assembled sequences for 358 species (14 genera, eight subgenera, 57 species groups, and 65 subgroups) to generate a maximum‐likelihood topology and a Bayesian timescale. In addition to sampling an unprecedented diversity of Drosophila lineages, our analyses incorporated a geographical perspective because of the high levels of endemism. In our topology, Drosophila funebris (Fabricius, 1787) (the type species of Drosophila) is tightly clustered with the pinicola subgroup in a North American clade within subgenus Drosophila. The type species of other drosophilid genera fall within the Drosophila radiation, presenting interesting prospects for the phylogenetic taxonomy of the group. Our timescale suggests that a few drosophilid lineages survived the Cretaceous–Palaeogene (K‐Pg) extinction. The drosophilid diversification began during the Palaeocene in Eurasia, but peaked during the Miocene, an epoch of drastic climatic changes. The most recent common ancestor of the clades corresponding to subgenera Sophophora and Drosophila lived approximately 56 Mya. Additionally, Hawaiian drosophilids diverged from an East Asian lineage approximately 26 Mya, which is similar to the age of the oldest emerging atoll in the Hawaiian–Emperor Chain. Interestingly, the time estimates for major geographical splits (New World versus Asia and Africa versus Asia) were highly similar for independent lineages. These results suggest that vicariance played a significant role in the radiation of fruit flies. © 2013 The Linnean Society of London  相似文献   

16.
Aim In this study, we investigate phylogeographic structure in two different species groups of lowland toads. First, we further investigate strict parapatry of the Pliocene‐vicariant Bufo valliceps/B. nebulifer species pair. Secondly, we test for similar phylogeographic structure in the distantly related toad B. marinus, a species we hypothesize will show a Pleistocene dispersal across the same area. Location The eastern extension of the Trans‐Mexican Neovolcanic Belt (TMNB) contacts the Atlantic Coast in central Veracruz, Mexico. Although it is not a massive structure at this eastern terminus, the TMNB has nonetheless effected vicariance and subsequent speciation in several groups of animals. The Isthmus of Tehuantepec unites the North American continent with Nuclear Central America and is also known to be a biogeographic barrier for many taxa. Methods We use sequence data from two mitochondrial DNA genes (c. 550 base‐pairs (bp) of 16S and c. 420 bp of cyt b) from 58 individuals of the B. valliceps/nebulifer complex, collected from 24 localities. We also present homologous sequence data from 23 individuals of B. marinus, collected from 12 localities. We conduct maximum‐parsimony, maximum‐likelihood and Bayesian analyses to investigate phylogeographic structure. We then use parsimony‐ and likelihood‐based topology tests to assess alternative phylogenetic hypotheses and use a previously calibrated molecular rate of evolution to estimate dates of divergence. Results Our results further define the parapatric contact zone across the TMNB between the Pliocene‐vicariant sister species B. valliceps and B. nebulifer. In contrast, phylogenetic structure among populations of B. marinus across the TMNB is much shallower, suggesting a more recent Pleistocene dispersal in this species. In addition, we found phylogeographic structure associated with the Isthmus of Tehuantepec in both species groups. Main conclusions The existence of a Pliocene–Pleistocene seaway across the Isthmus of Tehuantepec has been controversial. Our data depict clades on either side of the isthmus within two distinct species (B. valliceps and B. marinus), although none of the clades associated with the isthmus, for either species, are reciprocally monophyletic. In the B. valliceps/B. nebulifer complex, the TMNB separation appears to predate the isthmian break, whereas in B. marinus dispersal across the TMNB has occurred subsequent to the presence of a barrier at the Isthmus of Tehuantepec.  相似文献   

17.
The opening of the Gibraltar land bridge occurred at the end of the Messinian Salinity Crisis approximately 5.3 Mya, and was one of the main causes of vicariance between European and north‐west African amphibians, resulting in the origin of several new species. However, little is currently known about the causes for post‐Messinian amphibian differentiation in the Maghreb, although it is acknowledged that the Pleistocene glaciations probably had considerable influence on several species. The current study uses both species distribution modelling (MAXENT) and information from a total of 694 bp of mitochondrial data (351 from cytochrome b and 342 from 12S rRNA) from 36 representatives of all three recognized subspecies of Moroccan Salamandra to infer the phylogeny and biogeography of Salamandra algira tingitana, which is characterized by both viviparous and ovoviviparous populations. According to the results, the split between S. a. tingitana and S. a. algira from the Rif and Middle Atlas mountains took place approximately 1.6 Mya, and could have been caused by a shift towards a colder and drier climate that occurred during the upper Pliocene, which may have resulted in the isolation of Salamandra at increasingly higher altitudes, or in other climatically favourable areas. Several lineages within S. a. tingitana originated during the Pleistocene climatic oscillations, one of which gave rise to the viviparous populations north of the Oued Martil. It is suggested that the origin of viviparity in S. a. tingitana occurred during the last 600 000 years. In order to further understand the origin of the unique viviparous population of S. algira from North Africa, predictive distribution models of the viviparous and ovoviviparous populations of S. a. tingitana were created using MAXENT to assess environmental differences. Niche divergence was subsequently determined using Schoener's D and Warren et al.'s I niche similarity metrics. Predictive modelling and niche divergence analyses revealed significant environmental differences between the two reproductive types, which could have influenced the transition from ovoviviparity to viviparity. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 626–641.  相似文献   

