首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cyclic nucleotide phosphodiesterase secreted by the Physarum polycephalum plasmodium was partially purified by ion-exchange chromatography on DEAE cellulose, ultrafiltration, and HPLC. The data obtained by gel filtration, HPLC, electrophoresis, and isoelectric focusing showed that the active enzyme in solution exists as a monomer of about 90 kDa with pI 3.6–4.0. The K m values were 0.9 and 7.7 mM for cAMP and cGMP, respectively, whereas the maximal rates of hydrolysis of these nucleotides were virtually equal and reached several millimoles of hydrolyzed cyclic nucleotide per hour per milligram of enzyme. The partially purified enzyme was highly stable. It was not inactivated by heating at 100°C for 30 min. The enzyme remained active in the presence of 1% sodium dodecyl sulfate; however, it was completely inactivated under these conditions in the presence of β-mercaptoethanol.  相似文献   

2.
Cyclic AMP phosphodiesterase has been extracted from Phycomyces sporangiophore. The material is stable at ?20° for several months. Activity depends on the presence of a divalent metal ion (e.g. magnesium. The enzyme may be multiple; at pH 8, two Kms are observed, 3 and 12.5 μM, and an Arrhenius plot has a ‘break’ at ca 21°. No cooperativity is seen. Inhibition by dibutyryl cyclic AMP is marked, but cyclic GMP is not inhibitory (except at lower pH and high concentration) and cyclic GMP is not hydrolysed. The enzyme is thermolabile above 30°. Calcium is not stimulatory. Millimolar concentrations of pyrophosphate and nucleoside triphosphates are required for significant inhibition. Reductants, ascorbic acid, cysteine, dithiothreitol, glutathione, β-mercaptoethanol, NADH, sodium dithionite, sodium suifite and the mild oxidant, ferricyanide, have little or no effect. Gallic acid, an abundant endogenous reducing agent, is inhibitory. Histamine and imidazole are slightly inhibitory. Methylxanthines are inhibitory but at high concentrations. Inhibition to 50% required 15, 15, 30 and > 4 mM for aminophylline, theophylline, caffeine and 3-isobutyl-l-methylxanthine, respectively. The enzyme may be involved in the behavioral responses of the organism.  相似文献   

3.
SYNOPSIS. Cyclic nucleotide phosphodiesterase [EC 3.1.4.17] was examined in Tetrahymena pyriformis strain NT-1. Enzymic activity was associated with the soluble and the particulate fractions, whereas most of the cyclic GMP phosphodiesterase activity was localized in the soluble fraction: the activities were optimal at pH 8.0–9.0. Although very low activities were detected in the absence of divalent cations, they were significantly increased by the addition of either Mg2+ or Mn2-. A kinetic analysis of the properties of the enzymes yielded 2 apparent KIII values ranging in concentration from 0.5 to 50 μM and from 0.1 to 62 μ M for cyclic AMP and GMP. respectively. A Ca2+-dependent activating factor for cyclic nucleotide phosphodiesterase was extracted from Tetrahymena cells, but this factor did not stimulate guanylate cyclase [EC 4.6.1.2] activity in this organism. On the other hand, Tetrahymena also contained a protein activator which stimulated guanylate cyclase in the presence of Ca2+, although this activator did not stimulate the phosphodiesterase. the results suggested that Tetrahymena might contain 2 types of Ca2+-dependent activators, one specific for phosphodiesterase and the other for guanylate cyclase.  相似文献   

4.
Summary Adenosine 3′,5′-cyclic monophosphate (cyclic AMP) phosphodiesterase activity in mouse neuroblastoma cells in culture markedly increased during exponential growth and reached a maximal level at confluency; whereas guanosine 3′, 5′-cyclic monophosphate (cyclic GMP) phosphodiesterase activity only slightly but significantly increased under a similar experimental condition. The increase in cyclic AMP phosphodiesterase activity was blocked by both cycloheximide and dactinomycin, whereas the increase in cyclic GMP phosphodiesterase was blocked by only cycloheximide. When the confluent cells were replated at low density, the cyclic nucleotide phosphodiesterase activity decreased; however, when they were plated at high cell density which equaled confluency, the enzyme activity did not decrease. Unlike cyclic AMP phosphodiesterase activity, cyclic GMP phosphodiesterase activity did not change significantly in prostaglandin E1-treated cells, but decreased in cells treated with the inhibitor of phosphodiesterase. Like cyclic AMP phosphodiesterase activity, cyclic GMP phosphodiesterase activity also did not change in cells treated with serum-free medium, X-irradiation, sodium butyrate and 6-thioguanine. This work was supported by USPHS NS-09230, and DRG-1273 from Damon Runyon-Walter Winchell Cancer Fund.  相似文献   

