首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The size and shape of the anal and dorsal fin in the blackstripe topminnow Fundulus notatus from lake and stream habitats across multiple ages and sexes were examined. Differences in the size and shape of anal and dorsal fins were sex‐specific and not related to habitat differences. Males have longer and more pointed anal fins and longer, larger and more pointed dorsal fins than females. These sex differences occur predominantly in the older age class. The angle (i.e. pointedness) of the dorsal and anal fins is tightly correlated suggesting that fins follow a similar growth trajectory as individuals become sexually mature.  相似文献   

2.
Adaptation of rainbow fish to lake and stream habitats   总被引:3,自引:0,他引:3  
Fish occupy a range of hydrological habitats that exert different demands on locomotor performance. We examined replicate natural populations of the rainbow fishes Melanotaenia eachamensis and M. duboulayi to determine if colonization of low-velocity (lake) habitats by fish from high-velocity (stream) habitats resulted in adaptation of locomotor morphology and performance. Relative to stream conspecifics, lake fish had more posteriorly positioned first dorsal and pelvic fins, and shorter second dorsal fin bases. Habitat dimorphism observed between wild-caught fish was determined to be heritable as it was retained in M. eachamensis offspring raised in a common garden. Repeated evolution of the same heritable phenotype in independently derived populations indicated body shape divergence was a consequence of natural selection. Morphological divergence between hydrological habitats did not support a priori expectations of deeper bodies and caudal peduncles in lake fish. However, observed divergence in fin positioning was consistent with a family-wide association between habitat and morphology, and with empirical studies on other fish species. As predicted, decreased demand for sustained swimming in lakes resulted in a reduction in caudal red muscle area of lake fish relative to their stream counterparts. Melanotaenia duboulayi lake fish also had slower sustained swimming speeds (Ucrit) than stream conspecifics. In M. eachamensis, habitat affected Ucrit of males and females differently. Specifically, females exhibited the pattern observed in M. duboulayi (lake fish had faster Ucrit than stream fish), but the opposite association was observed in males (stream males had slower Ucrit than lake males). Stream M. eachamensis also exhibited a reversed pattern of sexual dimorphism in Ucrit (males slower than females) relative to all other groups (males faster than females). We suggest that M. eachamensis males from streams responded to factors other than water velocity. Although replication of muscle and Ucrit phenotypes across same habitat populations within and/or among species was suggestive of adaptation, the common garden experiment did not confirm a genetic basis to these associations. Kinematic studies should consider the effect of the position and base length of dorsal fins.  相似文献   

3.
Collin H  Fumagalli L 《Molecular ecology》2011,20(21):4490-4502
Natural selection drives local adaptation, potentially even at small temporal and spatial scales. As a result, adaptive genetic and phenotypic divergence can occur among populations living in different habitats. We investigated patterns of differentiation between contrasting lake and stream habitats in the cyprinid fish European minnow (Phoxinus phoxinus) at both the morphological and genomic levels using geometric morphometrics and AFLP markers, respectively. We also used a spatial correlative approach to identify AFLP loci associated with environmental variables representing potential selective forces responsible for adaptation to divergent habitats. Our results identified different morphologies between lakes and streams, with lake fish presenting a deeper body and caudal peduncle compared to stream fish. Body shape variation conformed to a priori predictions concerning biomechanics and swimming performance in lakes vs. streams. Moreover, morphological differentiation was found to be associated with several environmental variables, which could impose selection on body and caudal peduncle shape. We found adaptive genetic divergence between these contrasting habitats in the form of 'outlier' loci (2.9%) whose genetic divergence exceeded neutral expectations. We also detected additional loci (6.6%) not associated with habitat type (lake vs. stream), but contributing to genetic divergence between populations. Specific environmental variables related to trophic dynamics, landscape topography and geography were associated with several neutral and outlier loci. These results provide new insights into the morphological divergence and genetic basis of adaptation to differentiated habitats.  相似文献   

