首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
  • 1 After storm disturbances, there is a risk for degradation of the quality of fallen trees, and for subsequent tree mortality caused by the spruce bark beetle Ips typographus (L.) (Coleoptera: Curculionidae). Models assessing the risk for bark beetle colonization of different kinds of storm gaps would be a valuable tool for management decisions.
  • 2 The present study aimed to determine which gap and landscape characteristics are correlated with the probability of colonization of wind‐felled Norway spruce trees by I. typographus.
  • 3 The study included 36 storm gaps, varying in size from three to 1168 wind‐felled spruces, created by the storm Gudrun in southern Sweden in January 2005.
  • 4 In the first summer, on average, 5% of the wind‐felled spruces were colonized by I. typographus. The percentage of colonized wind‐felled trees per gap was negatively correlated with the total area of storm gaps within 2000 m in the surrounding forest landscape.
  • 5 In the second summer, the proportion of colonized trees increased to 50%. Both gap (mean diameter of wind‐felled trees and basal area of living spruce trees) and landscape variables (amount of spruce forest) were significantly correlated with colonization percentage and explained almost 50% of the variation between gaps.
  • 6 There was no relationship between gap area and colonization percentage. This implies that landscapes with many large storm gaps, where logging resources will be most effectively used, should be salvaged first.
  相似文献   

3.
Abstract 1 To maintain biodiversity in managed spruce forests in Sweden more wind‐felled trees must be retained. However, there is concern among forest owners that this may result in higher tree mortality caused by the spruce bark beetle, Ips typographus (L.) (Col. Scolytidae). 2 To simulate wind‐felled trees, living spruce trees were cut at spruce stand edges bordering fresh clear‐cuttings. Treatments comprised edges with zero, one or five cut trees colonized by I. typographus. Edges with naturally wind‐felled trees colonized by I. typographus were also included in the analyses. 3 During the two following summers, the number of trees killed by I. typographus did not differ between edges with and without felled trees, or between edges with one or five felled trees. 4 Within edges with felled trees, there were more killed trees close to the felled trees than at other parts of the edges. Thus, felled trees provided focal points for attacks within edges. 5 It is concluded that small numbers of wind‐felled trees colonized by I. typographus may be left near spruce stand edges without increasing the risk of beetle‐induced tree mortality.  相似文献   

4.
5.
Intensive forestry practises in the Swedish landscape have led to the loss and fragmentation of stable old‐growth habitats. We investigated relationships between landscape composition at multiple scales and the composition of saproxylic beetle assemblages in nine clear‐cut, mature managed and old‐growth spruce‐dominated forest stands in the central boreal zone of Sweden. We set out fresh spruce and birch logs and created spruce snags in 2001–2002 to experimentally test the effects of coarse woody debris (CWD) type and forest management on the composition of early and late successional, and red‐listed saproxylic beetle assemblages. We examined effects of CWD availability at 100 m, and landscape composition at 1 and 10 km on saproxylic beetle abundances. Additionally, we tested whether assemblage similarity decreased with increasing distance between sites. We collected beetles from the experimental logs using eclector and window traps in four periods during 2003. CWD was measured and landscape composition data was obtained from maps of remotely sensed data. The composition of saproxylic beetles differed among different CWD substrates and between clear‐cuts and the older stand types, however differences between mature managed and old‐growth forests were significant only for red‐listed species. Assemblage similarities for red‐listed species on clear‐cuts were more different at greater distances apart, indicating that they have more localised distributions. CWD availability within 100 m of the study sites was rarely important in determining the abundance of species, suggesting that early successional saproxylic beetles can disperse further than this distance. At a larger scale, a large area of suitable stand types within both 1 and 10 km resulted in greater abundances in the study sites for several common and habitat‐specific species. The availability of suitable habitat at scales of 1–10 km is thus likely to be important in the survival of many saproxylic species in forestry‐fragmented areas.  相似文献   