5.
Crude preparations of cyclic adenosine 3′, 5′-monophosphate phosphodiesterase were activated 1.5 to 2 fold by incubation with ATP, Mg2+ and cyclic AMP in a reaction which was both, time and temperature dependent. Cyclic AMP phosphodiesterase remained in an activated state upon filtration of the enzymatic preparation through Sephadex G-25 and ion-exchange chromatography. Activation of the enzyme in the presence of [γ 32P]ATP resulted in a significant amount of [32P] protein-bound radioactivity. Reversible deactivation of cyclic AMP phosphodiesterase was enhanced by Mg2+ and was accompanied by the release of [32P] protein bound radioactivity. The evidence is consistent with a mechanism for controlling cyclic AMP phosphodiesterase through phosphorylation-dephosphorylation sequence.  相似文献   

6.
The α6β4 integrin promotes carcinoma in-vasion by its activation of a phosphoinositide 3-OH (PI3-K) signaling pathway (Shaw, L.M., I. Rabinovitz, H.H.-F. Wang, A. Toker, and A.M. Mercurio. Cell. 91: 949–960). We demonstrate here using MDA-MB-435 breast carcinoma cells that α6β4 stimulates chemotactic migration, a key component of invasion, but that it has no influence on haptotaxis. Stimulation of chemotaxis by α6β4 expression was observed in response to either lysophosphatidic acid (LPA) or fibroblast conditioned medium. Moreover, the LPA-dependent formation of lamellae in these cells is dependent upon α6β4 expression. Both lamellae formation and chemotactic migration are inhibited or “gated” by cAMP and our results reveal that a critical function of α6β4 is to suppress the intracellular cAMP concentration by increasing the activity of a rolipram-sensitive, cAMP-specific phosphodiesterase (PDE). This PDE activity is essential for lamellae formation, chemotactic migration and invasion based on data obtained with PDE inhibitors. Although PI3-K and cAMP-specific PDE activities are both required to promote lamellae formation and chemotactic migration, our data indicate that they are components of distinct signaling pathways. The essence of our findings is that α6β4 stimulates the chemotactic migration of carcinoma cells through its ability to influence key signaling events that underlie this critical component of carcinoma invasion.  相似文献   

7.
Changes in the activities of adenyl cyclase, cyclic AMP phosphodiesterase, protein phosphokinase, RNase, protease, DNA, RNA and protein synthesis during the initial imbibition phase of the germination cycle of Cicer arietinum (chick pea, Bengal gram) are reported. Activation of adenyl cyclase and phosphorylation of cellular proteins appears to precede RNA and protein synthesis in the imbibed seeds.  相似文献   

8.
The ionophore A23187 stimulated adenylate cyclase activity in intact macrophages within 1 min. This action was blocked by pretreatment with indomethacin (25 μmol/l) suggesting the involvement of a prostaglandin (PG). PGE2 (500 nmol/l) also stimulated adenylate cyclase activity in intact cells, but this was not prevented by indomethacin pretreatment. Colchicine (100 μmol/l) potentiated the increases in macrophage cyclic AMP production seen after addition of PGE2 or A23187. The high affinity form of cyclic AMP phosphodiesterase (PDE) was activated within 1 min of the addition of A23187 to intact macrophages. The data suggest that the increase in macrophage cyclic AMP production after A23187 is a consequence of adenylate cyclase activation and not PDE inhibition. The endogenous production of a prostaglandin probably mediates this effect of A23187, emphasizing the importance of arachidonic acid metabolites in the regulation of macrophage functions.  相似文献   