4.
Phenotypic divergence in response to divergent natural selection between environments is a common phenomenon in species of freshwater fishes. Intraspecific differentiation is often pronounced between individuals inhabiting lakes versus stream habitats. The different hydrodynamic regimes in the contrasting habitats may promote a variation of body shape, but this could be intertwined with morphological adaptations to a specific foraging mode. Herein, I studied the divergence pattern of the European minnow (Phoxinus phoxinus), a common freshwater fish that has received little attention despite its large distribution. In many Scandinavian mountain lakes, European minnows are considered as being invasive and were found to pose threats to the native fish populations due to resource competition. Minnows were recently found to show phenotypic adaptations in lake versus stream habitats, but the question remained if this divergence pattern is related to differences in resource use. I therefore studied the patterns of minnow divergence in morphology (i.e., using geometric morphometrics) and trophic niches (i.e., using stomach content analyses) in the lake Ånnsjön and its tributaries to link the changes in body morphology to the feeding on specific resources. Lake minnows showed a strong reliance on benthic Cladocera and a more streamlined body shape with a more upward facing snout, whereas stream minnows fed on macroinvertebrates (larvae and adults) to a higher degree and had a deeper body with a snout that was pointed down. Correlations showed a significant relationship of the proportion of macroinvertebrates in the gut and morphological features present in the stream minnows. The results of this study highlight the habitat‐specific divergence pattern in morphology and resource use in this ubiquitous freshwater fish. Consequently, interspecific interactions of invasive minnows and the native fish population could differ in the respective food webs and resource competition could target different native fish species in the contrasting habitats.  相似文献   

5.
Synopsis A comparison of a suite of morphometric measurements and meristic counts of individuals of two landlocked lacustrine and two diadromous riverine populations of Galaxias truttaceus was carried out utilising both univariate and canonical variate analyses. Lacustrine fish had fewer dorsal and anal fin rays than did riverine fish. Differences were not as clear for gill rakers and vertebrae. Comparisons of serial counts were made with two derived lacustrine species, G. auratus and G. tanycephalus, also from Tasmania. Lacustrine G. truttaceus varied in the same direction as the derived species, relative to riverine G. truttaceus. From an analysis of 12 body measurements, the first canonical variate clearly separated lacustrine fish from riverine fish largely based on measurements associated with fins (pre-anal fin length, length of anal base, pre-dorsal fin length, maximum length of dorsal fin and inter-orbital width). An overall value for the correct classification of fish into groups based on locality was 84%. The percentage of fish classified into the wrong habitat (lake or stream) was much less than the percentage classified between localities within habitats. Overall morphological variation was greater between than within habitats. It is suggested that the differences in water movement and food type may in part account for the differences shown and that selective pressures peculiar to the lacustrine environment may be causing the lake populations to diverge from the riverine populations.  相似文献   

6.
It has been suggested that a trade‐off between cognitive capacity and developmental costs may drive brain size and morphology across fish species, but this pattern is less well explored at the intraspecific level. Physical habitat complexity has been proposed as a key selection pressure on cognitive capacity that shapes brain morphology of fishes. In this study, we compared brain morphology of brown trout, Salmo trutta, from stream, lake, and hatchery environments, which generally differ in physical complexity ranging from low habitat complexity in the hatchery to high habitat complexity in streams and intermediate complexity in lakes. We found that brain size, and the size of optic tectum and telencephalon differed across the three habitats, both being largest in lake fish with a tendency to be smaller in the stream compared to hatchery fish. Therefore, our findings do not support the hypothesis that in brown trout the volume of brain and its regions important for navigation and decision‐making increases in physically complex habitats. We suggest that the observed differences in brain size might be associated with diet quality and habitat‐specific behavioral adaptations rather than physical habitat complexity.  相似文献   

7.
Divergent natural selection acting in different habitats may build up barriers to gene flow and initiate speciation. This speciation continuum can range from weak or no divergence to strong genetic differentiation between populations. Here, we focus on the early phases of adaptive divergence in the East African cichlid fish Astatotilapia burtoni, which occurs in both Lake Tanganyika (LT) and inflowing rivers. We first assessed the population structure and morphological differences in A. burtoni from southern LT. We then focused on four lake–stream systems and quantified body shape, ecologically relevant traits (gill raker and lower pharyngeal jaw) as well as stomach contents. Our study revealed the presence of several divergent lake–stream populations that rest at different stages of the speciation continuum, but show the same morphological and ecological trajectories along the lake–stream gradient. Lake fish have higher bodies, a more superior mouth position, longer gill rakers and more slender pharyngeal jaws, and they show a plant/algae and zooplankton‐biased diet, whereas stream fish feed more on snails, insects and plant seeds. A test for reproductive isolation between closely related lake and stream populations did not detect population‐assortative mating. Analyses of F1 offspring reared under common garden conditions indicate that the detected differences in body shape and gill raker length do not constitute pure plastic responses to different environmental conditions, but also have a genetic basis. Taken together, the A. burtoni lake–stream system constitutes a new model to study the factors that enhance and constrain progress towards speciation in cichlid fishes.  相似文献   