6.
7.
Abstract 1 The antennally active nonhost bark volatiles (NHVs): trans‐conophthorin (tC), C6‐alcohols (green leaf volatiles; GLVs) and C8‐alcohols, were tested for their ability to reduce attraction of the spruce bark beetle Ips typographus (L) (Col. Scolytidae) to its pheromone sources in both laboratory walking bioassy and field trapping experiments. 2 In the walking bioassay with I. typographus females, individual NHVs such as tC, 3‐octanol and 1‐octen‐3‐ol, and the unsuitable host signal, verbenone (Vn), were inactive at the doses tested. However, the blend of C6‐alcohols (3GLVs) and all the binary, ternary, or quarternary blends significantly reduced the female attraction to the pheromone sources. 3 In the field trapping experiments, individual NHV signals (tC, C6‐alcohols and C8‐alcohols) all reduced catch of I. typographus in pheromone‐baited traps, with their inhibitory effects similar to that of the known inhibitor, Vn. The binary, ternary or quarternary combinations of these NHV signals or Vn, all caused significantly stronger reductions in trap catches than the individual signals. The blends showed similar levels of interruption, except the binary blend of C8‐alcohols (2C8OH) and Vn. 4 Difference in trapping mechanism between pipe traps (attraction and landing) and Lindgren funnel traps (attraction) did not affect the pattern of inhibition of these active NHV signals and Vn. 5 These behaviourally active nonhost volatiles and Vn might be used effectively to protect spruce trees or stands against attacks by I. typographus.  相似文献   

8.
The intensity of bark beetle Ips typographus L. (Col., Scolytidae) attack on Norway spruce (Picea abies Karst.) is known to vary greatly among stands. In a control strategy approach, previous studies investigated the relationships between the variability in intensity of I. typographus attack and site characteristics such as stand age and altitude, mean tree circumference, growth rate and nearest‐neighbour distance, soil moisture, pH in H2O and KCl, and soil contents of C, N, K, P, Mg, Ca, Fe, Cu, Zn and Mn. The data analysis method used in these studies was mainly the multiple linear regression, with the mean number of attacks per spruce tree in a stand as variable to explain. Previous results showed that the expected vulnerability of a Norway spruce stand to attack by I. typographus can be estimated on the basis of simple information of easy access to the forester, when the data on the stand in question is used with others for fitting the regression model. Prediction of the vulnerability of a stand, without including its data in the fitting of the model, was shown to be more approximate. Therefore, the objectives of this study were: (1) to improve the performance of models predicting the vulnerability of Norway spruce stands to attack by I. typographus, based on site characteristics; (2) to assess the stability of such predictive models when these are built using a moderate number of stands; and (3) to incorporate the resulting information in a global approach to control and prevention. Published data were re‐analysed for these purposes. A jackknifed multiple linear regression procedure, in which each stand in turn is discarded when fitting the model (jackknife replication), is presented. A great variability in the models fitted, depending on the stand discarded, is observed. For instance, the number of explanatory variables retained ranges from one (i.e. soil P content, for five jackknife replications) to 10 (for one jackknife replication), for R2‐values ranging from 0.5 to 1.0 and for one influential stand (i.e. the same stand characterized by an atypically low number of insect attacks compared to other stands with similar soil P content) against many influential stands. Differences between the model finally selected here using the revisited data and the models proposed earlier are discussed. A path analysis diagram is proposed for a more comprehensive modelling of Norway spruce stand vulnerability to I. typographus attack, based on site characteristics.  相似文献   