9.
An active cyclic nucleotide phosphodiesterase has been partially purified from the 100 000 g supernatant of a spinach homogenate. It precipitated at 20–40% saturation with (NH4)2SO4 and was separated on a column of Sephadex G-200 into two major peaks of activity (peaks 1 and 2). Peak 1 (MW 5 × 105) was resolved by column chromatography on DEAE-cellulose into 5 protein fractions; two of these (1c and 1m) exhibited cyclic nucleotide phosphodiesterase activity. Subcellular fractionation showed that the phosphodiesterase of highest specific activity is located in the peroxisomes but that an enzyme of relatively high specific activity also occurs in the chloroplast and Golgi fractions. The largest total activity was in the microsomes. Isoelectric focussing of chloroplast phosphodiesterase activity gave two bands corresponding to peaks 1c and 2. Similar examination of the microsomal, peroxisomal and Golgi fractions showed phosphodiesterases corresponding to peaks 1m and 2. Peak 1c activity is greater towards purine 3′,5′-cyclic nucleotides than towards their 2′,3′-isomers; the converse is true of peak 1m. Examination of the properties of 1c and 1m showed a number of other differences. The pH optimum of 1c is 6.1 and that of 1m is 4.9. Theophylline (0.1 mM) inhibited 1c to a greater extent than it did 1m; Ca2+ stimulated 1c activity but had no effect on 1m. Pre-incubation with trypsin inhibited 1m activity whereas similar treatment of 1c gave an initial 5-fold stimulation. Repeated freezing and thawing of preparations 1c and 1m also evoked a difference in response. These results were shown to be attributable to removal of an inhibitor from 1c. Evidence is presented that an endogenous activator is also present.  相似文献   

10.
Cyclic nucleotide phosphodiesterase was extracted from intact chloroplasts and partially purified. Peak 1c activity from Sephadex G-200 was resolved by electrophoresis into two major bands (MWs 1.87 × 105 and 3.7 × 105). Both also possessed acid phosphatase, ribonuclease, nucleotidase and ATPase. The chloroplast peak 1c cyclic nueleotide phosphodiesterase was located in the envelope. Peak 1m cyclic nucleotide phosphodiesterase obtained from the microsomal fraction had a MW of 2.63 × 105. Electrophoresis separated 1m into two bands of cyclic nucleotide phosphodiesterase activity (MWs 2.63 × 105 and 1.28 × 105). Both contain ATPase, ribonuclease, nucleotidase, but not acid phosphatase. Peak 1c has high activity towards 3′:5′-cyclic AMP and 3′:5′-cyclic GMP but little towards 2′:3′-cyclic nucleotides. Peak 1m showed most activity towards 2′:3′-cyclic AMP, 2′:3′-cyclic GMP and 2′:3′-cyclic CMP with little activity towards 3′:5′-cyclic nucleotides. With 1c, 3′:5′-cyclic AMP and 3′:5′-cyclic GMP exhibit mixed-type inhibition towards one another. The 2′:3′-cyclic AMP phosphodiesterase 1m was competitively inhibited by 2′:3′-cyclic GMP. p-Chloromercuribenzoate inhibits 1c but not 1m. Electrophoresis after dissociation indicates that 1c and 1m are both enzyme complexes. After dissociation, the 1c complex but not that of 1m could be reassociated. The ribonuclease of the 1m complex hydrolyses RNA to yield 2′:3′-cyclic nucleotides as the main products. These results are compatible with the 1c cyclic nucleotide phosphodiesterase complex being involved in the metabolism of 3′:5′-cyclic AMP, and the 1m complex being concerned with RNA catabolism.  相似文献   

11.
Cyclic GMP, isolated from Phaseolus vulgaris, has been unequivocally identified by NMR and FAB-mass spectrometry with MIKES-scanning. Radioimmunoas  相似文献   

12.
13.
Cyclic AMP has been implicated as a regulator of capacitation, but the control of its metabolism in sperm remains obscure. A recent study of mouse sperm has shown capacitation-related changes in the activities of both adenylate cyclase, which increased during incubation, and cyclic nucleotide phosphodiesterase, which decreased. The present study was conducted to extend these observations by measuring phosphodiesterase activity in sperm incubated in media with modified calcium and/or glucose content, conditions known to modulate fertilizing ability. Phosphodiesterase activity of sequential sperm samples, taken first when sperm are essentially uncapacitated and then when they are either partially or completely capacitated, decreased with time under all conditions, and in each case the greater fall in activity was seen in the medium that would support the greater change in fertilizing ability of the sperm population. Sperm washed by centrifugation to remove epididymal fluid also displayed a reduction in phosphodiesterase activity with time. The medium surrounding the sperm contained about half of the total phosphodiesterase activity, as well as 5′-nucleotidase and adenosine deaminase. The crude enzyme preparation showed complex kinetic behavior when assayed over a range of cAMP concentrations, but the reduction in activity with time was seen at all substrate levels. The observed changes in phosphodiesterase activity, together with the increased adenylate cyclase activity seen under these sperm incubation conditions, would increase cAMP availability with time, thus providing further evidence for a fundamental role for cAMP in controlling the events of capacitation.  相似文献   