8.
Spatially variable selection pressure within heterogeneous environments can result in the evolution of specialist phenotypes that facilitate co-occurrence of closely related species and limit genetic exchange. If divergent selection pressures maintain reproductive isolation, hybridization is expected to correlate with the strength of underlying ecological gradients and the traits shaped by adaptive processes. We sampled ten replicate topminnow (Fundulus olivaceus and Fundulus notatus) hybrid zones in isolated drainages throughout central and southern North America. In all drainages, species were distributed in an upstream–downstream manner with contact zones localized at confluences featuring abrupt shifts from tributary to river habitat. In two drainages, the typical up and downstream positions of species were reversed. Phenotype differences between the species reflect predicted selection differences along stream gradients. Downstream populations (lower food availability and greater predator pressure) generally showed larger investment in reproduction (higher gonadal somatic index), smaller body size and lower somatic condition compared to upstream populations. Phenotypic differences between the species in the two reversed drainages were consistent with convergence of life history traits in the respective habitats. Phenotypes of individuals of hybrid origin (F1 hybrids or backcrosses) were not significantly different from the average of the two parental forms, though there were trends towards reduced fitness. The prevalence of hybridization among drainages ranged from no hybrids in two drainages to near random mating. The strongest correlates of hybridization rate among replicate hybrid zones were similarity in body shape and the homogeneity of habitat through tributary-river confluences. The two reversed orientation hybrid zones also exhibited high prevalence of hybrids suggesting that phenotypic convergence could lead to increased hybridization.  相似文献   

9.
To what extent are patterns of biological diversification determined by natural selection? We addressed this question by exploring divergence in foraging morphology of threespine stickleback fish inhabiting lake and stream habitats within eight independent watersheds. We found that lake fish generally displayed more developed gill structures and had more streamlined bodies than did stream fish. Diet analysis revealed that these morphological differences were associated with limnetic vs. benthic foraging modes, and that the extent of morphological divergence within watersheds reflected differences in prey resources utilized by lake and stream fish. We also found that patterns of divergence were unrelated to patterns of phenotypic trait (co)variance within populations (i.e. the ‘line of least resistance’). Instead, phenotypic (co)variances were more likely to have been shaped by adaptation to lake vs. stream habitats. Our study thus implicates natural selection as a strong deterministic force driving morphological diversification in lake–stream stickleback. The strength of this inference was obtained by complementing a standard analysis of parallel divergence in means between discrete habitat categories (lake vs. stream) with quantitative estimates of selective forces and information on trait (co)variances.  相似文献   

10.
Freshwater colonization by threespine stickleback has led to divergence in morphology between ancestral marine and derived freshwater populations, making them ideal for studying natural selection on phenotypes. In an open brackish–freshwater system, we previously discovered two genetically distinct stickleback populations that also differ in geometric shape: one mainly found in the brackish water lagoon and one throughout the freshwater system. As shape and size are not perfectly correlated, the aim of this study was to identify the morphological trait(s) that separated the populations in geometric shape. We measured 23 phenotypes likely to be important for foraging, swimming capacity, and defense against predation. The lateral plate morphs in freshwater displayed few significant changes in trait sizes, but the low plated expressed feeding traits more associated with benthic habitats. When comparing the completely plated genetically assigned populations, the freshwater, the hybrids, the migrants and the lagoon fish, many of the linear traits had different slopes and intercepts in trait‐size regressions, precluding our ability to directly compare all traits simultaneously, which most likely results from low variation in body length for the lagoon and migrant population. We found the lagoon stickleback population to be more specialized toward the littoral zone, displaying benthic traits such as large, deep bodies with smaller eyes compared to the freshwater completely plated morph. Further, the lagoon and migrant fish had an overall higher body coverage of lateral plates compared to freshwater fish, and the dorsal and pelvic spines were longer. Evolutionary constraints due to allometric scaling relationships could explain the observed, overall restricted, differences in morphology between the sticklebacks in this study, as most traits have diversified in common allometric trajectories. The observed differences in foraging and antipredation traits between the fish with a lagoon and freshwater genetic signature are likely a result of genetic or plastic adaptations toward brackish and freshwater environments.  相似文献   