9.
1 The dispersal of Ips typographus L. (Col., Scolytidae) was studied using a mark–release–recapture approach in a grid of traps equipped with pheromone lures of release rates of about 8.4 mg/day of 2‐methyl‐3‐buten‐2‐ol (MB) and 0.29 mg/day of (S)‐cis‐verbenol (cV) in experiment 1, and 1.2 mg/day of MB and 0.04 mg/day of cV in experiment 2. 2 We investigated whether beetle dispersal reflected the simple diffusion pattern observed in previous I. typographus experiments, for which attractant release rates generally approached 50 mg/day of MB and 1 mg/day of cV. We also examined how environmental parameters (wind) and human activities (felling) could influence the beetles' flight. 3 The recapture percentage was higher in experiment 1 than in experiment 2: respectively, 7.0% (with 64 traps) and 2.3% (with 100 traps) of the beetles that took off were caught in the traps. 4 With the higher release rate (experiment 1), trap catches decreased with increased distance, whereas with the lower release rate (experiment 2), trap catches rose between 50 and 100 m then decreased with increasing distance. 5 Flight was little orientated by prevailing wind directions, a feature probably explained by the low wind speeds (0–1.2 m/s) observed throughout the study. 6 High trap catches of unmarked beetles close to areas undergoing thinning activities suggest that the presence of freshly cut spruce and larch material could have an influence on dispersal, attracting the beetles into the felling area. Spatial analyses show that capture patterns were autocorrelated up to distances of about 250 m.  相似文献   

10.
In recent decades we have seen rapid and co‐occurring changes in landscape structure, species distributions and even climate as consequences of human activity. Such changes affect the dynamics of the interaction between major forest pest species, such as bark beetles (Coleoptera: Curculionidae, Scolytinae), and their host trees. Normally breeding mostly in broken or severely stressed spruce; at high population densities some bark beetle species can colonise and kill healthy trees on scales ranging from single trees in a stand to multi‐annual landscape‐wide outbreaks. In Eurasia, the largest outbreaks are caused by the spruce bark beetle, Ips typographus (Linnaeus), which is common and shares a wide distribution with its main host, Norway spruce (Picea abies Karst.). A large literature is now available, from which this review aims to synthesize research relevant for the population dynamics of I. typographus and co‐occurring species under changing conditions. We find that spruce bark beetle population dynamics tend to be metastable, but that mixed‐species and age‐heterogeneous forests with good site‐matching tend to be less susceptible to large‐scale outbreaks. While large accumulations of logs should be removed and/or debarked before the next swarming period, intensive removal of all coarse dead wood may be counterproductive, as it reduces the diversity of predators that in some areas may play a role in keeping I. typographus populations below the outbreak threshold, and sanitary logging frequently causes edge effects and root damage, reducing the resistance of remaining trees. It is very hard to predict the outcome of interspecific interactions due to invading beetle species or I. typographus establishing outside its current range, as they can be of varying sign and strength and may fluctuate depending on environmental factors and population phase. Most research indicates that beetle outbreaks will increase in frequency and magnitude as temperature, wind speed and precipitation variability increases, and that mitigating forestry practices should be adopted as soon as possible considering the time lags involved.  相似文献   

11.
12.
  • 1 The relationships between red wood ants (Formica rufa group) and other ground‐dwelling arthropods were studied in young managed forests stands in Eastern Finland. The main objectives were: (i) to test the influence of stand type (dominant tree species; age: sapling versus pole stage) and numbers of red wood ants on the occurrence of other ground‐dwelling arthropods and (ii) to study the occurrence of red wood ants versus other arthropods on a distance gradient from ant mounds. We used pitfall traps set in 5–14‐year‐old sapling stands and 30–45‐year‐old pole‐stage stands of Scots pine (Pinus sylvestris L.) and birch (Betula spp.) forests.
  • 2 Pitfall trap catches of red wood ants did not vary significantly between the forest stand types, although some groups of other arthropods showed clear responses to stand type (e.g. catches of other Formicinae and Gnaphosidae were higher in sapling stands than in pole‐stage stands). The number of red wood ants clearly explained less of the variation in assemblages of other ground‐dwelling arthropods than the forest stand type.
  • 3 Red wood ant numbers decreased significantly with distance from the mounds, but the other ground‐dwelling arthropods were insensitive to this gradient or even showed a preference for proximity to ant mounds and high ant activity.
  • 4 The results obtained in the present study suggest that wood ants do not have strong effects on several other ground‐dwelling arthropod groups in young managed forests other than in the immediate vicinity of their mounds.
  相似文献   