18.
In the last decade a number of studies has illustrated quite different phylogeographical patterns amongst plants with a northern present‐day geographical distribution, spanning the entire circumboreal region and/or circumarctic region and southern mountains. These works, employing several marker systems, have brought to light the complex evolutionary histories of this group. Here I focus on one circumboreal plant species, Chamaedaphne calyculata (leatherleaf), to unravel its phylogeographical history and patterns of genetic diversity across its geographical range. A survey of 29 populations with combined analyses of chloroplast DNA (cpDNA), internal transcribed spacer (ITS) and AFLP markers revealed structuring into two groups: Eurasian/north‐western North American, and north‐eastern North American. The present geographical distribution of C. calyculata has resulted from colonization from two putative refugial areas: east Beringia and south‐eastern North America. The variation of chloroplast DNA (cpDNA) and ITS sequences strongly indicated that the evolutionary histories of the Eurasian/north‐western North American and the north‐eastern North American populations were independent of each other because of a geographical disjunction in the distribution area and ice‐sheet history between north‐eastern and north‐western North America. Mismatch analysis using ITS confirmed that the present‐day population structure is the result of rapid expansion, probably since the last glacial maximum. The AFLP data revealed low genetic diversity of C. calyculata (P = 19.5%, H = 0.085) over the whole geographical range, and there was no evidence of loss of genetic diversity within populations in the continuous range, either at the margins or in formerly glaciated and nonglaciated regions. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 761–775.  相似文献   

19.
Centaurea diffusa is one of the most destructive invasive weeds in the western USA and allelopathy appears to contribute to its invasiveness ( Callaway & Aschehoug 2000 ). Here we identify a chemical from the root exudates of C. diffusa, 8‐hydroxyquinoline, not previously reported as a natural product, and find that it varies biogeographically in its natural concentration and its effect as an allelochemical. 8‐Hydroxyquinoline is at least three times more concentrated in C. diffusa‐invaded North American soils than in this weed's native Eurasian soils and has stronger phytotoxic effects on grass species from North America than on grass species from Eurasia. Furthermore, experimental communities built from North American plant species are far more susceptible to invasion by C. diffusa than communities built from Eurasian species, regardless of the biogeographical origin of the soil biota. Sterilization of North American soils suppressed C. diffusa more than sterilization of Eurasian soils, indicating that North American soil biota may also promote invasion by C. diffusa. Eurasian plants and soil microbes may have evolved natural resistance to 8‐hydroxyquinoline while North American plants have not, suggesting a remarkable potential for evolutionary compatibility and homeostasis among plants within natural communities and a mechanism by which exotic weeds destroy these communities.  相似文献   

20.
The brine shrimp Artemia represents a widespread genus of microcrustaceans adapted to hypersaline environments. The species of this genus have been the subject of numerous phylogenetic studies, but many open questions remain, especially for Eurasian Artemia lineages. Artemia sinica Cai, 1989 and Artemia tibetiana have a restricted geographical distribution, whereas the Eurasian haplotype complex (EHC) and especially Artemia urmiana Günther, 1899 show wider ranges. We examined the geographic distribution, evolutionary age, and historical demography of the Asian Artemia lineages (A. urmiana, A. sinica, A. tibetiana, and the Eurasian haplotype complex) using samples from 39 geographical localities and based on the nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Asian Artemia taxa clusters into four distinctive clades with high nodal support, consisting of 69 unique haplotypes. A star‐like haplotype pattern was visible in EHC lineages (comprising pathenogenetic populations), which were genetically close to two sexual species, A. urmiana and A. tibetiana. The Bayesian approach of molecular clock estimation indicated that A. sinica had already diverged in the late Miocene (19.99 Mya), whereas A. urmiana, A. tibetiana, and EHC shared a common ancestor in the late Pliocene (5.41 Mya). Neutrality tests indicated a recent population expansion in A. urmiana and EHC lineages. The diversification within A. urmiana and EHC lineages occurred in the Pleistocene (1.72 Mya) and Holocene (0.84 Mya), respectively. Overall, these results suggest a much longer evolutionary history of A. sinica and the possible evolutionary origin of EHC lineages from Asian sexual ancestors. Our findings point to the importance of species structure and divergence time variations of Asian Artemia, highlighting interspecific diversification and range expansion of local species in Asia. © 2015 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号