11.
We examined intra‐ and interspecific variability in shape of three topminnow species (Funduluidae: Fundulus notatus, F. olivaceus, and F. euryzonus) across ten drainages. Within each drainage, five or more adult male topminnows were digitized at multiple sites (83 total sites) along the river continuum representing a range of stream sizes (cumulative drainage area) and hydrological conditions. Nine of the ten drainages contained two Fundulus species that were longitudinally separated along the river continuum with narrow areas of coexistence. Upstream–downstream distribution patterns were variable by drainage, allowing us to examine patterns repeated across ecologically similar species. More variability in shape was explained by drainage (19.7%) than by species (7.4%) differences. Populations of F. notatus from headwaters (three drainages) converged on a deep‐bodied form similar to F. olivaceus which was typically sampled in headwaters. Fundulus notatus shape was more closely related to stream size than in the other two species. Headwater populations of F. notatus and F. olivaceus had fineness ratios near the hydrodynamic optima of 4.5 whereas downstream populations of F. notatus had shallower bodies. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 612–621.  相似文献   

12.
The greenside darter Etheostoma blennioides is a small-bodied benthic stream fish that occurs in multiple drainages of the eastern USA. Previous studies have revealed some morphological differentiations among greensides from isolated drainage systems but growth relationships among functional morphological characteristics have not been examined within and between populations. Specifically, we tested for differences in functional morphology and allometric distinctions in morphological growth trajectories between greenside populations from two drainages, the Osage River and White River. Morphological differences between individuals of the two drainages included more dorso-ventrally compressed bodies, longer snouts and larger jaw features in White River darters. Furthermore, body depth, snout length and jaw width grow at significantly different trajectories in individuals of the two drainages. Individuals of the White River drainage (generally a higher gradient stream system) become comparatively more streamlined and develop proportionately larger feeding related traits during growth. These results suggest that individuals of both drainages share a similar morphology during early life but deviate during continued development and this may be partially due to environmentally induced plastic response. This study represents a novel approach for comparing morphological development among fish populations and presents environmental factors (e.g., stream gradient and elevation) that potentially influence functional characteristics.  相似文献   

13.
A study of body and head development in three sympatric reproductively isolated Arctic charr (Salvelinus alpinus (L.)) morphs from a subarctic lake (Skogsfjordvatn, northern Norway) revealed allometric trajectories that resulted in morphological differences. The three morphs were ecologically assigned to a littoral omnivore, a profundal benthivore and a profundal piscivore, and this was confirmed by genetic analyses (microsatellites). Principal component analysis was used to identify the variables responsible for most of the morphological variation of the body and head shape. The littoral omnivore and the profundal piscivore morph had convergent allometric trajectories for the most important head shape variables, developing bigger mouths and relatively smaller eyes with increasing head size. The two profundal morphs shared common trajectories for the variables explaining most of the body and head shape variation, namely head size relative to body size, placement of the dorsal and pelvic fins, eye size and mouth size. In contrast, the littoral omnivore and the profundal benthivore morphs were not on common allometric trajectories for any of the examined variables. The findings suggest that different selective pressures could have been working on traits related to their trophic niche such as habitat and diet utilization of the three morphs, with the two profundal morphs experiencing almost identical environmental conditions.  相似文献   

14.
Speciation can be initiated by adaptive divergence between populations in ecologically different habitats, but how sexually based reproductive barriers contribute to this process is less well understood. We here test for sexual isolation between ecotypes of threespine stickleback fish residing in adjacent lake and stream habitats in the Lake Constance basin, Central Europe. Mating trials exposing females to pairings of territorial lake and stream males in outdoor mesocosms allowing for natural reproductive behaviour reveal that mating occurs preferentially between partners of the same ecotype. Compared to random mating, this sexual barrier reduces gene flow between the ecotypes by some 36%. This relatively modest strength of sexual isolation is surprising because comparing the males between the two ecotypes shows striking differentiation in traits generally considered relevant to reproductive behaviour (body size, breeding coloration, nest size). Analysing size differences among the individuals in the mating trials further indicates that assortative mating is not related to ecotype differences in body size. Overall, we demonstrate that sexually based reproductive isolation promotes divergence in lake–stream stickleback along with other known reproductive barriers, but we also caution against inferring strong sexual isolation from the observation of strong population divergence in sexually relevant traits.  相似文献   