13.
Ips typographus and Pityogenes chalcographus are two sympatric Palearctic bark beetle species with wide distribution ranges. As both species are comparable in biology, life history, and habitat, including sharing the same host, Picea abies, they provide excellent models for applying a comparative approach in which to identify common historical patterns of population differentiation and the influence of species-specific ecological characteristics. We analysed patterns of genetic diversity, genetic structure and demographic history of ten I. typographus and P. chalcographus populations co-distributed across Europe using both COI and ITS2 markers. Rather than similarities, our results revealed striking differences. Ips typographus was characterised by low genetic diversity, shallow population structure and strong evidence that all extant haplogroups arose via a single Holocene population expansion event. In contrast, genetic variation and structuring were high in P. chalcographus indicating a longer and more complex evolutionary history. This was estimated to be five times older than I. typographus, beginning during the last Pleistocene glacial maximum over 100 000 years ago. Although the expansions of P. chalcographus haplogroups also date to the Holocene or just prior to its onset, we show that these occurred from at least three geographically separated glacial refugia. Overall, these results suggest that the much longer evolutionary history of P. chalcographus greatly influenced the levels of phylogeographic subdivision among lineages and may have led to the evolution of different life-history traits which in turn have affected genetic structure and resulted in an advantage over the more aggressive I. typographus.  相似文献   

14.
  1. As the development of the eight‐toothed spruce bark beetle Ips typographus is temperature‐dependent, climate change may encourage development of its additional generations per year and facilitate mass outbreaks further north than previously known.
  2. The aim of the study was to analyse historical changes in effective temperature sums (ETSs) and early season swarming weather for I. typographus in different forest zones of European Russia between 1960 and 2016. The difference in ETSs was analysed with linear regression using daily temperature data from the 30 meteorological stations. Historical data regarding the location of I. typographus outbreaks were examined and changes in their distribution during the entire study period were analysed.
  3. There was a substantial increase in ETSs, especially in the latter half of the study period. Increased ETSs coincided with more favourable conditions for swarming of I. typographus. Areas with favourable ETSs for the complete development of bivoltine populations of I. typographus (>1500 DD) shifted northwards on average 450 km during the entire study period.
  4. The northward shift of ETSs may enhance the transition from univoltine to bivoltine life cycles of I. typographus in the south and middle taiga and from bivoltine to trivoltine life cycles in conifer‐broadleaf forests.
  相似文献   