14.
An enzyme, which hydrolyzes 3′,5′-cyclic AMP to 3′-AMP and 5′-AMP, has been isolated from dormant tubers of Jerusalem artichoke and purified 850 × with a recovery of 15% of total activity. The partially purified enzyme differs greatly from both animal and bacterial phosphodiesterases in terms of pH optimum, substrate specificity, cation dependence and sensitivity to methylxanthines. The plant hormones are without effect, whereas ATP, 5′-AMP, 3′-AMP, inorganic phosphate and pyrophophosphate are inhibitors. The enzyme seems to be greatly inhibited in vivo by inorganic phosphate during dormancy.  相似文献   

15.
Cyclic di‑AMP (c-di-AMP) is a second signaling molecule involved in the regulation of bacterial physiological processes and interaction between pathogen and host. However, the regulatory network mediated by c-di-AMP in Mycobacterium remains obscure. In M. smegmatis, a diadenylate cyclase (DAC) was reported recently, but there is still no investigation on c-di-AMP phosphodiesterase (PDE). Here, we provide a systematic study on signaling mechanism of c-di-AMP PDE in M. smegmatis. Based on our enzymatic analysis, MsPDE (MSMEG_2630), which contained a DHH-DHHA1 domain, displayed a 200-fold higher hydrolytic efficiency (kcat/Km) to c-di-AMP than to c-di-GMP. MsPDE was capable of converting c-di-AMP to pApA and AMP, and hydrolyzing pApA to AMP. Site-directed mutations in DHH and DHHA1 revealed that DHH domain was critical for the phosphodiesterase activity. To explore the regulatory role of c-di-AMP in vivo, we constructed the mspde mutant (Δmspde) and found that deficiency of MsPDE significantly enhanced intracellular C12-C20 fatty acid accumulation. Deficiency of DAC in many bacteria results in cell death. However, we acquired the M. smegmatis strain with DAC gene disrupted (ΔmsdisA) by homologous recombination approach. Deletion of msdisA reduced bacterial C12-C20 fatty acids production but scarcely affected bacterial survival. We also provided evidences that superfluous c-di-AMP in M. smegmatis could lead to abnormal colonial morphology. Collectively, our results indicate that MsPDE is a functional c-di-AMP-specific phosphodiesterase both in vitro and in vivo. Our study also expands the regulatory network mediated by c-di-AMP in M. smegmatis.  相似文献   

16.
The effect of zinc deficiency on calmodulin function was investigated by assessing the in vivo activity of two calmodulin regulated enzymes, adenosine 3′,5′-monophosphate (c-AMP) and guanosine 3′,5′-monophosphate (c-GMP) phosphodiesterase (PDE) in several rat tissues. Enzymatic activities in brain, heart, and testis of rats fed a zinc deficient diet were compared with activities in these tissues from pair fed, zinc supplemented rats. In testis, a tissue in which zinc concentration decreased with zinc deficient diet, enzyme activities were significantly decreased over those in rats who were pair fed zinc supplemented diets. In brain and heart, tissues in which zinc concentrations did not change with either diet, enzymatic activities between the groups were not different. These results indicate that zinc deficiency influences the activity of calmodulin-regulated phosphodiesterases in vivo supporting the hypothesis that zinc plays a role in calmodulin function in vivo in zinc sensitive tissues.  相似文献   