15.
《Animal behaviour》1986,34(2):497-509
Sailfin mollies, Poecilia latipinna, exhibit remarkable levels of intraspecific variation in reproductive behaviour. Larger males exhibit higher rates of courtship and lowered rates of gonoporal nibbling and gonopodial thrusting (forced copulation attempts). Larger males have relatively longer and higher dorsal fins than smaller males. The dorsal fin is a prominent component of the courtship display. Variation in fin measurements, behaviour patterns, and body size of mature males is continuous, and fin shape and behaviour patterns are allometrically related to body size. The allometric pattern is displayed by individual traits as well as by the morphological or behavioural traits in ensemble. Eight populations of mollies from markedly distinct habitats exhibited similar consistent levels of intrademic variation in the size of mature males. Detailed studies on three populations showed that dorsal fin shape could be described by the same regression relationship in all populations, and indicted that a male's shape was determined by his absolute body size. By contrast, there was some variation among populations in the relation of behaviour patterns to male body size. The pattern of this interdemic variation indicated that a male's behaviour patterns were influenced by his relative size in a population. Successful inseminations following forced copulations were rare. The average size of successful males was smaller than the average size of unsuccessful males in all three populations. These results indicated that successful insemination through forced copulation was, like behaviour patterns generally, more a function of the relative size of the male, than his absolute size.  相似文献   

16.
Performance‐related variation in fitness can manifest as morphological responses to ecological and evolutionary pressures. Eco‐morphological studies often utilize stark binary comparisons, such as lentic to lotic populations of freshwater fishes, to characterize relationships between form and function despite possible complications from confounding factors. In the present study, we compared body shape variation among lotic populations of a stream fish (Cyprinella venusta Girard) to disentangle the influence of ecological and evolutionary drivers of phenotypic change. We assessed the extent to which body shape corresponded to three key environmental factors (mean channel velocity, mean discharge, and mean annual run‐off), phylogeny (mitochondrial DNA divergence), and body size (centroid size). We also examined relationships between these parameters and a fineness index, which is a measure of streamlining and morphological optimization for steady swimming performance. All three environmental variables had some explanatory power, although morphological characteristics were predominantly associated with variation in mean annual run‐off. Phylogeny was also a strong predictor of morphological variation, whereas body size had little predictive power. Populations experiencing higher mean annual run‐off exhibited a shorter base of the dorsal fin, a more slender body and caudal peduncle, a smaller head in both horizontal and vertical dimensions, and a more anterior placement of the eye. With some exceptions, such as variation in jaw length, differences in body shape associated with phylogenetic history were similar to those associated with run‐off. Notably, all clades exhibited parallel responses to variation in run‐off. Populations experiencing high mean annual run‐off approached a hydrodynamic optimum, suggesting a morphology optimized for steady swimming performance. In contrast to previous studies that emphasize the importance of average water velocity, the findings of the present study indicate that morphological variation among populations of stream fishes is tightly linked to more complex aspects of hydrology and evolutionary history. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●● , ●●–●●.  相似文献   

17.

Dam constructions cause fundamental changes in the natural landscape, creating new ecological and evolutionary challenges for aquatic organisms. In some cases, such water impoundments have been related with morphological changes in organisms. Understanding how populations respond to rapid environmental changes imposed by dams is the first step to elucidate the consequences that disturbed habitats may have on species evolution. In this work, we analyzed shape and size variation in Bryconamericus iheringii Boulenger 1887 from the Chasqueiro stream basin, south of Brazil, which was recently dammed. We used linear measurements and geometric morphometrics to identify morphological differences among specimens from the reservoir (lentic habitat) compared to the habitat upstream and downstream of the dam (lotic habitats). We also tested for size- and shape-related sexual dimorphism to determine whether variations observed were the same for both sexes. We found that B. iheringii from the artificial reservoir were distinct in shape and size to those from their natural habitat in the stream. The size variation between environments was the same for both sexes, but the shape variation differed between males and females. Regarding the linear measurements, lotic populations were larger (greater body length, width, pectoral fin base length and caudal peduncle length), probably in response to increased swimming activity. Regarding body shape, we found that both sexes have a more fusiform body in lotic habitats than in the reservoir. In addition, females showed an altered mouth position that was distinct between these environments. This work indicates that the water reservoir seems to be an important factor influencing morphological variation in B. iheringii, a species with sexual shape dimorphism.