15.
  • 1 Volatiles from the hindgut extracts of males of the Oriental spruce engraver Pseudips orientalis (Wood & Yin) (Coleoptera: Curculionidae, Scolytinae) of different phases of gallery development were analyzed by gas chromatography‐mass spectrometry‐flame ionization detection (GC‐MS/FID) with both polar and enantioselective columns.
  • 2 GC‐MS/FID analyses showed that unmated males or males mated with one female produced approximately 95%‐(?)‐ipsenol and (?)‐cis‐verbenol as major components, as well as (?)‐trans‐verbenol, myrtenol, approximately 70%‐(+)‐ipsdienol and (?)‐verbenone as minor or trace components. The release of these male‐produced compounds was confirmed by GC analysis of an aeration sample of a P. orientalis‐infested spruce log. Mating reduced production of the male‐specific hindgut volatiles.
  • 3 A field‐trapping bioassay in Qinghai, China, showed that a ternary blend containing two major components, 97%‐(?)‐ipsenol (i.e. close to naturally produced enantiomeric ratio) and (?)‐cis‐verbenol, plus a minor component (?)‐trans‐verbenol, caught significantly more P. orientalis beetles (♂: ♀ = 1: 2.7) compared with the unbaited control. Subtraction of (?)‐trans‐verbenol from the active ternary blend had no significant effect on trap catches. The addition of (±)‐ipsdienol (at 0.2 mg/day release) to the active ternary or binary blends significantly interrupted their trap catches. Replacing 97%‐(?)‐ipsenol with (±)‐ipsenol in the ternary blend significantly reduced trap catches to a level that was no different from the blank control.
  • 4 Pseudips species were sister to all other Ipini genera in a phylogeny reconstructed with mitochondrial cytochrome oxidase I DNA data for 51 Ipini and outgroup species.
  • 5 The results obtained suggest that the two major components, 95%‐(?)‐ipsenol and (?)‐cis‐verbenol (at approximately 4–5 : 1), produced by unmated fed males, are probably the primary aggregation pheromone components for P. orientalis. In light of the phylogeny, the use of terpenoid semiochemicals as pheromones probably occurred early in the evolution of Ipini and these semiochemical blends were subsequently modified in the process of speciation.
  相似文献   

16.
  1. Several time-series analyses have demonstrated that after extreme summer drought bark beetle damage increased. However, studies predicting stand susceptibility over large spatial extents are limited by technical constraints in obtaining detailed, spatially-explicit data on infestation spot occurrence.
  2. Using a unique dataset of georeferenced bark beetle infestation data, we tested whether the spatial variation of local growing conditions of forest stands, topography, and landscape variables modified the local occurrence of Ips typographus infestations after a severe hot drought in Central Europe.
  3. Bark beetle infestation occurrence depended on soil-related aridity intensity, elevation, slope, and soil conditions. We showed that elevation interacted with growing conditions and topography. At low elevations, spruce forests growing on flat areas and wetter soils were more sensitive to the infestations. On the contrary, forests on steep slopes and soils with low water availability were rarely attacked. At the landscape scale, bark beetle damage increased with host tree cover but decreased with compositional diversity.
  4. Our findings are generally consistent with the growth-differentiation balance hypothesis that predicts that trees growing under chronic dry conditions tend to be more resistant against biotic disturbances.
  5. Spruce stands at low elevations located in homogeneous landscapes dominated by spruce were those more exposed to bark beetles in the initial phase of a drought-induced outbreak.
  相似文献   

17.
18.
19.
Abstract 1 To maintain biodiversity in forests more wind‐felled trees must be left where they fall. However, there is concern among forest owners that this may result in higher tree mortality caused by the spruce bark beetle, Ips typographus (L.) (Col.: Scolytidae). 2 In the 5 years following a major storm disturbance the number of standing spruces killed by I. typographus was determined in a total of 53 stands. In five of the stands all wind‐thrown trees were left (unmanaged stands) and in 48 of the stands, which were situated at distances of 1.4–10.0 km from each focal unmanaged stand, the wind‐felled trees were removed directly after the storm (managed stands). In the winter preceding the fifth summer new storm‐fellings occurred in the study area. 3 In the 4‐year period between the first and second storm‐fellings, 50–322 standing trees were killed by I. typographus per unmanaged stand. There was a direct linear relationship between the number of storm‐felled spruces colonized by I. typographus and the number of trees subsequently killed in the unmanaged stands. 4 Tree mortality caused by I. typographus in the unmanaged stands was almost nil in the first year, peaked in the second or third year, and decreased markedly to a low level in the fourth and fifth years. 5 In the 4‐year period between the first and second storm‐fellings twice as many trees were killed per ha in the unmanaged stands than in the managed stands: the average difference being 6.2 killed trees per ha, equivalent to 19% of the number of spruce trees felled by the first storm in the unmanaged stands. 6 Much higher numbers of trees were killed per ha in the stand edges than in the interiors of both the unmanaged and the managed stands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号