17.
A simple, rapid high-performance liquid-chromatography system for the fractionation and direct quantitation of substrates and products in crude phosphodiesterase reaction mixtures is described. Phosphate buffers and a pellicular anion exchange resin are used at ambient temperature. The method is sensitive, measuring picomoles of products with ultraviolet detection and femtomoles with isotopic measurement, and offers several advantages over the more popular batch sorption and manual methods for measuring phosphodiesterase activity. The time required for analysis, less than 8 min for single substrate reaction mixtures, is a fraction of that required with other chromatographic systems, and precision is +/- 5%. Results of studies with an activatable form of phosphodiesterase demonstrate the accuracy, precision and utility of the procedure for biochemical analyses.  相似文献   

18.
Cyclic 3′,5′-adenosine monophosphate (cAMP) phosphodiesterase (CPD) is an enzyme that catalyzes the hydrolysis of cAMP, a signaling molecule affecting diverse cellular and metabolic processes in bacteria. Some CPDs are also known to function in cAMP-independent manners, while their physiological roles remain largely unknown. Here, we investigated physiological roles of CPD in Shewanella oneidensis MR-1, a model environmental bacterium, and report that CPD is involved in amino-acid metabolism. We found that a CPD-deficient mutant of MR-1 (ΔcpdA) showed decreased expression of genes for the synthesis of methionine, S-adenosylmethionine, and histidine and required these three compounds to grow in minimal media. Interestingly, deletion of adenylate cyclases in ΔcpdA did not restore the ability to grow in minimal media, indicating that the amino acid requirements were not due to the accumulation of cAMP. These results suggest that CPD is involved in the regulation of amino acid metabolism in MR-1 in a cAMP-independent manner.  相似文献   

19.
Plant and fungal tRNA ligases are trifunctional enzymes that repair RNA breaks with 2′,3′-cyclic-PO4 and 5′-OH ends. They are composed of cyclic phosphodiesterase (CPDase) and polynucleotide kinase domains that heal the broken ends to generate the 3′-OH, 2′-PO4, and 5′-PO4 required for sealing by a ligase domain. Here, we use short HORNA>p substrates to determine, in a one-pot assay format under single-turnover conditions, the order and rates of the CPDase, kinase and ligase steps. The observed reaction sequence for the plant tRNA ligase AtRNL, independent of RNA length, is that the CPDase engages first, converting HORNA>p to HORNA2′p, which is then phosphorylated to pRNA2′p by the kinase. Whereas the rates of the AtRNL CPDase and kinase reactions are insensitive to RNA length, the rate of the ligase reaction is slowed by a factor of 16 in the transition from 10-mer RNA to 8-mer and further by eightfold in the transition from 8-mer RNA to 6-mer. We report that a single ribonucleoside-2′,3′-cyclic-PO4 moiety enables AtRNL to efficiently splice an otherwise all-DNA strand. Our characterization of a fungal tRNA ligase (KlaTrl1) highlights important functional distinctions vis à vis the plant homolog. We find that (1) the KlaTrl1 kinase is 300-fold faster than the AtRNL kinase; and (2) the KlaTrl1 kinase is highly specific for GTP or dGTP as the phosphate donor. Our findings recommend tRNA ligase as a tool to map ribonucleotides embedded in DNA and as a target for antifungal drug discovery.  相似文献   

20.
Summary The rat ovary produces an apparently low molecular weight substance that mimics the action of follitropin (FSH) on ovarian granulosa cells in culture. Similar to FSH action, the ovarian substance (OS) induces temporal cell rounding and, later on, intensive progestin production. However, unlike FSH, OS does not induce accumulation of cyclic AMP (cAMP) in the granulosa cells. The ovarian factor cannot be cAMP as its action is not abolished by phosphodiesterase (PDE) treatment. Neither is it a possible PDE inhibitor, as it does not augment cAMP accumulation in granulosa cells or Friend erythroleukemic cells induced by FSH or PGE1, respectively. The factor is still active after heating for 20 min at 90° C but is rapidly inactivated by alkali treatment. In addition, treatment with various proteases did not abolish the steroidogenic activity. These findings suggest a possible novel intraovarian regulator of the granulosa cell function. Presented in the symposium on Plant and Animal Physiology in Vitro at the 33rd Annual Meeting of the Tissue Culture Association, San Diego, California, June 6–10, 1982. This work was supported by the United States-Israel Binational Science Foundation, Grant 2656/81. This symposium was supported in part by the following organizations: Bellco Glass, Inc., California Branch of the Tissue Culture Association, Collaborative Research, Hana Media, Hybridtech, K C Biological, Inc., and Millipore Corporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号