  相似文献   

18.
Aims To test the magnitude and direction of the effects of large‐scale environmental factors (latitude and habitat type: lotic or lentic) on the intraspecific variations in multiple life‐history traits, across multiple European freshwater fish species. To test the relevance of defining species traits by quantifying the magnitude of interspecific vs. intraspecific variability in traits. Location Europe. Methods We obtained estimates of 11 fish traits from published sources for 1089 populations of 25 European freshwater fish species. Traits were: longevity, maximal length, growth rate, asymptotic length, mortality rate, age and length at maturation, fecundity, egg size, gonadosomatic index, and length of breeding season. We described population habitats by latitude and habitat type (lotic or lentic), when available. For each species we tested the combined effect of latitude and habitat type on the intraspecific variation of each trait using analysis of covariance (ancova ). We compared the intraspecific variation in traits with the variation between species using an analysis of variance (anova ) for each trait, all species pooled. Results We found a consistent effect in direction of latitude on six traits, but we showed that this effect is not always significant across species. Higher‐latitude populations often grew more slowly, matured later, had a longer life span and a higher maximal and asymptotic length, and allocated more energy to reproduction than populations at lower latitudes. By contrast, we noted only a slight effect of habitat type on the intraspecific variation in traits, except for Salmo trutta. All traits varied significantly between species. However, traits such as growth rate, mortality rate and length of breeding season varied more between populations than between species, whereas fecundity and traits associated with body length varied more between species. Main conclusions Latitude, in contrast to habitat type, is an important factor influencing several traits of geographically widely dispersed populations of multiple European freshwater fish species. Species traits that vary more between species than between populations are attractive variables for understanding and predicting the responses of stream fish communities to their environment.  相似文献   

19.
Variation in age and size of mature nine-spined sticklebacks (Pungitius pungitius) within and among 16 Fennoscandian populations were assessed using skeletochronology. The average age of individuals in a given population varied from 1.7 to 4.7 years. Fish from pond populations were on average older than those from lake and marine populations, and females tended to be older than males. Reproduction in marine and lake populations commenced typically at an age of two years, whereas that in ponds at an age of three years. The maximum life span of the fish varied from 3 to 7 years. Mean body size within and among populations increased with increasing age, but the habitat and population differences in body size persisted even after accounting for variation in population age (and sex) structure. Hence, the population differences in mean body size are not explainable by age differences alone. As such, much of the pronounced intraspecific variation in population age structure can be attributed to delayed maturation and extended longevity of the pond fish. The results are contrasted and discussed in the context of similar data from the three-spined stickleback (Gasterosteus aculeatus) occupying the same geographic area.  相似文献   

20.
Evolution of ecomorphologically relevant traits such as body shapes is important to colonize and persist in a novel environment. Habitat‐related adaptive divergence of these traits is therefore common among animals. We studied the genomic architecture of habitat‐related divergence in the body shape of Gnathopogon fishes, a novel example of lake–stream ecomorphological divergence, and tested for the action of directional selection on body shape differentiation. Compared to stream‐dwelling Gnathopogon elongatus, the sister species Gnathopogon caerulescens, exclusively inhabiting a large ancient lake, had an elongated body, increased proportion of the caudal region and small head, which would be advantageous in the limnetic environment. Using an F2 interspecific cross between the two Gnathopogon species (195 individuals), quantitative trait locus (QTL) analysis with geometric morphometric quantification of body shape and restriction‐site associated DNA sequencing‐derived markers (1622 loci) identified 26 significant QTLs associated with the interspecific differences of body shape‐related traits. These QTLs had small to moderate effects, supporting polygenic inheritance of the body shape‐related traits. Each QTL was mostly located on different genomic regions, while colocalized QTLs were detected for some ecomorphologically relevant traits that are proxy of body and caudal peduncle depths, suggesting different degree of modularity among traits. The directions of the body shape QTLs were mostly consistent with the interspecific difference, and QTL sign test suggested a genetic signature of directional selection in the body shape divergence. Thus, we successfully elucidated the genomic architecture underlying the adaptive changes of the quantitative and complex morphological trait in a novel system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号